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On the derived category of a finite-dimensional algebra

DIETER HAPPEL

Let A be a finite-dimensional associative algebra with 1 over a field k (which
we suppose to be algebraically closed throughout this article). The thread of this
work is the investigation of the derived category D?(A) of bounded complexes
over the category mod A of finite-dimensional left A-modules.

The construction of D”(«f) for an arbitrary abelian category & goes back to
the inspiration of Grothendieck. The formulation in terms of triangulated
categories was developed by Verdier [V].

Our main results describe D?(A) if A has finite global dimension. In section 1
we show that D®(A) is suitable for studying tilting processes. Indeed, we prove
that for a tilting triple (A, 4Mjy, B) (compare 1.7) the derived categories D”(A)
and D®(B) are equivalent as triangulated categories. Since our intuition is
geometric it is useful to determine the quiver of an additive category (compare
3.7). In section 4 we compute the quiver of D?(A) for a hereditary finite-
dimensional k-algebra A.

IfAisa Dynkin-quiver (i.e. the underlying graph of Aisa Dynkin diagram of
type A,, D,, Es, E, or Eg) we derive a description of the finite-dimensional
k-algebras A such that D?(A) and D®(kA) are equivalent as triangulated
categories (compare section 5).

In section 10 we associate with A an infinite-dimensional k-algebra A without
1 called the repetitive algebra. If follows from general considerations on
Frobenius categories (section 9) that the stable category mod A (10.1) is a
triangulated category. Our main theorem asserts that mod A and D%(A) are
equivalent as triangulated categories if A has finite global dimension.

These results were announced at the Conference on Representations of
Algebras in Ottawa 1984.

My special thanks go to C. M. Ringel who introduced me to representation
theory. His ideas written or unwritten influenced this work quite considerably. I
am indebted to P. Gabriel for his valuable efforts during the preparation of this
manuscript. Also I thank him for pointing out a false argument in the proof of
Theorem 10.10.

339



340 DIETER HAPPEL

0. Notation and terminology

In this preliminary section we present the main notions used throughout this
work and give some guidance to basis texts we need to refer to.

0.1 Given any category X the composition of morphisms f:X—Y and
g:Y—Z in X is denoted by fg.

We usually adopt the categorical language of [ML]. In particular, our additive
categories have finite direct sums. Unless otherwise stated, we assume that they
are Krull-Schmidt categories (see [Ri6]).

Let a be an additive category. A path in a is a sequence of indecomposable
objects X; (0 <i <r) and non-zero morphisms f;: X;— X;,, (0 <i<r) lying in the
radical # Hom (X;, X;,,) [Ri6]. If r>0 and X, = X,, the path is called a cycle.
We call a directed if it does not contain any cycle.

0.2 A differential complex or simply a complex X' = (X', d’)icz over a is by
definition a collection of objects X’ and morphisms d' = d’: X'— X**! such that '
d'd*'=0. A complex X' = (X', d’) is bounded below if X’ =0 for all but finitely
many i <0 and bounded above if X'=0 for all but finitely many i>0. It is
bounded if it is bounded above and below. A complex X = (X', d’) is a stalk
complex if there exists iy such that X+ 0 and X’ =0 for all i # i,. The object X
is then called the stalk.

Suppose that X’ =0 for i <r and s <i and X" # 0+ X°. Then the width w(X")
of X" is by definition equal to s —r + 1. If s <0, s is called the deviation of X" and
is denoted by d(X").

Denote by C(a) the category of complexes over a, by C*(a) (resp. C(a),
resp. C®(a)) the full subcategories of complexes bounded below (resp. above,
resp. above and below). If X = (X', d%) and Y" = (Y’, d%) are two complexes, a
morphism f':X'—Y" is a sequence of morphisms f':X'— Y’ of a such that
d'yf*! = f'd}, for all i € Z. These morphisms are composed in an obvious way.

