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of Strictly Pseudoconvex Domains into Polydiscs and Balls
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Matematisk Institutt, Universitetet i Oslo, Blindern, 0316 Oslo 3, Norway

1. Introduction

In this paper we continue the investigation, started in [10], of the problem of
embedding pseudoconvex domains as closed complex submanifolds of bounded
domains. We shall be studying the existence of proper holomorphic maps from
strictly pseudoconvex domains Qe C" into either the polydisc 4,, or the ball
B, in C™.

In the equidimensional case, m=n, such maps are particularly simple. In
fact if Q is strictly pseudoconvex with C® boundary, then any proper holomor-
phic map to B, is necessarily biholomorphic (see [3]) and proper maps to 4,
simply do not exist (Theorem 15.2.4 of [11]). Some results about proper maps
from balls to higher dimensional balls are also known. In fact, proper holo-
morphic maps from IB, to B,,, which are C? up to the boundary are nec-
essarily trivial (equivalent to the inclusion) when n=3 and equivalent to one of
four polynomial maps when n=2. This was proved by Webster in [12] (n23)
and by Faran in [4] (n=2) with C? boundary conditions. The condition was
lowered to C? by Cima and Suffridge ([1]), who also proved similar results for
higher codimensions.

The content of this paper is that there are an enormous amount of proper
holomorphic maps from strictly pseudoconvex domains to both polydiscs and
balls, when the codimension is sufficiently high, and in the case of balls as
targets they can be made continuous up to the boundary as well. Thus the
boundary smoothness condition mentioned above may very well be crucial.

In particular, we obtain a version of the Fornaess embedding theorem ([5]),
which says that every strictly pseudoconvex domain is a closed complex sub-
manifold of a strictly convex domain, when the target is a ball, but with con-
tinuity up to the boundary only. Lempert ([7]) had previously shown that it is
Possible to embed strictly pseudoconvex domains as closed complex subman
ifolds of the infinite dimensional ball.
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2. Some Remarks

The case when Q=IB, and the target is a polydisc was solved in [10]. It is
based on the construction of inner functions of Hakim and Sibony ([6]) and
the author ([8]). We shall use the notations §=0IB, and for zeS, B(z,r)

={weS; 6(z, w)<r} where 6 is the metric d(z, w)=|z—w|‘ When z, wes, then 1

—Re(z, w)=06%(z, w), hence |exp(1 —(z, wd)|=exp —62(z, w). The construction
is based on the following covering lemma:

For any « there exists an integer M(=M(n, a)) such that for any r>0 there
exist M families %, ..., #,, of balls with radii ar, #={B(z;;,ar); j=1,..., N},
such that each family is disjointed, i.c. B(z;;, ar)nB(z;, ar)=0 when j+k and
such that the balls of radii r cover S, i.e.

S= U B(z;, 7).

Of course M will increase rapidly with «. In [10] «=2 was used to prove

that there exist proper holomorphic maps from B, to 4,,, but any oc>]/§
would have done.

We shall formulate all our results for strictly pseudoconvex domains, but
only prove them in the case of the ball. The generalization to strictly pseudo-
convex domains is done in exactly the same way as [9] generalizes the con-
struction of inner functions from [8]. It should be noted, though, that in
strictly pseudoconvex domains we do not have holomorphic support functions
whose real part is exactly the square of the distance, as 1 —{z,w) for the ball,
but only bounded above and below by multiples of the square of the distance.
This means that for our arguments to work, we have to choose a larger value
of «. Hence the dimension of the target space depends in a dramatic way on
the geometry of the boundary with our present methods. We would also like to
mention that in our construction of proper continuous maps from balls to balls
we were not able to choose a below /6. Whether there is a real connection
between the boundary regularity and the codimension, remains to be seen.

