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Mutation and volumes of knots in S

Daniel Ruberman
Brandeis University, Department of Mathematics, Waltham, MA 02254, USA

Knots in S3 can be decomposed into simpler pieces in several different ways.
The most basic is by connected sum into prime pieces; such a decomposition
is unique. Further, it is easy to understand the contribution of each summand
to any knot invariant one might wish to compute. Another splitting of knots
occurs when a 2-sphere (called a Conway sphere) in S* hits the knot transversally
in four points. The resulting splitting into so-called tangles has proved quite
fruitful in various investigations [7, 8, 22, 6] of symmetries and other properties
of knots. Given a Conway sphere, there is an operation called mutation which
yields a new knot. Roughly speaking, one takes out the tangle, flips it over
and glues it back in. The resulting knot tends to differ from the original one,
unless the tangle on one side was symmetric [6]. However, many invariants
of a knot are preserved by mutation [7], e.g. the signature and Alexander polyno-
mial, as well as the new two-variable knot polynomial [12].

In this paper we show that the Gromov norm (see below) of a knot and
its mutant coincide. In particular if S*—K is a hyperbolic manifold then
S3-mutant of K is as well, and their volumes are the same. These results are
instances of a more general theorem which shows that Gromov’s norm is pre-
served by certain kinds of cutting and pasting along surfaces. By using the
torus decomposition of a general 3-manifold, one reduces the problem to under-
standing what happens for hyperbolic manifolds. For the case of a hyperbolic
manifold we show that for certain surfaces F = M and symmetries 7 of F, cutting
M along F and regluing via 7 results in a new hyperbolic manifold M’ with
vol(M)=vol(M’). Colin Adams [1] has proved a similar result for the special
case of a thrice-punctured sphere in M. Our basic method can be extended
to show that for Dehn surgeries on a knot which produce hyperbolic manifolds,
the volume is the same for the corresponding surgeries on the mutant knot.
We also give a similar result about the volumes of the branched cyclic covers
of the knot and its mutant. In a future paper, we will consider the effect of
this sort of cutting and pasting on the Chern-Simons invariant and n-invariant
of hyperbolic manifolds.

In the course of the proof of the theorem concerning hyperbolic manifolds,
we need to use the results of [11] on embeddedness and intersections of least
area surfaces. The theorems of [11] deal only with the compact case, and we
need their analogues in the case of finite-volume hyperbolic 3-manifolds. These
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results are established in section 3 by methods similar to those of [11] with
proper attention paid to the behavior of least area surfaces in the cusps of
hyperbolic 3-manifolds.

We thank Joel Hass and Peter Scott for help with the minimal surfaces,
and Bill Thurston and John Morgan for encouraging conversations.

1. Definitions and statements of theorems

Definition 1.1. Let K = S3 be a knot or link. A Conway sphere for K is an embedded
2-sphere meeting K transversally in four points.

The surface S2—4 points admits several orientation preserving involutions as
drawn in Fig. 1.

Fig. 1.

These evidently extend over S2. If S is a Conway sphere, write (83, K)=(B3,
K,)U(B*,K_)where K, =B3 nK.

Definition 1.2. Let u be any of the involutions in Fig. 1. Then the mutation of
K via pis ($3, K*)=(B3,K.)u (B2, K_).

The property of a four-punctured sphere and the involution y that is relevant
is that p is an isometry of any hyperbolic structure on S2-four points. There
are a few other surface symmetries with this property, which are pictured in
Fig. 2 below.

Convention. For the rest of this paper, (F, ) will denote one of the following
surfaces with the indicated involution, or S*-four points with one of the involu-
tions from Fig. 1.
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Fig. 2. Symmetric surfaces
For convenience, we will refer to a pair (F, ) as a symmetric surface. Suppose

(F, 1) is such a symmetric surface, and that (F, 0 F) is embedded in (M3, o M).
Cutting M along F and regluing via t will be denoted M".

Theorem 1.3. Let (F, 0F)=(M, 0 M) be incompressible and 0-incompressible.
If int(M) has a hyperbolic structure of finite volume, then so does M*. Furthermore,
vol(M?)=vol(M).

Since the complement of the mutant of a knot K is obtained by cutting
the complement of K along the Conway sphere, and regluing via the symmetry
U, we obtain:

Corollary 1.4. Let p be any mutation of the hyperbolic knot K. Then K* is also
hyperbolic, and the volumes of their complements are the same.

M. Gromov [13, 30] has defined an invariant of 3-manifolds with boundary
a union of tori, denoted |M|, which reduces in some sense to the volume of
vol(M)

hyperbolic manifolds. In fact, if M is hyperbolic, then |M|= where v,

U3
is the volume of an ideal regular tetrahedron in H3. In general, |-| adds for
connected sums, and if M is decomposed along tori into hyperbolic and Seifert-
fibered pieces M, then [M|= ) |M;|. Using these facts, we show:

M, hyperbolic

Theorem 1.5. If (F, d)=(M, 0) is incompressible and d-incompressible, then | M"|
=|M|.

The technique used to prove theorem 1.3. stems from the observation that
having a hyperbolic metric is, after all, a local property. Hence we look for
a surface F in M with the property that in the induced metric on F, t can
be taken to be an isometry. Once given such a surface (and some additional
information on the behavior of 7 in a neighborhood of F), M* evidently has
a metric of constant curvature —1 made of the old metric on either side of
F. One also has to argue that this metric is complete; this follows by understand-
ing what happens in the cusps. The surfaces F we consider all have the property
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that for any hyperbolic metric on F, 7 is an isometry. Hence if F could be
taken to be totally geodesic, theorem 1.4 would have a more straightforward
proof. This happens, for instance if F is a three-punctured sphere [1], and thus
we recover Adams’ result. However, for more complicated surfaces, F is unlikely
to be totally geodesic, so a different approach is needed.

Instead of cutting and pasting along a totally geodesic surface, we will use
a least area surface. We demonstrate existence, embeddedness, and uniqueness
for such surfaces, analogous to the theorems in [11]; such theorems were not
previously known for the case of non-compact hyperbolic manifolds. Let M
be a complete hyperbolic manifold, and let f : F — M be a proper incompressible
and 0—incompressible embedding of a surface, taking parabolics to parabolics.
Consider F={g:F - M|g~, f} (~, means properly homotopic to); if F double
covers some embedded surface K, let K be the set of surfaces properly homotopic
to the embedding of K.

Theorem 1.6. Inf{area(F)|FeF} is realized by a least area map. Further a least
area map is embedded, or double covers a least area element of K; any two least
area elements of F or K coincide or are disjoint.

This will be proved in section 3; the proof follows the outline of [11], but
some of the arguments are complicated by the non-compact nature of the prob-
lem. In particular, the known existence theorems for least area maps do not
apply, as the basic results of Morrey [23] require that the injectivity radius
be bounded below. These difficulties are avoided by using the topological
approach of [15] plus the explicit understanding one has of the geometry of
a cusp of a hyperbolic 3-manifold.

2. Symmetric representation spaces

The first step in proving theorem 1.3 is to strengthen the sense in which
is a symmetry of F. If (F, 1) is a symmetric surface, then, as mentioned above,
T is an isometry of any hyperbolic metric on F. That fact can be interpreted
in terms of representations of =,(F) in PSL,(R); we will show that the same
holds in the larger group PSL,(C), i.e. that discrete and faithful representations
of n, (F) in PSL,(C) are symmetric (up to conjugacy) with respect to . In showing
this, it is technically easier to work in SL, (C). Any discrete subgroup of PSL,(C)
with no 2-torsion lifts to SL,(C) ([9, 19]) so this is no loss of generality. We
need to see that a given representation lifts to SL,(C) in a way that is nice
when restricted to the boundary of F. Recall that a parabolic element of PSL, (C)
is one that fixes a single point on the sphere at infinity; such an element if
lifted to SL,(C) will have trace +2.

Proposition 2.1. Suppose ¢ is a discrete, faithful representation of n, (F) in PSL,(C)
such that ¢ takes boundary elements of n,(F) to parabolics. Let ¢ be a lifting
of ¢|0F to SL,(C). Then ¢ extends to all of n((F) if and only if the number
of boundary curves with trace(9)= +2 is even.