There is a full embedding of a into C(a) which sends each object X of a into
the stalk complex X" = (X?, d) with X°= X. We will identify this complex with
X.

The shift functor T is defined by (TX') =X"*!, (drx)' =—(dx)** and
(Tf)' =f*" if f is a morphism of C(a). It is an automorphism of C(a). We
denote the inverse by 7.

The mapping cone C; of a morphism f':X'—Y" is the complex C;=
(TX') ®Y', d) with “differential”

—dift fit
) 0 dy
Xl+l @ Yl' Xi+2 @ Yi+l
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For instance if Z" € C(a) satisfies Z'=0 for i <0, and if Z'* is the associated
truncated complex (Z''=0 for i<0 and d% =d, for i=1), d% induces a
morphism from T~Z° to Z'* whose mapping cone is Z".

If a is a full subcategory of an abelian category & then the cohomology objects
H'(X") are defined for X" € C®(a). And a morphism u": X" — Y" of C?(a) is called
a quasi-isomorphism if the induced morphisms H'(u’):H'(X')— H(Y") are
isomorphisms for all i.

0.3 Let € be an additive category and T an automorphism of €, which will
be called the translation functor. A sextuple (X, Y, Z, u, v, w) in € is given by
objects X, Y, Z and morphisms X5 Y -5 Z % TX. A morphism of sextuples
from (X, Y, Z,u,v,w) to (X', Y’, Z',u’,v’, w') is a triple (f, g, h) of morph-
isms such that the following diagram commutes:

XS5y -5Hz7Z-5T1x

Lo
XY —>Z' = TX

Following Verdier [V], we call a set J of sextuples in € a triangulation of € if the

following conditions are satisfied. The elements of J are then called triangles.

(TR1) Every sextuple isomorphic to a triangle is a triangle. Every morphism
u:X—Y can be embedded into a triangle (X,Y, Z, u,v,w). The
sextuple (X, X, 0, 1x, 0, 0) is a triangle.

(TR2) (X, Y, Z, u, v, w) is a triangle if and only if (Y, Z, TX, v, w, —Tu) is a
triangle.

(TR3) Given two triangles (X, Y, Z, u, v, w) and (X', Y’, Z', u’,v’, w'), and
morphisms f:X— X', g:Y—Y' such that fu'=ug, there exists a
morphism (f, g, h) from the first triangle to the second.

(TR4) (The octahedral axiom). Consider triangles (X,Y,Z',u,i,i'),
(Y,Z,X',v,j,j') and (X, Z, Y', uv, k, k'). Then there exists morphisms
f:Z'>Y', g:Y'— X' such that the following diagram commutes and the
third row is a triangle.

Ty x X x
l’r‘g lu luu

T_X, T) Y v Z J X: J' TY

R

z' [,y -5 x ' 7

L

X5 TX
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(Compare with [V]; our “non-octohedral” presentation is best suited for section
3)

The additive category € together with a translation functor T and a
triangulation J is called a triangulated category.

Let 4, €’ be triangulated categories. An additive functor F: €— €’ is called
exact if it commutes up to isomorphism with the translation functors and sends
triangles to triangles.

If an exact functor F:€— €' is an equivalence of categories, we call it a
triangle-equivalence. € and €' are then called triangle-equivalent. For the basic
properties of triangulated categories we refer the reader to [V], [Ha] and [BBD].

0.4 Examples of triangulated categories are the homotopy categories K(a),
K*(a), K~(a) and K®(a) associated with the categories of complexes defined in
0.2 or the derived categories D(f), D*(sf), D™ (), D®() if A is an abelian
category [Ha, chapter 1]. The localization functor from K®({) to D”(s) will be
denoted by Q% Note that & becomes a full subcategory of D°(«) by sending
each object of & into the corresponding stalk complex.