Although the case of the polydisc was solved in [10], we would like to
mention some things that follow from the construction. The proof is essentially
just to generalize [10] in the same way that [9] generalized [8] and we shall
only briefly sketch the necessary changes in the proofs. We shall use the fol-
lowing notations for two domains ©, Q': H(Q, ') are the holomorphic func-
tions from Q to Q', A(Q, 2) and HP(Q, €Y) are the functions in H (R, ') which
are continuous up to the boundary or proper and AP(Q, Q)
=A(Q, Q)nHP(Q, Q).

3. The Polydisc as a Target

For a function f: Q—C™, f=(f,,...f,) define M (z)=max |f,(z)|. If f is holo-
morphic then M, is plurisubharmonic. i
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Theorem 1. Let Q€ C" be strictly pseudoconvex with C* boundary. Then, for all
sufficiently large m the following holds: If fe A(Q, €™), ¢ >0 is continuous on Q
such that M (z)<¢(z) on 0Q, K<Q is compact and ¢>0 then there exists
geH(Q, C™) such that M, , (&) > ¢(2) uniformly as & —zedQ and M, ($) <& when
£eK. g can also be chosen to vanish to any prescribed order at an interior point.

Corollary 1. Q is a closed complex submanifold of a polydisc.

Corollary 2. If Q has C* boundary, then HP(Q, A,) is dense in H (2, 4,,) in the
topology of uniform convergence on compacts.

Proof. Assume Q=IB,. It is enough to prove the theorem for one integer m. It
then follows in general by putting 0=g,,, , =.... We will prove it for m=4M(=4M
(n,2)) as in [10]. The proof is to replace the number 1 in the sequence of
statements in [10] by the function ¢(z). It is only in the last step that a small
difficulty arises. When M (2)<¢(z) we define the weight of f at z by:

Wi (2)=) —In(¢(2) | £i(2))).

We have then the equivalent of Lemma 1 in [10]:

(1) There exist constants ¢,, C such that: If a<1, £<¢&g, (1 —a)®, ¢ >0 and
R<1 and f=(f},...,f,n) and ¢=1 are continuous on § with U, ={zeS;
M;(z)>a¢(2)} then there exist entire functions g=(g,, ..., g,,) such that

(@) M, (2)<max {M,(2), ()} +3c.

(b) M (z)<¢ when |z|<R.

(©) Uy={zeS; M, (2)>ad(z)—5¢} o U,.

(d) If zeS~U, then W, (2)= W,(2)+ C&*>.

It is straightforward to check this (compare also Lemma 3.2 of [9] with Lem-
ma 1 of [8]). The equivalent of Lemma 2 in [10] is:

) If f=(f, ..., f24) and ¢ are continuous on S with M;<¢ and >0, R<1,
then there exist entire functions g=(g,...,g,y) such that ¢(z)
—&e=M;, (2)S¢(2)+¢ for all zeS and M, (z)<e when |z|<R.

Finally, we can also prove the theorem in essentially the same way as in
[10]. So let feA(IB,, C*M), M (2) <¢(2) for all zeS. If f=(f,, ..., fupy)> split f in
two parts k=(f},...,fop) and K'=(fops15 -5 fan)h 50 M (2), M, (2)<(2).
Choose sequences {a,} converging to 1 and {e¢,} converging to zero such that
M,(2), M,.(2)<a, ¢(2) and a, P(z)+¢,<a,, , P(z) for all zeS. We then apply (2)
to k to get g,, then to k' to get g}, then again to k+g, etc, letting R increase so
fast that we cut off an adjustment so far out that we know the previous

adjustment is good there, as in [10]. Thus, if we let h,= Y g, and h,= Y g then
i=1 i=1

a,9(2)—e, =M, ., (2), M, . (2)Za,P(2)+e, forall zeS (*)

and it follows as in [10] that h=limh, and h'=1im A, exist and that for any ¢>0
there is some 6>0 such that, if we let g=(h, #") then M, (8)>¢(2) —¢ when |&
—2z|<4. It now remains to notice that since M, , is subharmonic, the inequality
(*) implies that M " g(§)§<$(6) where ¢ is the harmonic extension of ¢ to IB,.
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The property M, ({)<e¢ when {eK follows by choosing ¢, very small. Also
in (1), the ¢ occuring in (b) can be chosen arbitrarily small. This will imply, via
the Cauchy estimates, that any prescribed number of derivatives at a given
point can be chosen as small as we please, hence we may subtract the first
terms in the power series expansion of g without practically disturbing g at all.
Hence the function g in (1) can be chosen to vanish to any prescribed order at
a given point, which gives the final statement of the theorem.