Proof. Let F denote the universal cover of F, and let Mp=H?3/p(n,(F). A
standard 3-manifolds argument shows that there is an embedded copy of F
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in M, with the ends of F embedded in a standard fashion in the cusps of
M. The representation ¢ defines a (flat) H® bundle E¢,=F x , H?; note that
topologically, this bundle is just the tangent bundle of F plus its normal bundle
in M. Let ¢ be any curve of F homotopic to an end of F; then E, restricted
to ¢ can be trivialized in the following manner: The bundle over c is by definition
R x H? divided by the action (t, x) = (t+ 1, ¢o(x)), where ¢, is the parabolic
element ¢(c). Choosing a path of parabolics (all fixing the same point at infinity)
back to the identity provides a trivialization of E,|c, and hence a frame field
near c. One can check that this frame field has the property that one vector
is tangent to ¢, one is normal to ¢ (in F) and the third is normal to F (in
Myp); in fact this same procedure provides such a frame field on the whole
end of F cut off by c.

A framing near the ends of F provides a spin structure near the ends and
hence a lift of the representation on the ends into SL,(C). A direct geometric
construction shows that this spin structure (and hence the lift) extends over
F precisely when the number of boundary components of F is even. If the
number of boundary components is odd, then change the framing on one of
them by rotation of 27 (tangent to F) as you go around c; the resulting framing
will now extend to a spin structure on E,,.

Note that for the framing we have defined on the ends of F, the corresponding
lift into SL,(C) has trace +2 where it is untwisted, and trace —2 where we
rotated as in the previous paragraph. One way to see this is to restrict attention
to one cusp; then the whole set-up can be deformed so that ¢, is real, ie.
is in PSL,(R). Then the framing defines a lift of ¢, into PSL,(R), the universal
cover of PSL,(R). Using the identification of PSL,(R) with the unit tangent
bundle of H?, one can see that the lift which corresponds to a framing which
is tangent to the curve ¢ will project to an element of SL,(R) of trace+2,
and that the rotated framing will project to an element of trace —2.

Finally, recall that there is an action of H!'(F; Z,) on lifts of a given
PSL,(C)-representation given by regarding the cohomology group as homo-
morphisms into Z,. Using this action, one can change the sign of the traces
of any pair of boundary curves, and hence the lift we have constructed can
be changed to extend any lift on the boundary with an even number of elements
of trace +2. Conversely, if there are an odd number of such curves, then the
representation cannot be lifted, because the corresponding spin structure on
the boundary will not extend over F.

Remark. 1 thank Bill Goldman for help with this argument; Marc Culler has
shown the same result for the case that ¢ is quasi-Fuchsian (or a limit of such
representations.) By hard results of Thurston (see below), this suffices for repre-
sentations arising from F being an incompressible surface in a hyperbolic 3-
manifold.

Theorem 2.2. Let (F, t) be a symmetric surface as defined above, and let p:m, (F)
—PSL,(C) be a discrete and faithful representation taking the cusps of F to
parabolics. Then p o1, is conjugate (in PSL,(C)) to p.

Proof. By the preceding proposition, p lifts to a representation p into SL,(C),
with the property that there are an even number of cusps of F with trace 2.
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By using the action of H!(F; Z,) as in the preceding proof, we may assume
that all pairs of cusps which are interchanged by t are represented by elements
of SL,(C) which have trace equal to +2. Since p is discrete and faithful, it
is an irreducible representation; the same is evidently true for poz,.

By [10, 1.5.2], to show that two irreducible representations are conjugate
in SL, (C), we need only show that their characters are the same, i.e. that

tr(p@)=tr(poty (@) VYaen, (F) 1)

Let g,, ..., g, generate n,(F); according to the proof of Proposition 1.4.1 of
[10] we must verify that the equation (1) holds for elements of the form «
=g, ..., g, where the i, are distinct positive integers<n and i, <i, <, ..., i,.
The verification is the essentially the same in all cases, and so we give it for
F=8%—4 points.

Write p’ for pot,. Let a,, a,, as, a, be generators of n,(F) going around
the four punctures and oriented as indicated in Fig. 1, so that a,a,a;=a,.
The assumption on p|,r means y,=y, for the fundamental group elements:
a;, a,, as, 0 a,a;. Further, since trace is an invariant of conjugacy classes,
we don’t have to watch base points. Recall that the trace equality in SL,(C)
implies that tr(A)=tr(4~!), and note that t sends each of the a; to some a,-i‘,
so that p’(a;) has the same trace as p(a;). By explicitly drawing curves, one
sees easily that t(a,a,)=a,a, and t(a,a3)=a,a; up to conjugacy, so that the
trace is preserved. Likewise t(a,a;)=(a ;a;)” " so that its trace is preserved.
Finally, since a,a,a;=ay, tr(p’(a,a,a3))= +2=tr(p(a,a,a,)). Hence p and p’
are conjugate in SL,(C); projecting down into PSL,(C) gives a conjugacy be-
tween p and pot,.

If F is an incompressible surface in M, it determines a covering space of
M which will be denoted My, and which is of course homotopy equivalent
to F. If M is hyperbolic, then M is hyperbolic as well, and the hyperbolic
structure on M is determined by the restriction of the representation p of
7,(M) in PSL,(C) to =, (F).

Lemma 2.3. Suppose I =PSL,(C) is a discrete, non-elementary group, and that
AePSL,(C) commutes with every element of I'. Then A is the identity.

Proof. Using the classification of isometries of H3, it is easy to show that two
elements of PSL,(C) commute if and only if they have the same fixed point
set on the sphere at infinity. So if A commutes with every element of I', the
fixed point set of I' is one or two points, so that I' is elementary.

Corollary 2.4. Let F be a hyperbolic surface (i.e. y(F)<O0). If two discrete faithful
representations of the group | (F) are conjugate, then there is a uniqgue AcPSL,(C)
which conjugates one to the other.

Proof. Since F is a hyperbolic surface, p(n,(F)) is non-elementary. If A and
B both conjugate p to p/, then for all gen,(F), Ap(g) A~ '=Bp(g) B~*. Hence
B™!'A commutes with all of p(r, (F)), so by the above lemma must be the identity.
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Lemma 2.5. Suppose ¢ is an automorphism of n,(F) such that po¢ is conjugate
to p in PSL,(C). Then there is an isometry ¢ of Mg whose induced map on
ny is @. If ¢ is an involution, then ¢ is one as well.

Proof. Let AePSL,(C) be the matrix which conjugates po¢ to p. Since A takes
the subgroup p(n,(F)) to itself, there is a unique isometry of M covered by
A. If @?=identity, then A% will conjugate po@? to p, hence A% will be the
identity. Putting together lemmas 3, 4 and 5 with theorem 2.2, we obtain the
main result of this section.

Theorem 2.6. Let F be a properly embedded incompressible surface in the hyperbolic
3-manifold M, and My the covering of M corresponding to the subgroup w,(F).
If © is a symmetry of F (in the sense of this paper), then there is an isometry
t of My which is an involution and which induces the isomorphism t, on n(F).

Remark 2.7. There is a less elementary proof of theorem 2.6, which relies on
deep results of Ahlfors, Bers, and Thurston on the deformations of hyperbolic
structures on geometrically finite manifolds. For the reader’s convenience, we
sketch the argument. The first point is that =, (F), as a subgroup of PSL,(C),
is either quasi-Fuchsian, or a limit of quasi-Fuchsian groups; the second case
happens exactly when F is (virtually) a fiber in a fibration of M over the circle.
That these are the only alternatives is a consequence of [30, chapter 9], and
[5]. If =,(F) is quasi-Fuchsian, then, according to the theory of Ahlfors and
Bers [4], it is determined by hyperbolic structures on copies of F ‘at infinity
in M;’. An elementary computation of the Teichmuller space of any of the
symmetric surfaces F shows that 7 is an isometry of any hyperbolic metric
on F—this is of course a consequence of 2.2, but can be done directly. From
the isometries “at infinity”, we get the desired isometry of M. In the case
where F is a fiber, one has to argue further that the isometry persists in the
limit.

The above theorem will be used in showing that cutting and pasting via
T preserves volume; in order to show that Dehn surgery on mutant knots pro-
duces manifolds of the same volumes, we need a slight generalization. Suppose
that F is one of our symmetric surfaces, and that some of the cusps of F are
replaced by points labeled with integers, to get an ‘orbifold’ F in the sense
of [30]; the local structure at such a point is that of H? modulo an elliptic
element. We will refer to the order of the elliptic element as the order of the
point. If elliptic points which are interchanged by t have the same order, then
7 induces a symmetry of the orbifold. The orbifold group I is abstractly the
obvious Fuchsian group, and has an involution induced by z. If F sits as an
incompressible suborbifold in some 3-dimensional hyperbolic orbifold M, then
we get the following generalization of theorem 2.6.