0.5 We will mainly deal with finite-dimensional algebras (associative with 1)
over k. By mod A we denote the category of finite-dimensional left A-modules.
Its derived category (of bounded complexes) is denoted by D?(A). Certain full
subcategories of mod A are of interest to us. By 4,2, 4% we denote the full
subcategories of mod A having as objects the projective A-modules and the
injective A-modules respectively. For an A-module M we denote by addM the
full subcategory of mod A having as objects the direct sums of summands of M.

For the basic properties in representation theory we refer the reader to [G2]
and [Ri6].

0.6 In section 10 we will consider infinite-dimensional k-algebras (without
1). The information on covering techniques needed in sections 5, 7, 10 can be
found in [BG] and [G3].

1. Invariance under tilting functors

Let A be a finite-dimensional k-algebra which we suppose to be of finite
global dimension throughout this section. Let M be an A-module. Then we obtain
a natural functor ¢:K®(addM)— D®(A) which is the composition of the
embedding functor K®(addM) into K°(mod A) and the localization functor
Q®:K?(mod A)— D®(A).
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1.1 LEMMA. If Exty (M, M)=0 for all i >0, then @ is full and faithful.

Proof. Let M;, M; e K’(addM). Applying T if necessary, we may assume
that M4, =0 for i <0 and M3 = M, #0. We proceed by double induction on the
widths of M; and M;. If w(M;)=w(M;)=1, then there exists i € Z such that
M;=T'M, for some M;eaddM. If i=0, then Homgsaarm(Mi, M;)=
Hompeqy(M1, M)). Otherwise Homgsaga ay(M1, M3)=0 and
Hompe4y(Mi, M5) =0 for i >0 and =Ext,' (M;, M,) for i <0, and the assertion
follows by assumption.

If w(M;)=1 and w(M;)=r, then we consider the triangle T-M3— M; —
M;— M3 where M} is the truncated complex (0.2). We apply the cohomological
functors Homgeaaa ay(Mi, —) and Hompr4)(M;, —) to this triangle. Using
induction and the 5-lemma we infer that Homgsuegm(Mi, M3)3
Homps4) (M}, M3) under ¢.

The remaining part of the proof is dual.

1.2 We say that an A-module X has finite M-codimension (M-codim (X) <
«) if there exists an exact sequence 0— X—>M’—>M'—...-— M*—0 with
M’ eaddM for 0<iss.

LEMMA. Let M be an A-module such that Exty, (M, M)=0 for i>0 and
suppose that 4A has finite M-codimension. Then proj. dim M < r implies that there
is an exact sequence 0— ,A— M°—> M'- - -— M*~'— M*— 0 such that s <r.

Proof. By assumption there exists an exact sequence 0— ,A— M°—>M'—

—1 a1 . P
<o+ M* 15— M*—0. We choose such an exact sequence with s minimal.

Assume s>r and set K '=kerd* ! It follows that Ext} (M, K*')=0.
Therefore d°~! is a retraction. This contradicts the minimality of s. So s <r.

1.3 LEMMA. Let M be an A-module such that Ext, (M, M) =0 for i >0.
Let P be an indecomposable projective A-module. If M-codim (,A) <, then
M-codim (P) < o,

Proof. Let B =End M. Then proj. dim Mz <. In fact, apply Hom, (—, M)
to the exact sequence 0— 4A—> M°—>M'—-..— M*—0. This give a finite
projective resolution of Mp. Let P be an indecomposable projective A-module.
Then P = Ae for some primitive idempotent e A. Let 0—>Q,—>---—>Q,—
eM—0 be a projective resolution of eM considered as right B-module. This
implies that M-codim (P) < .