To prove Corollary 2, notice that by a theorem of Cole and Range ([2]),
A(Q, 4,) is dense in H(Q, 4,). To approximate feA(®, 4,) by he HP(Q, 4,,),
just apply the theorem to (1 —¢)f and choose ¢=1 to obtain g. Then h=g
+(1—e¢)f is proper and M,_,({)<2e when {eK.

4. The Ball as a Target

We shall now construct proper holomorphic maps from strictly pseudoconvex
domains to balls. Once again we shall give the construction in its simplest
form, i.e. from balls to balls and then indicate how it can be generalized to give
Theorem 3. In the discussion that follows S=0IB, and N=M(n, 3), so for any
r>0 we have N disjointed families &, ..., %y of balls with radii 3r such that
the totality of the smaller balls of radii r cover S. The idea is to push the
modulus on S of a map from IB, to IB,, towards 1, always pushing values in
the complex tangential direction of the target.

Lemma 1. There exist constants 8,, C,D>0 such that: If f:S—C*" is con-
tinuous, b<|f(2)|£1 for all zeS, 0<e<6,, e<(1—b)**, &¢>0 and R<], then
there exists an entire function g: €"— C*N such that for all zeS:

1. If(2)+g(@)| <1+ Ce(1 —b)*2,
2. |f(2)+g(z)|=b+De'*(1 —b).
3. 1g(2| £ C(1—b)'2

4. |g(&)| =€ when |{|<R.

Proof. Let e, ..., e,y be the standard basis of C*¥, and for each welB,y, w0,
we define T, to be the complex tangent space at w of the ball through w with
center at the origin, ie. T,={w+n; {(w,n)=0}. T, is a 2N —1 dimensional
complex hyperplane which intersects IB,y in a ball of radius r with r’=1
—|w|®. We now define N unit length noncontinuous vector fields n,, ..., ny in
B,y. If w=(w,,...,w,y), then n(w) is defined as follows: If wy;_,=w,;=0,
then let n,(w)=e,,_,. Otherwise, the direction of n,(w) is defined to be that of
W,;€5;_ 1 —Wpi_ 1 €4 The crucial properties of these vector fields are that they
are orthonormal, no matter at which point each one is evaluated, and for each
w=0, n,(w) lie in the direction of the complex tangent space at w, i.e. {w, n,(w)>
=0 for all i, so

N
w+ Y 4n(w)eB,y  whenever AieC" and [A]><1—|w|®.
i= 1



Embeddings and Proper Holomorphic Maps 405

Let us first assume that b>0. It will be clear that the constants are inde-
pendent of b. Then, since T,, varies continuously outside the origin, the follow-
ing statement, which is formulated to suit our future purposes, holds:

(a) There exists >0 such that: If I is a set of indices, I<{l,..., N} and
w,wyiel) are points in B,y with |[w—w,/<é and |w|, |[w=b then there exist
orthonormal vectors n;eT,, i€l, such that |n, —n;(w)| <e.

Now assume r>0 is so small that |f(z) —f(z')| £min {5, ¢?(1 —b)} whenever
8(z,2)<3r and let &, ..., #y be the corresponding disjointed families of balls
with radius 3r, #={B(z;;, 3r); j=1, ..., N;}. Now define g;: C"— C>" by

2(2)= Zl (l_'f Y exp(-m(1 ~ Gz 2D a)

g; has nonzero entries only in the 2i—1 and 2i position. It then follows, as in
[10], that there is a constant C, such that if ¢ is sufficiently small and

(b) mr?= ;log (C ) then |g;(z)|<e(1 —b)"/? if zeS is not in any ball in &,

Also, for any zeS, the same estimate holds if we only sum over the balls in &
not containing z.