Theorem 2.8. Suppose the orbifold group of M has no 2-torsion, and that any
two elliptic points on F which are interchanged by t have the same order and
lie on a manifold component of the singular set of M. Let My be the covering
of M with n,=T. Then t induces an isometry t of My which is an involution
and induces the isomorphism t,on I.
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Proof. The proof is the same sort of calculation with traces which gives theorem
2.7 above. The requirement that the orbifold group of M have no 2-torsion
implies, by [9], that the representation of I lifts to SL,(C). Note that the singular
set of M is a manifold, so that the elliptic points of F which lic on a given
component of M yield generators which are conjugate in =, (M) (and therefore
in SL,(C).) Hence the elliptic generators of I' which are interchanged by z
have the same trace. The rest of the argument goes through as in 2.7.

3. Minimal surface arguments

In this section we prove the embeddedness and uniqueness theorems for least
area surfaces which will be used in the following section to prove theorem
1.3. The results, and indeed the proofs, are similar to those in the paper of
Freedman, Hass, and Scott [11], but the problem is complicated by the non-
compactness of the manifolds we study. Instead of repeating all of [11], we
will discuss the points at which their proofs have to be modified, and supply
new ingredients as necessary. At various points in the argument, there will
be immersions that are not necessarily in general position. The proofs given
here will work when the immersions are in general position; the modifications
necessary to deal with the general case are exactly those in [11], so we will
not discuss them here.

What makes the theorems work, ultimately, is the fact that the cusps of
a hyperbolic manifold are well understood. A cusp, by definition, is the quotient
of a horoball region of H? by a subgroup consisting of parabolic motions with
a single fixed point at oco; we will refer to a Z or Z@Z cusp depending on
the subgroup. In a slight misuse of terminology, an end of a surface which
is homeomorphic to a half-open annulus will be called a cusp of the surface,
even if there is no specified hyperbolic metric on the surface. Unless it is specified
to the contrary, a surface will have finitely many cusps, and a proper map
of a surface to a hyperbolic 3-manifold will have the property that the cusps
of the surface are sent to cusps of the 3-manifold. The usual definition of incom-
pressibility makes sense for F a non-compact surface; however we need to say
what we mean by boundary-incompressible in this context.

Definition 3.1. 4 proper map of F to the hyperbolic manifold M is boundary-
incompressible if every proper map of R to F which is properly homotopic in
M to a map to a cusp of M is properly homotopic in F to a map into a cusp
of F, and it is boundary-incompressible in the usual sense.

Suppose f is a proper map of the surface F to the hyperbolic manifold
M. The reader can verify that if f extends to a map of a compact surface with
boundary into a bounded manifold, then f is boundary-incompressible if and
only if its extension is in the usual sense. We will also assume that our surfaces
are not homotopic to a surface lying in a cusp; this is the same as not being
boundary-parallel in a bounded manifold. Look at the image of f in one cusp
C of M, which may be assumed to be the image of the region t=t¢, in the
upper half-space model of H3. For t=t,, let C, be the portion of the cusp
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above height ¢, so that dC, is the torus or annulus in the cusp at height t.
Let A(t) be the area of f in C, and I(t) be the length of the (possibly singular)
curves f(F)n0C,. With this notation we have the following easily verified lem-
ma.

@]
Lemma 3.2. For t2t,, A()= | g ds.

t

It follows that if f is a map with finite area, then /() can be made arbitrarily
small by choosing an appropriate (large) t.

Fixing the point at infinity of a cusp gives it a product structure as | J;,,
0C, x t. We say that f is a product in a cusp, if for ¢t =some t,, f can be parame-
trized as yxt for a curve ycdC,,. Note that the area of a product is given
exactly by the length of the base curve y.

Lemma 3.3. If f has finite area, and 6>0 is given then there is a map g properly
homotopic to f, with g a product in the cusps and area(g) < area(f)+39.

Proof. Since F has finitely many cusps, it suffices to prove the lemma for just
one of them. Let ¢ be a curve in F freely homotopic to the cusp under considera-
tion. By a small perturbation of f, which changes area by less than §/2, we
can assume that f is transverse to almost all the dC,. Thus f~!1(0C) is a finite
union of circles which are either homotopic to ¢ or bound discs in F. Let
o, be the outermost among the curves homotopic to ¢, and 7, be its image
under f. For some ¢, which can be chosen arbitrarily large, the length of y,
will be less than /2, so that the area of the product annulus based at y, will
have area less than /2. Putting this annulus together with f restricted to the
rest of F (inside of a,) produces the desired map g. Since the only change has
been in the cusp, it is easily verified that g is properly homotopic to f; g will
be a product past a compact region of the cusp of M.

This technique of straightening F out in the cusps leads to the following
lemma which will play a key role in what follows.

Lemma 3.4. Let [ be a proper general position immersion of F in a hyperbolic
manifold such that f is a homotopy equivalence relative to the cusps. If f is not
an embedding, then there is an embedding f' properly homotopic to f, with

area (f')<area (f).

Proof. If f is not an embedding, then according to lemma 3.3 we can change
it to a map f’ which is a product in the cusps, increasing the area by an aribtrarily
small amount (to be specified in a moment.) Once f is a product in the cusps,
we can apply the mostly combinatorial arguments of section 2 of [11] to show
that there is an embedding f” with area less than area(f’). (The hypothesis
that f' is a product in the cusps is used to say that the double point set has
finite type so that the tower of covering spaces constructed in the proof of
theorem 2.1 of [11] has only a finite number of stages.) But there is an a priori
lower bound on how much the area is reduced in the course of the argument:
Let x be a double point of f in M and & be the area saved by rounding a
corner at x after an area swap which switches the sheets of F passing through
x. Since J is independent of where we started making f a product in the cusps,
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if we make f a product far enough out so that area(f’)<area(f)+ 9, then the
map f” resulting from the area swap argument will have area strictly less than
area(f).

We have not yet established the existence of least area maps; once we do
(see below), the preceding argument will yield:

Corollary 3.5. A least area map f of F to a hyperbolic 3-manifold which is a
homotopy equivalence relative to the cusps is an embedding.

Proof. According to work of Gulliver [14], a least area map must be an immer-
sion. If it is in general position, the argument of the preceding lemma applies
to find an embedding of smaller area, contradicting the least area property
of f. If fis not in general position, we use the local picture of a non-transverse
self-intersection exactly as in lemma 2.5 of [11] and repeat the above argument.

The proof of our main theorem uses various properties of least area surfaces;
hence we need to verify that such surfaces actually exist in finite-volume hyper-
bolic manifolds. If the ambient manifold is not compact, then it is not homogen-
eously regular in the sense used by Morrey [23], because the injectivity radius
goes to zero in the cusps; hence the proofs of existence of least area maps
given, for example in [26, 25], do not work. (We remark that M. Anderson
[2] has shown the existence of stable minimal surfaces in the finite volume
case; his surfaces are not necessarily of least area, however.) To get around
this difficulty, we use recent work of Hass and Scott [15] which first combines
a topological argument with the local existence theorem of Morrey [23] to
establish the existence of an embedding which has least area among embeddings
of a surface in a homogeneously regular manifold and then uses this to prove
the existence of least area maps. This method adapts to the context of finite
volume hyperbolic manifolds. In order to carry out the program of [15] we
need some preliminary lemmas.

Lemma 3.6. Suppose M is H?> modulo Z®Z or Z. A minimal surface in M cannot
have a local minimum (with respect to height function in the cusp.)

Proof. This is a standard consequence of the maximum principle for minimal
surfaces; the point is that the torus or annulus at a given height is a surface
of constant mean curvature, with mean curvature vector pointing into the cusp,
so a minimal surface cannot lie (even locally) all to the side of the torus or
annulus closer to the cusp.

Note that this argument also applies to minimal immersions as well. Of
course there may be local maxima; the picture to keep in mind is a horizontal
plane (in the upper half-space model of H?) tangent to a hemisphere. The hemi-
sphere is totally geodesic (and hence minimal) but clearly has a local maximum.
The other fact we will need is a property of least area disks in a cusp.

Lemma 3.7. Let M be a horoball, and let y be an embedded curve in O M. Then
y bounds an embedded disk D in M which is least area among all disks bounded
by y. If y and y' are disjoint, then D and D' will be disjoint. Moreover, if F
is a non-compact planar surface with boundary y which hits the horospheres 0 M,
for all sufficiently large t, then area(D) < area(F).
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Proof. The existence and embeddedness of such a disk is a theorem of Meeks
and Yau [21], as is the disjointness property. For the other part, suppose that
F is non-compact, and that area(D)— area(F)=¢>0. As in lemma 3.2, the length
of the intersection I; of F with d M, can be made small by taking t sufficiently
large. The isoperimetric inequality in the Euclidean plane 0 M, implies that the
collection of disks bounded by I; in d M, has area bounded by a constant times
(length(I;))%. Hence by choosing ¢ sufficiently large, we can insure that the compo-
nents of I; bound a family of disks with total area less than ¢. Surgery on
F, using this family of disks, will result in a disk (not necessarily embedded)
with smaller area than D. This contradiction shows that for F as in the hypothe-
sis, area(F) < area(D).