1.4 For later reference we include here also
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LEMMA. Let A and B be finite dimensional k-algebras such that D®*(A) and
D®(B) are triangle-equivalent. Then A is of finite global dimension if and only if
so is B. ’

Proof. Suppose that gl. dim A < and let F be a triangle-equivalence from
D®(B) to D®(A). Let S,, S; be simple B-modules. It is enough to show that there
exists an rp € N, independent of §;, §;, such that Extp(S;, S;) =0 for all r =r,. As
Extp (i, §;) = Hompe(s)(Si, T'S)) 3 Hompsa(F(S;), T'F(S;)) there exists r; e N
with Homps4)(F(S;), T'(S;)) for r=r;. Then the assertion follows for r,=
max; r;.

1.5 LEMMA Let M be an A-module such that Exty (M, M) =0 for i >0. If
M-codim (4, A) <, then the functor @ : K®(addM)— D"®(A) is dense.

Proof. Since A has finite global dimension, D”(A) is triangle-equivalent
to K°(,?) by Proposition II, 1.4 of [V]. As M-codim (,A) <, also
M-codim (P) < = for a projective A-module P by 1.3 above. Since @ is exact we
infer that @ is dense.

1.6 THEOREM. Let M be an A-module such that Exty (M, M) =0 for i >0
and suppose that 4A has finite M-codimension. Let B = End M and suppose that
gl. dim B <. Then the functor F =Hom, (M, —):mod A—>mod B induces a
triangle-equivalence F: D°(A)— D°(B).

Proof. Clearly F induces a triangle-equivalence F:K°(addM)— K®(5%). By
1.1 and 1.5 the result follows since K°(3?) and D®(B) are triangle-equivalent
again by Proposition II, 1.4 of [V].

1.7 The interest for us in studying these properties of A-modules comes from
tilting theory [HR], see also [BB]. An A-module M is called a tilting module if the
following conditions are satisfied: (i) proj. dim M <1, (ii) Ext} (M, M) =0, (iii)
M-codim (,A) <1. We call the triple (A, 4 Mg, B) a tilting triple if 4M is a tilting
module and B = End M.

COROLLARY. Let (A, 4Mp, B) be a tilting triple. Then D*(A) and D"*(B)
are triangle-equivalent.
Proof. This follows from 1.6 above using Corollary 1.7.1 of [Bol].
Here we refrain from deriving the fundamental results in tilting theory

(compare [HR] and [Bol]). But we hope to come back to this in a subsequent
publication.
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We say that two-finite-dimensional k-algebras A and B are tilting-equivalent if
there exists a sequence (A;, A,.Mf..lﬂ, A, ) of tilting triples for 0 <i <m such that
A=Ajand B=A,,.

2. Isometry of Grothendieck groups

2.1 The material discussed here is quite classical (compare [Gr]). We leave
out the proofs, for they are straightforward from the definitions. Let & be the
free abelian group generated by representatives of the isomorphism classes of
objects in D?(A), where A is a basic finite-dimensional k-algebra. We denote by
[X°] such a representative. Let %, be the subgroup generated by [X']—[Y'] +
[Z] for all triangles X'— Y — Z'— TX" in D°(A). The Grothendieck group
Ko(D"(A)) is by definition the factor group F/%,.

A Z-valued function a defined on the objects of D?(A) is called additive if
a(X)—a(Y)+a(Z')=0 for all triangles X' > Y —Z'— TX" in D?(A). The
condition implies that a(X") = —a(TX"). It is shown in [Gr] that K,(A) and
Ko(D®(A)) are isomorphic, where Ky(A) is the Grothendieck group of A (see
[GR], [Ri6]). Indeed, the embedding of mod A into D®(A) (0.4) induces an
isomorphism.

2.2 Let P(1),..., P(n) be a complete set of representatives of the iso-
morphism classes of indecomposable projective A-modules. For an A-module X
the dimension vector is defined by dim X = (dim; Hom, (P(i), X)). The map
X—dim X induces an isomorphism of Ky(A) with Z". Using 2.1 this
can be extended to D®(A). If X =(X’,d’)eD?(A), we obtain dimX =
Yiez (—1)'dim X". Since X" is bounded, the sum is finite.