Now let g(z)= Z g:(2) and for zeS let w=f(z) and I(z)={i; ze B(z;;, 3) for

some j(i)}. Also let w =f(z;;) and n; the corresponding vectors in the direction
of the complex tangent space as given by (a). Then

e +s@ [t T () exp ot~z zy)n]

iel(z)

(1 —|w|?

<lg@)- ¥

iel(z)

1 —lw.|?\1/2
Slg@- 3 (F ) exp—ml1 G 2y mw)

+2NY2 (1 —b)'?

1/2
) exp —m(l —<z, z;;;>) m;(w;)

iel(z)
1
w2 =i = (L= |wl?) 2+ 2N2 g(1 —b)*2
iel(z)

SNe(l-b)'2+ Y11 =wlA)Y? —(1 —|w|?) 2|+ 2N 2 g(1 —b)'/2,

Nl/z iel(z)
Now, if |w|=1—2¢2(1-b), then |wi|gl—382(1 —b) so 1—|w,|><6e*(1—-b)
hence

Y (L= lw)V2 = (1 —w|)2| Y6 N (1 —b)"/2.
iel(z)
If |w|<1—2¢2(1—b), then |w,|<1—¢2(1—b) so 1—|w,|*2¢*(1—b), hence by the
mean value theorem there is some s between 1 —|w|? and 1 —|w,|? such that

2 w2 _ g2
w2 W] _lwi—wl _ ¢2(1=b)

21/5 = 1/; =e(l— b)”2

(L= Iwif2)172 —(1 =|w]?)!2 = o(1=b)'"2,
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Thus we have proved that

s -[w+ 3 () exp-mt a2 ]

iel(z) N

<6Ne(1—b)'2.

This inequality proves 1, 2 and 3. It proves 1 because the expression in the
second bracket is in IB,,. It proves 3 since

1/2
lg)I< ¥ ) +6Ne(1 —b)2<(2NY2 +6Ne)(1 —b)!/2.

iel(z)

(1 —|w)?
N

Finally, since the vectors w, n; are orthogonal and there is an index i€l(z) such
that d(z, z;;,)) <r, (b) gives

2

1—|wj2\12
w+2( N ) exp —m(1 —<z, z; ;D) n,;

iel(z)

1—|w|? 1—|wl?
=lw*+ Y ( Iwl ) exp —2mé%(z, z,;,) 2 [l + ( Iwl ) exp(—2mr?)
iel(z) N N

1—|w? 2/9 1—p? 2/9 1
-wi+ () (&) 2o (5) () 2 s e

hence since ¢ <(1 —b)¥*

1—|wj2\12 o

@@z ive 3 (F) e —mll—a )| ~6Ne(1 =D
> 2/9(1 —_h) — 13(1 —_p)> 1/401
=b+2NCf/98 (1-b)—6N¢e'*(1-b)=2b+De"'*(1-b)

whenever ¢ is sufficiently small.

In case b=0 we just choose & so small that (a) holds whenever |w—w;]|<$
and |w|, |w;|=¢* and then choose r and g as before. If |w|22¢* then |w,|=¢* and
our argument still holds. If [w|2 <2¢? the inequality

<2Ng¢

1 —|w|?\1/2
Ue+s@1-[wt 3 () exp-mli =z now)]

iel(z)

holds and implies 1, 2 and 3 since the vectors n;(w,) still are orthonormal. 4 is
standard as in [8]. It follows by choosing m sufficiently large.