Suppose that area(F)=area(D); this implies that F is a minimal surface.
Take a horosphere H just above d M, and transverse to F, so that HNF =y’
is a single curve. As above, ¥ bounds a least area disk D’, and surgery on
F using D’ yields a disk of area less or equal to that of D. If the area is less
than D, we are done. If area(D’)=area(D), then D’ will be a least area surface,
and hence smooth. But D’ coincides with F on an open set (below H), contradict-
ing the unique continuation principle [3, 11].

Remark 3.8. Because of the disjointness property for disks in M, we get the
existence of embedded least area disks with given null-homotopic boundaries
ina Z@Z or Z cusp C. Also, by lifting to the horoball C, we get that such
a disk has strictly less area than an inessential planar surface in C with the
same boundary.

The existence proof we provide uses a convergence argument for a sequence
of surfaces with area decreasing to a minimum value. There are two obvious
ways in which such sequence might fail to converge. The first is that some
inessential curve on the surface might bound a sequence of disks which ‘bubble
off” to infinity, leaving a puncture in the limit. This will be prevented with
the use of lemma 3.7. The other worry is that some curve on F which is homotop-
ic to a cusp in M could be pushed out into the cusp, removing that circle
in the limit. (See Fig. 3.)
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Fig. 3. Annuli converging to a pair of cusps

The following lemma will take care of this possibility.

Lemma 3.9. Let C be a Z@Z cusp in a hyerbolic manifold M. Then there exist
numbers t, and &, with the following property. If (A, d A)=(C,,, 0 C,,) is an essential



200 . D. Ruberman

annulus such that AndC,,, contains an essential curve, there is an annulus
A'c0C,, with the same boundary, and with area(A’) < area(A)—e&,.

Proof. Let y be the shortest essential curve on some torus dC,. The area of
an essential annulus running from 0C, to dC,, in any other homology class
will be greater than or equal to the area of the product annulus from dC,
to dC,, in the homology class of y. By lemma 3.2, this is proportional to 1/t.
On the other hand, the area of §C, is proportional to 1/t2. If 4 is an annulus
as in the hypotheses, there must be some sub-annulus of 4 with boundary
on dC, and dC,,, so the lemma follows by taking ¢ large enough.

Theorem 3.10. Let f be a proper embedding of a surface F of finite area in
a finite volume hyperbolic manifold, and let ¥ ={embeddings of F isotopic to
f}. Then I=Inf{area(g)lgeF} is realized, in the following sense: Either there
is an embedding of least area among embeddings isotopic to f, or there is a 1-sided
embedded surface K with area(K)=14 1 with F isotopic to the boundary of a tubular
neighborhood of K.

Proof. Write M as the union of a compact manifold M,,;, homotopy equivalent
to M, and the cusps of M. Let B; be a locally finite collection of balls covering
M ; note that each B; is isometric to a closed ball in hyperbolic space. Using
the fact that H® is homogeneously regular [23], B; has the property that the
least area disc in H® spanning an embedded circle on the boundary of B; must
in fact be embedded and lie in B;. By lifting a disc in M to H>, we see that
an embedded circle on dB; bounds an embedded least area disc in B;. Note
that by compactness of M., only a finite number of the B; hit M, ; also
we may assume that only finitely many B; hit a given B;.

Let F; be a sequence of embedded surfaces in F with the property that
area(F;) converges to I. Given the existence of least area discs in B; spanning
curves in JB;, sections 4 and 5 of [15] describe a procedure for replacing the
sequence {F;} with sequences {F; ;} of surfaces in F with the properties that:

(i) For allj, lim area(F; )=I

(ii) For each n and each j<n, the intersection of {F; ,} with int(B;) converges
to a (possibly empty) union of least area discs.
(iii) If j<nthen F, ,n B;=F, ;n B; for all i.

Convergence in (ii) means that the limit consists of all the limit points of the
sequence, and that any limit point has a disc neighborhood which is the limit
(in the C*-topology) of maps of discs into F; ,,.

Now take a sequence Fj=F,; ; where i(j) is large enough so that area
((Fy;)—X<1/j. By properties (i) and (iii), any limit point of {F;} must be con-
tained in some B;, and hence is on a least area disc. Therefore the limit is
empty or is a surface. But if the limit is empty, then for sufficiently large j,
F;n M, will be empty, and so must lie in a cusp. But this is impossible
since F was incompressible. Let G be the limit surface; then clearly G is a
closed subset of M and is hence properly embedded. In the case of compact
manifolds, the argument of [15] is that the F; are close to G and transverse
to the fibers of a tubular neighborhood of G, so that each F; is either isotopic
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to G or double covers G. However, our construction insures only that the Fj
are close to G on compact sets, so there is still some work to do. From now
on we will just write F; for F;.

Consider first the case of a properly embedded essential half-open annulus
A in a cusp C, where we are looking for the least area such half-annulus with
a fixed boundary y=0A4. Section 6 of [15] shows how to obtain half-annuli
A; all with the same boundary converging to a surface E in the same sense
as (i)(iii) above. Suppose K is a compact set in C. Then we have convergence
in K, so that for i sufficiently large ENnK is isotopic to or doubly covered
by A;n K. By construction E is a minimal surface, so by lemma 3.6, the height
function in C restricted to E has no minima, except of course at y. This implies
that for any ¢, the portion of E below height ¢ is connected. Since the 4; all
have boundary equal to y, it follows that any compact subsurface of E will
in fact be isotopic to a subsurface of the A; for sufficiently large i. Hence any
compact subsurface of E is planar, so E is itself a planar surface.

Now let ¢ be any level such that E is transverse to 0C,.

Claim 1. There is at most one essential curve of intersection of E with 0C,.

Proof of claim 1. Suppose that the claim is false, and that there is more than
one such curve at some level t. For i sufficiently large, the A; will approximate
the portion of E below height ¢; in particular we can assume that A; intersected
with the portion of C below height t is connected. But a connected subsurface
of A with y part of its boundary will be a sub-annulus of A minus some disks.
In particular, there can only be one other essential boundary component other
than 7. Since dC, is incompressible, all the other curves must be inessential
in 0 C,, proving claim 1.

Now choose a sequence of levels {t} going to infinity so that E is transverse
to the 0C,. By claim 1, the intersection with each dC, consists of one essential
curve and some inessential curves.

Claim 2. Each inessential curve bounds a disk on E.

Proof of claim 2. Suppose to the contrary that some inessential curve a doesn’t
bound a disk on E. Note first that since since E is planar and the portion
of E below height t is connected, « must be the boundary of the component
of En C, on which it lies. By the convergence on compact sets, o is approximated
by circles on the A4; which bound disks on the A;. If some sequence of these
disks stays below level t, then it converges to a least area disk lying in E.
This easily contradicts lemma 3.6. Since the component bounded by « is approxi-
mated on compact sets by subdisks of the A4;, it follows that this component
must be an inessential planar surface P. By lemma 3.7, there is a disk in C,
with strictly smaller area than P, and with boundary o. It is easy to see that
this leads to a contradiction.

These two claims now imply that the surface E is a least area annulus which
is isotopic to 4. We remark that an argument similar to those in lemma 3.7
shows that E has area strictly smaller than that of any planar surface P with
the same boundary such that image (n,(P)) in =,(C) is the same as that of
A.
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We now return to proving the existence for the whole surface F. We will
consider the case when there is only one cusp of F in a given cusp C; the
general case is similar, with a little more bookkeeping. For any level ¢ such
that G is transverse to 0C,, the intersection of G with 0 C, consists of finitely
many essential and inessential curves. Note that by incompressibility of F, its
intersection with C will consist of subsurfaces of F which are punctured annuli
and disks, where the punctures all bound disks on F and are inessential in
0C as well. The same remark applies to the F; as well. Let t, and ¢, be the
constants from lemma 3.9. Consider the portion of G that lies between 0C,,
and 0C,,,. Every component is near to and hence covered by subsurfaces of
the F; for sufficiently large i. It can be shown that the covering must be orientable,
and hence that each such component is isotopic to a connected subsurface
of F,.

Claim 3. There is only one essential component of intersection of G with 0C,,,.