2.3 Remark. This shows that each component dimY of dim is an additive
function on the objects of D?(A).

2.4 For the rest of this section we assume that A has finite global dimension.
The Grothendieck group Ky(A) is endowed with a bilinear form. We recall the
relevant definitions, referring to 2.4 of [Ri6] for a more thoroughful treatment.

Let C = C, be the Cartan matrix of A. This is an n X n integer-valued matrix
with entries C; = dim; Hom, (P(i), P(j)) (1=<i, j<n). Thus the jth column of C
is (dim P(j))", where ¢t denotes the transpose. By a classical result C=C, is
invertible. (See [Ri6]).

The matrix C™* = (C™")" defines a bilinear form (—, —), on Ky(A)=2Z" by
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(x, )4 =xC~'y". The corresponding quadratic form y,(x) = (x, x) 4 is called the
Euler characteristic of A.

The introduced bilinear form has the following homological interpretation
(compare with 2.4 of [Ri6]). Let X, Y be A-modules, then

(*) (dim X, dim Y), = 2, (~1)’ dim, Ext} (X, Y)

i=0
2.5 Using 2.1 and (*) we obtain:

LEMMA. Let X*, Y" € D*(A). Then

(dim X*, dim Y*), = >, (—1)" dim; Homps4)(X", T'Y").

ieZ

2.6 Let A and B be basic finite-dimensional k-algebras. We say that Ky(A)
and K(B) are isometric if there exists an isometry f: Ko(A)— Ko(B) i.e. a linear
bijection such that (x, y)4 = (xf, yf)s for all x, y € Ko(A). The use of (—, —)
instead of x will prove to be essential in section 5.

PROPOSITION. Let A and B be basic finite-dimensional k-algebras and
assume that A has finite global dimension. If F:D*(A)— D®(B) is a triangle-
equivalence, there exists an isometry f:Ky(A)— Ko(B) such that dim F(X') =
(dim X")f for X" € D*(A). In particular, A and B have the same number of simple
modules up to isomorphism.

Note that for a traingle-equivalence induced by a tilting triple (A, s Mz, B)
(1.7) this is 3.2 of [HR].

3. Auslander—Reiten triangles

3.1 Let € be a triangulated category such that Homg (X, Y) is a finite-
dimensional k-vector space for all X, Y € € and assume that the endomorphism
ring of an indecomposable object is local. This assumption ensures that € is a
Krull-Schmidt category (compare 2.2 of [Ri6]).

A triangle X 5 Y 5 Z % TX in € is called an Auslander—Reiten triangle if the
following conditions are satisfied:

(AR1) X, Z are indecomposable
(AR2) w#0
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(AR3) If f:W— Z is not a retraction, then there exists f': W — Y such that
flv=f.

We will say that € has Auslander—Reiten triangles if for all indecomposable
objects Z € € there is a triangle satisfying the conditions above. Our motivation
comes from Auslander—Reiten sequences, which are by definition non-split exact
sequences 0—X—Y—Z—0 of finite-dimensional modules satisfying (AR1)
and (AR3).

Here we present some of the properties which carry over to Auslander—
Reiten triangles. We will provide full proofs but acknowledge the influence of
[AR] and [G2].

3.2 REMARK. The following are equivalent for a triangle as above: (i)
(AR2); (ii) u is not a section; (iii) v is not a retraction.

Proof. In fact, if w=0 consider the following morphism of traingles. The
existence of u’ is guaranteed by (TR3) (compare 0.3):

X y-—-5HZ-5TX
[
XX -%50-5STX

This shows that u is a section. The converse is also proved using the diagram
above. In the same way one can show that (i) and (iii) are equivalent.

3.3 REMARK. The following are equivalent for a triangle as above: (i)
(AR3); (ii) If f: W— Z is not a retraction, then fw =0.

Proof. The result follows since Hom¢ (W, —) is a cohomological functor by
I.1 of [Ha].