Remarks. 1. We shall apply Lemma 1 inductively with the hypothesis
b=|f(2)|La for some a<1, in which case we can put a instead of 1 in the
conclusion. The numbers a will approach 1 more rapidly than b and we may as
well use the following formulation, which is better suited for our purposes (the
number D occuring is one half of the D in Lemma 1):

There exist constants é,, C, D>0 such that: If f:8—C?" is continuous,
b<|f(z)Sa<1 for all zeS, (1—a)<(1—b)/2, 0<e<s,, e51/2 (1-b)*4, £>0
and R <1 then there exists an entire function g: €*— C?" such that for all zeS:
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1. |f(2)+g(2)| La+ Ce(1 —b)'/2
2. |f(2)+g(2)|2b+De'*(1 —b).
3. lg(2)| S C(1—b)'.

4. |g(¢)l=¢ when [{|=R.

We shall refer to f, a, b, ¢ as data for the lemma, but supress the role of ¢’ and
R, which are not so important. In fact R will be kept fixed and &' will just
decrease rapidly to zero.

2. Since the ¢ appearing in 4 is independent of &, we can choose g in Lem-
ma 1 vanishing to any prescribed order at a given interior point (see the end of
the proof of Theorem 1).

3. In case the target dimension of f is larger than 2N, ie. 2N +k for some
integer k, then Lemma 1 is still true if we just put g,y,;=...=8,5,,=0. The
norm of f(z;;) occuring in the definition of g; must not be 1nterpreted to mean
the norm of the 2N first components of f only.

4. Finally, we can replace the number 1 in Lemma | by any positive con-
tinuous function ¢ on S, the precise statement being:

If $>0 is continuous on S, then there exist constants J,, C,D>0 such
that: If f:S—C2¥ is continuous, b¢(z) <|f(z)l<q5(z) for all zeS, 0<e=<d,,
¢<(1—b)** &>0 and R<]1, then there exists an entire function g: C"— cy
such that for all zeS:

L 1f(2)+g@)| =1+ Ce(1 —b)'"?) p(2).
2. |f(@)+g(@)z(b+De'"*(1 —b)) ¢(2).
3. lg(@)I=C(1 -b)'%

4. |g(0)|=¢ when |{[=R.

And, of course, Remark 1, 2 and 3 also apply to Remark 4.

Theorem 2. Let f:S—IB,y be continuous and £>0, R<1. Then there exists a
continuous function h:1B,— C>" which is holomorphic in B, such that |f(z)+h(z)|
=1 for all zeS and |h(E)| <& when || <R.

Proof. All ¢, will be chosen less than 6, and we do not mention this anymore.
Let by=0 and k <£1/3 such that g,=1 —k>|f(z)| for all zeS and assume g, <1/2.

Furthermore suppose we have sequences {a,}, n20, increasing strictly to 1 and
n-1

{¢,}, n=0, decreasing strictly to zero such that, if we let b,=1— n (1-Deg}'*
for n=1, then

() a,+Ce,(1-b)"*<a,,,
(ii) (1 —a,)=1/2(1—b,).
(iii) &, <1/2(1 —b,)**.
(iv) Z(1=b,)"*<c0.
We may then apply Remark 1 to the data f, a,, by, &, to obtain g, such that for
all zeS:

1 |f(Z)+gr(Z)|<ao+Cﬁo(1 —by)'"*=a,.

2. |f(2)+g,(2)|2by+Ded/*(1 —by)=Deg/* =b,.
3. |g, (2= C(1=by)'"%

4. |g, (Ol =¢; when |[¢|=R.
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Then by 1, 2, (i) and (iii) we may apply Remark 1 to the data f+g,,a,, b, & to
find g,. Suppose we have inductively found functions g,, ..., g, such that, if we

let h,= Y g;, then for all zeS:
i=1
1' If(z)+hn(z)l éan— 1 + CS”_ 1(1 _bn_ 1)1/2 éan'

2. |f(2)+h,(2)|2b,_, +De* (1 -b,_,)=1-(1-b,_1( —Del*)=b,.

3. g, (IS C(—b, !
4. |g,(¢)| <&, when || <R.