Proof of claim 3. Suppose that there is more than one essential component
of intersection of G with dC,, ; the same will be then true for all of the F.
It follows that there will be an essential punctured annulus 4 in one of the
F, with its essential boundary components on dC, and with an essential curve
of intersection with 0 C,,,. Assume that i is large enough so that area(F)—1I<ze,.
If there are inessential curves of AndC,,, then by reflecting the parts of 4
which go below level t, across 0C,,, we obtain an annulus with smaller area
lying in C,,, and the same non-trivial boundary components. By lemma 3.9,
there is an annulus A’ (in dC,) with area(A’)<area(A)—e¢,. Replacing A by
A' on F, gives rise to a mapped-in copy of F with area less than I; this may
be replaced by an embedded copy of F with no greater area, which is a contradic-
tion. Hence claim 3 is established.

Now consider the portion of G lying above level 2t,. As in the proof of
claim 2, each inessential circle of G C,,, bounds an inessential planar surface
in C,,,. Using lemma 3.7, replace each inessential non-compact by the least
area disk with the same boundary, and the essential component by the least
area half-annulus constructed above. The result (after possibly cutting and past-
ing to get an embedded surface) is a surface isotopic to F, with area equal
to L If there is more than one cusp of F in a cusp C, it is possible that the
portion of G below C is double covered by a subsurface of F. The covering
on the boundary is trivial, so one still adds a single copy of the half-annulus
to get a surface which is double-covered by F.

Remark 3.11. The preceding argument used the hypothesis of finite volume only
to establish that the limit surface G was non-empty. Hence the same argument
would hold in any geometrically finite [30] manifold, where the ‘convex core’
has finite volume.

Corollary 3.12. Let f be a proper map to a geometrically finite hyperbolic 3-
manifold which is incompressible and boundary incompressible. Then f is properly
homotopic to a least area map.

Proof. The same corollary is deduced in [15] by an argument involving the
covering M, to which f lifts. The key point is that the lifted map can always
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be replaced by an embedding of smaller area; we have shown this in lemma
34.

The following result is crucial to the the proof of theorem 1.3, and will
also be used in the remainder of this section.

Proposition 3.13. Least area homotopy equivalences which are properly homotopic
either coincide or are disjoint.

Proof. By a previous corollary (3.5) the two maps, say f and g, are both embed-
dings. Assume that f and g are transverse; their intersection is then a properly
embedded 1-manifold. If there were only a finite number of components of
f(F)ng(F), then the arguments of Waldhausen [31] would provide a product
region between f(F) and g(F). The standard area-swap argument then shows
how to reduce the area of both f and g, contradicting minimality. Likewise,
if there are an infinite number of closed components of f(F)n g (F), then either
there must be some which are inessential circles, or there are pairs of essential
circles in cusps of f(F)ng (F). In either case, the area swap argument produces
a contradiction.

The trick of replacing f and g by maps which are products in the cusps
would complete the argument, just as in lemma 3.4, if we knew that the maps
which replace f and g were embeddings. But this can be guaranteed with the
use of lemma 3.2: Look at some annulus dC, which is transverse to both f
and g, and assume that ¢ is large enough and that I(¢) is small for both f
and g. (Here I(t)=length of the intersection of F with R,.) Let ¢ and y be
the essential circles of f(F)n R and g(F)n R, respectively. The circles which
are trivial on F bound discs on R which are disjoint from the essential circles
¢ and y. By the isoperimetric inequality for the Euclidean plane which covers
R, the area of a disc is bounded by the square of the length of its boundary
circle, and so the discs on R can be taken to have small area. Now replace
f by the surface which is a product over ¢, and fill in the inessential circles
by the discs they bound on R, pushed up a little if they are nested, and do
the same to g. The resulting surfaces are clearly embedded, and by taking ¢
sufficiently large, the area has been increased by an arbitrarily small amount.
The argument is finished as in lemma 3.3; choose a point on the original intersec-
tion of f and g, and let 6 be the area reduction that would result from rounding
a corner at that point. Do the construction outlined to make f and g be products
in the cusps, arranging that the area of neither goes up by more than §/2.
The area swap argument will result in an area reduction of at least 9, contradict-
ing the minimal area property of f and g.

As in lemma 3.3 of [11], the proposition implies that if f is a least area
homotopy equivalence, and f: F — M a finite cover of f, then F has least area
as well. It is also used in proving the following proposition which states that
a least area map which is properly homotopic to an embedding is so by a
particularly nice proper homotopy.

Proposition 3.14. Let f be a least area map which is properly homotopic to an
incompressible, boundary incompressible embedding. Then there is a bounded func-
tion d on F which goes to zero in the cusps of F, and a proper homotopy H

to an embedding, such that every point x of F is moved a distance <d(x) by
H.
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Proof. In each cusp of M, choose a torus T to which f is transverse, and let
y be the essential curve in F which maps to T Since f is homotopic to an
embedding, y is homotopic to an embedded curve a which is the image of
a horocycle in T Let A4 be the annulus in F with 04=7, and let C be the
cusp with boundary T. By applying lemma 3.6 to the lift of 4 to the covering
of M with n,=n,(C), we see that A must lie entirely in C. Since F minus
its cusps is compact, it suffices to show that there is a proper homotopy of
(4, y) in (C, T) to an embedding with every point moving distance less than
some number d.

Since f is a least area map, f|A has least area in its proper homotopy
class among all maps with the same boundary f(y). Consider the lift of f to
C,, the cover of C corresponding to 7,(A4), and let ¢ generate the covering
translations. Since it is a homotopy equivalence (rel d), f is now an embedding.
The lift of y to 6C, is a compact curve, and hence lies between B and t*(f)
for some horocycle g which projects homeomorphically to «. Now # and t*(f)
lie on totally geodesic annuli; these annuli are of least area, and so by lemma
3.13 they must be disjoint from A. There is a level preserving ambient isotopy
of the region between B and t*(B) to the region between § and t(B); note that
the distance this isotopy moves points of F goes to zero as you go into the
cusp. Projecting this isotopy restricted to the lift of 4 back down into C provides
the required proper homotopy: A is embedded since it is embedded upstairs
and lies between f and t(f), and the bound on how far points are moved is
the same as upstairs.

Lemma 3.15. Let C be a Z@Z cusp, let A=S" x [0, 00), and let y be an immersed
curve in 0 C with the property that y lifts to an embedding in the covering corre-
sponding to A. If f is a proper immersion of A in C (in general position) which
is least area among all such maps with boundary equal to y, then the singular
set of f has only a finite number of components, all with non-empty boundary
on 0C. If there are several such annuli, each of least area rel boundary and
properly homotopic to one another, then their mutual intersections have the same
property.

Proof. Look up in the covering C to which f lifts; by an obvious extension
to the bounded case of corollary 3.5, the lift of f is an embedding as it is
least area. If there are any self intersections that have no boundary on 0C,
then there will be an intersection between two lifts of 4, say A; and A, which
is either a circle or a properly embedded line. A circle either bounds a disc
or an open annulus (the same on A, and A, by incompressibility) and a line
bounds a properly embedded half-plane on both A, and A4,. In all three cases,
an area swap reduces area without changing the boundary, which is a contradic-
tion.
We are now in a position to prove our embeddedness theorem.

Theorem 3.16. Let f be a least area map from the surface F to the finite-volume
hyperbolic manifold M which is proper, incompressible, and boundary incompress-
ible If f is properly homotopic to an embedding, then f is itself an embedding,
or double covers an embedded one-sided surface.
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Proof. According to [14] f can be taken to be an immersion. We assume in
addition that f is in general position; if it is not the arguments have to be
modified somewhat along the lines of [11]. The argument of [11] is in brief
(using the notation of 5.1 of [11]): The preimage of F in M is a union of
embedded planes, so to see that f is an embedding (or double covers an embed-
ding), one must show that two of these planes cannot intersect. Fix two intersect-
ing planes, say F and gF, and let G=n,(F)ngn,(F)g™'. If F is compact, stan-
dard 3-manifold topology shows that there is a compact product region X
between subsurfaces of the images of F and gF in M;=M/G. Finally, the
“LERF” property [27] of surface groups is used to show that X embeds in
finite coverings of M, and M, where an area exchange produces a contradic-
tion; this requires the compactness of X and thereby of F.