3.4 LEMMA (Selfduality for Auslander-Reiten triangles). Let X Y
Z % TX be an Auslander—Reiten triangle. If f: X — W is not a section, then there
exists f': Y — W with uf' =f. ,

Proof: By (TR1) (compare 0.3) the morphism f:X— W can be embedded
into a triangle X-&> W £ W' % TX. Using (TR2) we see that T"W' =3 x4

W W' ois again a triangle. We apply the octahedral axiom (TR4) to the
composition (—7T ~h)u and obtain the following diagram of triangles.
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TW 17w

[

X “ 5 Y —25Z —5TX

RN

w ", vy, z ", TW
I §
W—— W

If ¢, is a retraction, then ¢, is a section by 3.2. So there exists ¢; with ¢,t; = 1y.
Now define f' = rt;. Then uf’ = urt; =ft;t;=f.

So assume that ¢, is not a retraction. Then there exists t;: Y'— Y with t,u =1,
by (AR3).

Consider the following morphisms of triangles (f exists by (TR3)):

X —>Y——>5Z"5TX

RN

Since f is not a section and X is indecomposable, we infer that ff is nilpotent.
Hence there exists n € N such that (ff)" = 0. Therefore

XY ——>Z-5LTX

N

Xy —>Z7Z">TX

is a morphism of triangles. But then w =0 gives the required contradiction.

3.5 A morphism h between Z, and Z, of an arbitrary additive category is
called irreducible if h is neither a section, nor a retraction but for any

factorization h = h,h, either h, is a section or h, is a retraction. For definitions
using the radical of the category we direct the reader to [G2] or [Ri6].

PROPOSITION. Let X5 Y > Z *> TX be an Auslander—Reiten triangle.

(i) Given Z it is unique up to isomorphism of triangles.
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(i) u and v are irreducible morphisms.
(iii) If f:Z,— Z is irreducible, there is a section g:Z,— Y with f = gv.
(iv) If f:X— X, is irreducible, there is a retraction g:Y — X, with f = ug.

Proof. (i) Let X'“5>Y'X>Z 5 TX' be an Auslander—Reiten triangle.
Since v’ is not a retraction there exists g with v’ =gv. By (TR3) we obtain a
morphism of triangles:

X: u' Y, v’ Z w' TX’

RN

X 5S5Y—"—>Z-">TX

If f is not an isomorphism we obtain a morphism f' with u'f’ =f by 3.4. But
w=w'Tf =w'Tu'Tf' = 0 gives a contradiction. Thus f is an isomorphism and so
is g by 1.1 of [Ha].

(ii)) We will show that u is irreducible. In fact, consider a factorization
u = h,h,. If h, is not a section, there exists h; with uh|; = h,. By (TR3) we obtain
a morphism of triangles:

X—-SY—-"S5Z5TX

bbb

XY —5Z-5TX

If h is not an isomorphism, then w = hw =0 by 3.3, a contradiction. Thus h}h, is
an isomorphism. Therefore k, is a retraction.

(iii) Let f:Z,— Z be irreducible. Since f is not a retraction we obtain
g:Z,— Y with f =gu. As v is not a retraction, g is a section.

(iv) This is dual to (iii).

3.6 Let A be a finite-dimensional k-algebra of finite global dimension.

THEOREM. The derived category D®(A) has Auslander—Reiten triangles.