Then by 1, 2, (i) and (iii) we can apply Remark 1 to the data f+h,, a,, b,, €, to

ny “ns Yno

produce g,,, and properties 1 to 4 follow immediately. The by 3 and (iv) h(2)
=limh,(z)= Y g,(z) converges uniformly on B, so h is continuous on IB, and

i=1
holomorphic in IB,. By 1,|f(2)+g(z)|<1 on § and by (iv), limb,=1, so by
2,1f(z2)+g(2)|=1 on S. If we now choose &, such that Z¢, <e, we are finished.
It remains to find a, and ¢, such that properties (i) to (iv) hold. We choose

for n=0:
3 K
Ve~ =1- :
De, n+K+3’ n k(n+K)

We claim that if K is a large integer, then all the properties hold. Clearly ¢, <4,
for all n when K is large. Now,

L—b —"fll (1_#3___)_'?11( i+K )_ K(K+1)(K+2)
LS i+K+3) L\i+K+3) n+K)(n+K+1)(n+K+2)
which gives (iv). Also
2e, 2-3*[(n+ K)n+K+)(n+K+2)1%* 2.3 <1

(1=b)"  D*n+K+3 [K(K+)(K+2]7* ~D*n+K+3) K"
for all n when K is large, which proves (iii) and
2(1-a) 2kK*(n+K+1)n+K+2)
(1-b)  (+K>PK+1)EK+2)

(n+K+1)n+K+2)
(n+K)*

<2k

3.2
< —_—
=2k(1+K+K2)<1

for all n when K is large since k<1/3 which proves (ii) and finally, using the
equality x* —y*=(x?+ y?)(x +y)(x —y) we get

1 1
SR E—
an+1 an (n+K)4 (n+K+1)4

kK*
e ey R
kK*2(n+K)?2(n+K) 4kK*
ST+ K*n+K+1)*  @+K)@n+K+1)*

—(n+K)*]
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hence

Ce,(1-b,)"? < 3*C+K)(n+K +1)*[K(K +1)(K +2)]*/?
a,,,—a, =4D*k(n+ K +3)* K*[(n+ K)(n+ K + 1)(n+ K +2)]/*
3*C(K+1)
= 4D*kK*
for all n which proves (i).

Theorem 3. Let Q& C" be strictly pseudoconvex with C* boundary. Then for all
sufficiently large m the following holds: If f:0Q—C™ is continuous and ¢ is
continuous on 0Q with |f(2)| < @(z) for all z, K=Q is compact and &>0 then there
exists geA(Q, C™) such that |f(z)+g(2)|=(2) for all zedQ and |g(§)|<e when
&eK. g can also be chosen to vanish to any prescribed order at an interior point.

Corollary 3. Q can be embedded as a closed complex submanifold of a ball. The
embedding can be made continuous up to the boundary.

Corollary 4. AP(B,, B,) is dense in H(IB,, B,) when m is sufficiently large.

Proof. Suppose Q=IB,. By Remark 3 we can assume m=2N, as in Theorem 2.
Using Remark 4, the proof of Theorem 2 works without any changes. The final
statement in the theorem follows from Remark 2.

To prove Corollary 3, we may assume QcIB,. Now apply Theorem 3 to f
=0 and ¢(2)=(1—|2z|)'? to find geA(Q, C*") such that [g(z)|=¢(z) on 0Q.
Now the map z—(z, g(z)), which is in AP(2, B, ,5) is the required embedding,

Corollary 4 follows as Corollary 2, since dilation shows that A(IB,, B,,) is
dense in H(BB,,IB,). We can not prove this corollary for strictly pseudoconvex
domains, since the necessary version of the Cole/Range theorem has not been
studied.

After this paper was completed I have been informed that M. Hakim/N. Sibony and F. Forstnerit,
both using [10], have independently proved that strictly pseudoconvex domains embed as closed
complex submanifolds of balls. They also both give examples of embeddings of balls in higher
dimensional balls which do not extend continuously up to the boundary. This follows by applying
our Theorem 3 to such one dimensional examples
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