Let F, and F, be the images of F and g(F) in Mg, and let 4 and B be
the (closures of) the components of M;—F. According to proposition 3.14,
there is a proper homotopy H, of F to an embedded surface, and a bounded
function d(x) going to zero in the cusps of F, such that no point of F moves
more than distance d under F. It follows that either F, n A or F, n B lies within
a 2d-neighborhood of F;, and that the same is true for the images in Mp;
suppose it is F, " A. As in [11], the projection of F, into My factors through
at most a 2-fold cover, and is proper. There are two cases to consider: either
the image of F, A4 in M is compact or not. If it is compact, the proof finishes
exactly as in [11] and outlined above. If it is not compact, then since it lies
within the 2d-neighborhood of F in My, the intersection of the image of F,
and F must go out to infinity only in the cusps of M. Let C be a (Z) cusp
of My in which some part of the intersection lies. Note that there is a cusp
C of Mg, intersecting F,, which maps properly onto C. The preimage of F
(viewed as in M) in C consists of a Z’s worth of copies of the intersection
of F with C.

Now the intersection of F with C is the union of a finite number of discs,
and an annulus P which is least area among all annuli with the same boundary.
Suppose F, maps to an annulus P'. (We will ignore the discs because they
are compact and finite in number.) Since both P and P’ are least area with
fixed boundary, lemma 3.15 implies that there are finitely many non-compact
components of intersection, and that the intersection is eventually a product,
at least topologically, over a finite set of points.

Since p|F, is proper, the same is true up in M. So the 3-manifold argument
of section 3 of [11] applies to give a product region, say X, between F; and
F, up in Mg. If X were compact, the LERF property of surface groups would
imply that X injects into finite covering spaces of My and M,, and an area
exchange in these covering spaces would finish the argument. But X fails to
be compact in a relatively tame way only by going out into cusps, so we may
proceed in the following manner: Choose annuli 0C; cutting off the cusps C;
of My, and let C; be the cusps of My sitting above {C;} which intersect F2
Since p|F, is proper, pIC is proper also. Let Y; be the intersection of F and

p(F,) with 0C;; Y; is compact. Since p: C - C is proper, the inverse image of
Y; is compact, and hence lies in a region R between two circles in 6C Now
as in the proof of proposition 3.14 the whole intersection of F;, and F2 in C;
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must lie between these circles. Finally, let Z be the compact set consisting of
the (compact) part of the product region X lying below the C;, and the finitely
many annular regions {R} on the d C; discussed above. Using the LERF property
of surface groups, Z injects into infinite covers of M and M,,. But if the
region R maps injectively, then everything lying above it maps injectively, so
the whole product region X must map injectively into these covering spaces.
Hence the area exchange argument works in this case as well.

In proving the analogue of theorem 1.3 for orbifolds, we will need to use
existence and embeddedness results for least area incompressible orbifolds in
hyperbolic orbifolds. Since we will be dealing with hyperbolic orbifolds, there
will always be a finite (regular) cover which is a manifold, according to the
well-known lemma of Selberg [28]. The standard argument in the compact
case [20] to get least area embedded orbifolds in an orbifold uses a uniqueness
property [11] of least area surfaces in a manifold covering space; in our case
we need that the same result holds for hyperbolic orbifolds of finite volume.

Theorem 3.17. Let F and G be properly embedded incompressible and boundary-
incompressible least area surfaces in a finite volume hyperbolic manifold If F
and G are properly homotopic to disjoint surfaces, then they are disjoint or coincide.

Proof. The proof follows the proof of theorem 6.2 of [11], with modifications
as in the preceding theorems to take the cusps into account.

As in the compact case [20], an immediate corollary is that the theorems
about least area surfaces extend to theorems about orbifolds.

Corollary 3.18. An incompressible, boundary-incompressible least area orbifold
in a hyperbolic orbifold of finite volume which is properly homotopic to an embed-
ding is itself embedded. If the inclusion of F is a homotopy equivalence relative
to the cusps, then any other such orbifold either coincides with F or is disjoint
from F.

4. Proof of the main theorem

In this section we use the material of the preceding sections to prove theorems
1.3 and 14.

Proof of theorem 1.4. Suppose that (F, 1) is a symmetric surface from Fig. 2,
and that F is properly embedded in M which is a complete hyperbolic manifold
of finite volume. F can be regarded as the interior of an embedding f:(F, 0 F)c
(M, 0 M); by assumption, this embedding is incompressible and boundary-incom-
pressible. According to theorem 3.16, F is isotopic to a least area embedded
surface, or perhaps double covers a least area embedded surface K. Consider
M, the covering space of M corresponding to the subgroup =, (F) of n,(M);
if F double covers K, there is also a covering space M g corresponding to =, (K)
which is double covered by M.

By theorem 2.5, there is an isometry ¢ of My inducing 7,. We claim that
there is an embedding of F in M which is invariant under £ and which projects
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to an embedded copy of F in M. In the case that F is isotopic to a least
area surface, let F be its lift to M. If F double covers a least area surface
K, then let K be the lift of K to My, and let F be the preimage of K under
the 2-fold covering M — M. In the first case, F will be the desired surface;
in the second case, we will use the boundary of a tubular neighborhood of
F.

The first step in showing that these surfaces have the property of invariance
under 1, is to notice that My has two ends (relative to the cusps of M) and
that £ preserves these ends. To see this, note that My is homotopy equivalent
to F; in fact they are homotopy equivalent relative to their cusps (or ‘thin
parts’ in the terminology of [30].) This easily implies that F separates M, and
hits some line from end to end transversally in one point. By assumption on
7, it preserves the orientation of F, and hence acts trivially on H,(F, cusps)
and so also on H,(M, cusps). Since £ is orientation preserving on My as well,
it must preserve the orientation of a line going between the ends, i.e. must
preserve the ends of M.

Now F < M, is least area in its proper homotopy class, and hence (by propo-
sition 3.5) is embedded. Since £ is an isometry, £(F) is a least area surface
which is properly homotopic to F. So by proposition 3.13, either £(F)=F, or
they are disjoint. But they cannot be disjoint: since T preserves the ends of
M, 2(F) must either be to the right or left of F, which is clearly impossible
since £ is an involution. Therefore, in the case when the least area map of
F in M is actually an embedding, F has the desired properties.

If the least area map of F double covers the least area surface K, the surface
F is still of least area in M, so the argument of the previous paragraph implies
that F is invariant under £. Since the copy of K in M projects diffeomorphically
onto K (in M), some tubular neighborhood U does as well. Since 1 is an isometry,
we may assume that the preimage Uc M, of this neighborhood is invariant
under £. One component of its boundary is a thus a copy of F which is invariant
under £ and which projects diffeomorphically to a copy of F in M which is
the boundary of the image of U in M.

Given the invariant copy of F in My, we now show that the hyperbolic
metric on M —F can be pieced together across F when we glue up via 7 to
give M® a metric of constant curvature —1. Let x be a point on F and %
a point on F in M, sitting above x. Let B be a small ball around x, and
B a ball above it in My; F separates B into half-balls B, and likewise for
B. Now B, is taken isometrically onto #(B,); in other words the metric on
B. fits together smoothly across a neighborhood of % in F to give a metric
of curvature —1 on B, Uu£(B_). Projecting this local picture down into M says
exactly that B (x) fits together smoothly with B_ (t(x)) to give the desired metric
on M® in a neighborhood of x. Observe that the only property of F that is
used is that it is embedded in M in the right isotopy class, and that F <=M
is invariant under f. Hence we are free to use any such surface and will in
fact do so in the next paragraphs.

It only remains to demonstrate that a metric constructed in this manner
on M® is complete. For this we need some details of how the cusps of F sit
in the cusps of M. M is complete and has finite volume, so a neighborhood
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of each end E can be parameterized as T2 x (0, A]. Let y be the (free) homotopy
class represented by a cusp of F going into E. A convenient way to parameterize
E for this discussion is to let T? xI be the torus in E such that a geodesic
(in the induced flat metric on T) homotopic to y has length exactly L. Of course,
going out the end of E is now described by I going to 0. In the covering space
M, the preimage of any torus is a union of planes and annuli; let 4; be the
annulus hitting the j cusp of F =M. Then there are annuli A ;% 1, covering
T; x I, whose belt curve has length exactly 1.

Consider the intersection of F with a torus Tx l. As in the proof of theorem
3.10, the intersection will consist of one curve freely homotopic to y and a
finite set of curves C, bounding discs D, (perhaps nested) on Tx I. These curves
and discs all lift up to some A; depending on which cusp of F the curves
belong to. Suppose t interchanges the cusps i and j of F (it is possible that
i=j); then £ interchanges the annuli 4; and A4; and the lifts of the discs sitting
in A;x 1 are exchanged with the lifts of the discs sitting in 4;x[. Now replace
the original surface with a new one built as follows: Throw away the part
of F outside level I, and add a collar onto the essential curves in FnTx
using the product structure on the cusps. The inessential curves can be capped
off using the discs D, pushed slightly above or below level [ if there is nesting
of the discs. The new surface (which will still be called F) is still embedded,
and still has the property that F is invariant under ¢. This is because it is
built of pieces which were invariant under £.

With this description, it is easy to see what the ends of M" look like. By
the previous paragraph, we can assume for | sufficiently small that F~Tx]I
is a single curve. Under cutting and pasting, the torus T;x! gets cut along
y; and pasted together with another torus T; x . The same argument that showed
that M* has a metric of curvature —1 now shows that the flat metrics on
the tori at level I which get pasted together fit together smoothly across the
curves y x | to give flat tori sweeping out all the ends of M". This is not quite
enough to imply that M® is complete; after all removing a closed neighborhood
of complete cusp produces a manifold with the same property. To finish the
proof that M® is complete, we must show that a path out to infinity in M*
has infinite length. It clearly suffices to show this for paths contained in any
given cusp and starting, say at the torus T'x 1.

In each cusp of M, look at the tori Tx 1/n going out towards the end,
choosing n= N where N is large enough so that F looks like a product y x (0,
1/N] in each end. Since F has this form, there is a geodesic in each cusp,
missing F and perpendicular to all the tori in the cusp, the segment between
the n™ and (n+1)" tori has length, say d,, and since M is complete, it must
be that ) d,=c0. To see that the length of a path going out to o in M*

is inﬁnite:‘ it suffices to show that the distance between the tori (in M") at levels
1/n and 1/(n+1) is indeed d,. For then any path would have length 23 d,=co.

n
The region between two successive tori in an end of M® is homeomorphic to
T? x1; it is easy to see that any such manifold is a subset of a standard Z®Z
cusp. Hence the distance between the tori is given by the length of any geodesic
between them and perpendicular to both. But since the geodesics chosen above
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miss F, they become geodesics in M’, perpendicular to all the tori, and of length
d,. Hence the distance between successive tori is as required, and M" is complete.

Remark 4.1. The use of least area surfaces in the preceding argument is to
insure that there is an incompressible surface in M which is invariant under
t and which injects into M. Such a surface can be obtained in at least two
other ways. One is to use the notion of a PL least area surface as in [16];
another is to use the level set of a harmonic function on M. It is straightforward
to show, that if F is quasi-Fuchsian, then there is a unique harmonic function
f from M to (0, 1) tending to 0 and 1 at the two ends of M. Such a function
will be invariant under t, and so will f~!(). One then shows that f~!(4) injects
into M, and that cutting and pasting using it is the same as cutting and pasting
using F. (The last statement is not quite obvious, because f~!(3) may not even
be a smooth surface, let alone an incompressible one.)

Theorem 1.4, when F is allowed to be an incompressible surface in a general
3-manifold, is proved essentially by showing that all the interesting changes
in a manifold M which is cut and pasted by symmetries such as t take place
on the hyperbolic part of M. This is accomplished using the torus decomposition
of a Haken 3-manifold, which we recall in a weak but convenient form.

Theorem 4.2. ([17, 18, 30] ). If M is a Haken manifold with boundary consisting
of incompressible tori, then there is a family T of embedded incompressible tori
such that M cut along T consists of Seifert-fibered spaces, non-orientable line-
bundles, and hyperbolic manifolds of finite volume.

The other result we need is a theorem of C. Adams [1].

Theorem 4.3. ([1]) Let F, F' be 3-punctured spheres properly embedded in hyper-
bolic manifolds M, M'. Then any cutting and pasting along F and F' results in
a hyperbolic manifold whose volume is vol(M)+ vol(M’).

Proof of theorem 1.4. Let F be an incompressible surface in the compact 3-
manifold M whose boundary is a union of tori. It is well-known (and easy
to prove) that there is an incompressible surface F’ such that F’ is in an irreduc-
ible summand of M and F is a connected sum (in M) of F’ and some 2-spheres
embedded in M. It follows directly from this fact that M" is the same as the
manifold obtained by cutting and pasting along F'. So we may as well assume
that M is irreducible. M is evidently sufficiently large as well, because by assump-
tion, it contains the incompressible surface F.

M is now Haken, so that theorem 4.2 applies to it and we get M decomposed
as a union of hyperbolic and Seifert-fibered manifolds M; meeting along incom-
pressible tori. As mentioned in the introduction, | M| is given (up to a universal
constant) by the sum of the volumes of the hyperbolic manifolds among the
M;. To prove theorem 1.4, then, we need to see that M* has a torus decomposition
made from the pieces of M in such a way that the new hyperbolic pieces have
volume equal to the sum of the volumes of the old pieces, and that none of
the tori involved have become compressible. Saying that the tori are still incom-
pressible is the same as saying that the new Seifert pieces are all non-trivial.

By standard pushing and pulling arguments, we may assume that the inter-
section of F with each piece M; is incompressible and boundary-incompressible.
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Let F; be the components into which F is cut by the tori. The fact that ¢
is in the center of the mapping class group of F implies that the collection
F; may be taken to be equivariant in the sense that a component is either
invariant under 7 or is exchanged by t with another component. The possibilities
for the surfaces F; are quite limited; they are either annuli or among the symmet-
ric surfaces from Fig. 2. Moreover, a subsurface which is not invariant is either
an annulus or a 3-punctured sphere S which together with t(S) fills up F except
for annuli. On the other hand, the possibilities for how these surfaces sit in
the different M, are also limited; the annuli must be vertical annuli in the Seifert
pieces, and a non-annular component is either in a hyperbolic piece or is in
a Seifert piece as the fiber of a bundle over S! with periodic monodromy.

Consider first the case of a component F; of F which is invariant under
7 and sits in a torus summand N of M. If N is a hyperbolic piece of M, theorem
1.3 applies, so that N* becomes hyperbolic, with its volume the same as that
of N. If F; is a fiber of a bundle over the circle with periodic monodromy,
then 7, being in the center of the mapping class group of F;, commutes with
the monodromy. Therefore N° is also a bundle over S' with periodic mono-
dromy, and is therefore Seifert-fibered with incompressible boundary. The other
possibility in this case is that F; is a vertical annulus in a Seifert piece N. The
involution t restricted to F; can be taken to be fiber-preserving, so that cutting
and pasting of N can be achieved by cutting and pasting the base surface of
the fibering of N along the arc to which F, projects. Since N was a non-trivial
Seifert fibered space, it is not hard to see that N* will be as well.

The other case, in which components F, and F; lying in pieces N; and N;
are interchanged, is dealt with in a similar manner. If the pieces N; and N;
are both hyperbolic, then F; and F; must both be 3-punctured spheres, so Adams’
theorem (4.3) applies and says that the glued up manifold is hyperbolic with
volume the sum of the volumes of N; and N;. If, say, N, is hyperbolic but N;
isn’t, then cutting N; produces F;x 1, so gluing up via 7 is the same as cutting
N; along F, and regluing by an arbitrary automorphism of F;. But again by
[1] this produces a hyperbolic manifold of the same volume as N;. If F; and
F; are annuli in Seifert-fibered pieces, then as in the previous case, the cutting
and pasting can be done by cutting and pasting of arcs in the base surfaces
of the fibrations, producing non-trivial Seifert pieces.

The cutting and pasting that is the key to theorem 1.3 can be used in other
situations. We give one such generalization:

Theorem 4.4. Let F be an incompressible, boundary-incompressible surface in the
finite volume manifold M, and let p be the induced representation of m{(F). Suppose
that F is not (virtually) a fiber in a fibering of M over S' and that ¢ is an
orientation preserving diffeomorphism of F such that po @, is conjugate to p. Then
M? is hyperbolic and has the same volume as M.

Proof. (sketch) The main point is to show that p, the isometry induced on
M by conjugating p to peo¢,, has finite order. For this we must use the work
of Thurston, Bonahon and Bers described in remark 2.8. As discussed there,
since F is not a fiber in a fibering over S', the representation p must be quasi-
Fuchsian. Also, p is uniquely determined by the two hyperbolic structures ‘at
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infinity in My . Since p is an isometry of M, it must be an isometry of these
ideal hyperbolic structures, and therefore must have finite order. The rest of
the proof follows the proof of 1.3 exactly.

We remark that the above theorem is definitely not true if F is a fiber.
For if ¢ is the monodromy, then cutting and pasting via ¢* multiplies the
volume by k+ 1. For instance, cutting and pasting using ¢ ~' produces F x S*,
which isn’t even hyperbolic.

5. Dehn surgery and branched covers of mutant knots

The technique that proves theorem 1.3 gives further information on the degree
to which mutant knots resemble one another. We show in this section that
if the branched cover of a knot is a hyperbolic manifold, then the branched
cover of any mutant knot has the same volume. Similarly, it is shown that
Dehn surgeries on mutant knots have the same volumes.

Theorems about branched covers can be put in a different context by consid-
ering orbifolds [30], or spaces whose local structure is that of a manifold modulo
a finite group action. In this terminology, the p-fold branched cover of a knot
is a p-fold orbifold covering of the orbifold with underlying space S* and singular
set equal to the knot. The volume of the branched covering is p times the
‘orbifold volume’ of the associated orbifold. Define a symmetric orbifold to
be one of the symmetric surfaces of Fig. 2, with cusps which correspond under
7 filled in with the same cone angle, or perhaps not at all. With this terminology,
the theorem about branched covers can be stated as:

Theorem 5.1. Let the symmetric orbifold F be embedded as a suborbifold of the
hyperbolic orbifold M and suppose that any two elliptic points of F which are
interchanged by t have the same odd order, and lie on the same component of
the singular set of M. Suppose further that there is no 2-torsion in the orbifold
fundamental group of M. Then the orbifold M* is hyperbolic, and has the same
volume as M.

Proof. (Sketch) The idea is the same as the proof of theorem 1.3. Theorem
2.8 says that the representation of the orbifold fundamental group of F in
PSL,(C) is conjugate to its composition with 7, and hence that there is an
involution of the covering space M. One needs to find an embedded orbifold
isotopic to F with the property that its lift to M is invariant under . This
is done in the same way as in the proof of theorem 1.3, using the least area
orbifold homotopic to F which is provided by theorem 3.18.

Corollary 5.2. Let K be a knot S, and let K(p) be the p-fold branched cyclic
cover of S3 branched over K. Then |K (p)|=|K"(p)| for any mutation of K. The
same is true for a Z,®Z, cover of a link if the pieces of the link which are
glued up by the mutation have the same branch index.

Proof. The preceding theorem proves this in the case that K(p) or K(p, q) is
a hyperbolic manifold and p and g are odd. But a now-standard argument
using the equivariant loop-theorem and Dehn’s lemma shows that for p=+2
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or (p, q9)+(2, 2), then the branched cover is atoroidal and irreducible. Since
it contains the branched cover of the surface (which is incompressible) and
is therefore Haken, Thurston’s theorem implies that it is hyperbolic. For p=2
or p=g=2, it is well-known ([8] or [29]) that the 2-fold branched covers of
mutants are actually homeomorphic, so of course they have the same Gromov
norm.

For p even, but not equal to 2, we argue as follows (the argument works
the same in the case of a link with one of p or g even): In doing the cutting
and pasting along F which yields the exterior of the mutant knot, the meridian
of K is preserved as a boundary curve of F. The process of taking a p-fold
branched cover of K is the same as doing (generalized) Dehn surgery of type
(p, 0). With a choice of meridian and longitude, the function f(m,n)=volume
of result of (m, n)-Dehn surgery extends to an analytic function on a domain
in the (extended) complex plane ([24, 30]). An analytic function on the extended
plane is determined by its values on an infinite number of points which accumu-
late somewhere. Since the points (p, 0) accumulate at infinity (wWhich corresponds
to the unsurgered manifold) knowing f(p, 0) for all odd p determines it for
all p. Since the meridians of K and K* correspond, the corresponding volume
functions f and f* agree on all points (p, 0) for p odd, and hence for all p.

The key to the result about Dehn surgery is the remark that cutting and
pasting of surfaces that are related in a simple way produces homeomorphic
manifolds.

Lemma 5.3. Let F be a symmetric surface in a 3-manifold M, and let F' result
from one of the following operations:
(i) A compression of F.

(ii)) A boundary compression of F where the boundary curves of F which
intersect the compressing disc are interchanged by t.

(iii) Joining two boundary components of F which are interchanged by 1
by a tube running along the boundary of M.
Then M® is homeomorphic to M'*

Proof. These are all straightforward; the point is that any curve or arc along
which a compression or boundary-compression takes place will be invariant
under 7.

In order to discuss the relation between Dehn surgeries on a knot and
on its mutant, one needs to specify a manner of comparing the surgery coeffi-
cients, or, equivalently, to specify the meridians and longitudes of the knots.
To do this note that a Conway sphere has boundary which is a meridian;
hence the mutation preserves boundary. The longitude is defined homologically,
and so is specified automatically. Our approach to the question of Dehn surgery
is to tube together the boundary components of the 4-punctured sphere so
as not to worry about how cutting and pasting affects the structure of the
cusp; in order to do this, the sphere must be in a nice position with respect
to the knot. Observe that a specific choice of 7 gives a pair of $%s on the
knot; each S° is preserved by 1.

Definition 5.4. The Conway sphere S and mutation © are unlined if these S°’s
are unlinked on K.
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Theorem 5.5. Let K be a knot or link in S* admitting a Conway sphere S. If
K is link, suppose t takes the components of K back to themselves. If K is a
knot, suppose © and S are unlinked. Then corresponding Dehn surgeries on K
and K* give manifolds with the same Gromov norm.

Proof. The hypothesis on 7 and S enables one to tube together the boundary
components which are interchanged by 1. The surface which results has genus
two, and has an involution which is the same as t as in Fig. 2. (If S and 7
had been linked the resulting involution would be different from t.) Now do
the Dehn surgery; the surgery on the mutated knot is given by cutting and
pasting along this closed surface. If the surface remains incompressible, theorem
1.4 applies directly and the volumes are the same. If the surface is compressible
it compresses down to either a sphere or an incompressible punctured torus.
Cutting and pasting along an incompressible torus doesn’t change Gromov’s
norm [13, 30], and cutting and pasting along a sphere doesn’t even change
the manifold.

6. Degree-one maps between 3-manifolds

Our original interest in Gromov’s norm arose in a study of maps between 3-
manifolds with degree equal to one. The connection is the well-known fact
that if f:M — N has degree 1, then |M|=|N|. The question has some interest
for knot complements, as there are a variety of homological invariants (such
as the Alexander polynomial) which can provide obstruction to the existence
of such a map. Mutant knots have the same abelian invariants [8], so that
these would not help in deciding the existence of a degree-one map from X,
the complement of a knot, to X*, the complement of a mutant knot. Our theorem
1.3, which says that the complements have the same volume, seems to indicate
that volume likewise does not provide an obstruction. Surprisingly, the opposite
turns out to be the case; the fact that the volumes are the same leads to an
obstruction to the existence of a degree-one map.

Theorem 6.1. Let K be a hyperbolic knot with a Conway sphere S, and t a
mutation so that S and t are unlinked. If f:X — X* has degree one, then K=K*
(up to orientation.)

Proof. By theorem 1.3, X* is hyperbolic, and vol(X®)=vol(X). Thurston [30]
has proved a generalization of the Mostow rigidity theorem which says that
a degree-one map between hyperbolic manifolds of the same volume is homotop-
ic to an isometry (which we will continue to denote by f) The only problem
in using the homeomorphism f to show that K=K" is that f may not respect
meridians-it automatically respects longitudes, up to sign, for homological rea-
sons.

Let m, [ (respectively m®, I) be the meridians and longitudes of K (resp.
K"); then

LD=xL fulm)=tm'+al
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It follows that vol(X}, ,)=vol(X%, ,+,). On the other hand, by theorem 5.5,
vol(X, J)=vol(X} ); setting f(p, g)=vol(X, ), we get the equation f(p, q)
=f(+p,atq).

But Neumann and Zagier [24] have shown that for sufficiently large and
4, f(p, q) increases monotonically with p?+q?2. It follows easily that a=0 in
the above equation; i.e. that f takes meridians to meridians and longitudes
to longitudes, up to sign, and hence that K= K" up to orientation.

Remark 6.2. The work of Bonahon (see [6], for example) shows that if a knot
K and its mutant coincide, then one of the ‘tangles’ into which K is split must
be symmetric in an appropriate sense, so that K=K" for ‘obvious reasons’.
The author and T. Cochran (in preparation) have defined an invariant of tangles
which may be used to show that a tangle does not have such a symmetry,
thus providing many examples where a knot and its mutant differ.
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Oblatum 16-111-1986 & 18-111-1987

Note added in proof

The author and R. Meyerhoff have recently shown that mutation does not change the Chern-Simons
invariant, and determined the effect of mutations on the #-invariant. These results are in our preprint
“Cutting and pasting and the n-invariant.”