Proof. It is well-known that 42 and 4$ (compare 0.5) are equivalent under
the Nakayama functor v =D Hom, (—, 4A), where D denotes the duality on
mod A with respect to the base field k. There is an invertible natural transforma-
tion ap:D Hom (P, —)— Hom (-, vP). Equivalently, for each X € mod A, there
is a vectorspace duality Hom (P, X) X Hom (X, vP)— k, (&, n)—(£|n) such

that (Eu | n)=(&| un) and (x€ | n) = (& | nv(x)) for all morphisms x in mod A
and all & in ,P.
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The Nakayama functor v induces an equivalence of triangulated categories
again denoted by v between K°(,%) and K®(,$) and an invertible natural
transformation ap-: D Hom (P°, —)— Hom (—, vP"). In fact, if X" is an object of
K’(mod A), the associated duality Hom (P’, X') X Hom (X', vP')—k,
(&, 1)~ (&' | ") is defined by (&' | 1) = Zpez (=1)"(E" | n").

Since A has finite global dimension D?(A) is triangle-equivalent to K°(,%)
and to K®(,#). Thus an object in D®(A) can be written in the form P’, where P’
is contained in K®(,%).

Now asume that P° is indecomposable in D°(A). Let @ € D Hom (P’, P°) be
the linear form on End (P°) which vanishes on the radical rad End (P') and
satisfies @(1p') =1. We consider the image ap-(®); it is a non-zero linear map
from P’ to vP" such that fap-(@) = 0 whenever the morphism f of D®(A) is not a
retraction. This implies that

( ) .
T vP __)C(T arp(tp))———)P w2 vP

satisfies the axiom (AR3) by 3.3. Therefore this triangle is an Auslander—Reiten
triangle.

3.7 By definition, the vertices of the quiver I' = I'(a) of a Krull-Schmidt
category a are the isomorphism classes [X] of the indecomposable objects X of a.
The quiver has an arrow [X]— [Y] if there is an irreducible morphism from X to
Yina.

COROLLARY. Let A be a finite-dimensional k-algebra of finite global
dimension. Then I'(D*(A)) has the structure of a stable translation quiver (see

[R]).

Proof. Observe that D?(A) = K®(,%) is a Krull-Schmidt category and let P’
be as in 3.6. We define tP':= T vP". It follows from 3.5 that (I'(D”?(A), 1) is a
stable translation quiver (stable means the translation 7 is defined for all vertices).
Note that in our situation 7 is induced by an equivalence on ind D°(A).

3.8 PROPOSITION. Let A be a finite-dimensional k-algebra of finite global
dimension and X', Y' € D®(A). Then

D HomD"(A)(TZi_IX., Y.) = HomD”(A)(Y., TTziX.) for all i

Proof. Let Py=X" and P;=Y" with P;, P;e K’(4?). Clearly T commutes
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with 7. So tT%X" = tT%P;=vT*"'P;. And the isomorphism is induced by the
invertible natural transformation arx-1p; (compare 3.6).

4. The quiver of D®(kA))

4.1. Let A be a hereditary, basic finite dimensional k-algebra (i.e. the path
algebra kA of a finite quiver without oriented cycle). We determine I'(D” (kA))
which we know to be isomorphic to I'(D?(B)) whenever B is tilting-equivalent to
kA (compare 1.7). Our results will be applied to indecomposable B-modules in
section 7.

LEMMA. Let X' be an indecomposable object in D°(kA). Then X' is
isomorphic to a stalk complex with indecomposable stalk.

Proof. Since D®(kA) is equivalent to K®(,5%), it is enough to show
that each indecomposable object of K°(,;#) is isomorphic to some
0= 4 ' 0- - - where & is surjective.

Let I' be indecomposable in K°(,i#). Applying T if necessary, we may
assume that I" has the form:

sSSP with I°#0.

Consider a factorization I°£> X %> I' of d° in mod kA with g surjective and h
injective. Then X is an injective kA-module, h is a section and we have an

isomorphism X @ C %% ' in mod kA. Since hd' =0 we obtain an isomorphism
of complexes.

40 d' d?

00— I — ! > I? > PP—
H ” g 0 I(") (0 o) l (, ,, “
— "0 -5 ) ook, x @ LS 0 P t "2 0B —> - -

Since I' is indecomposable we conclude that - --0—I°£& X—0--- or ---0—
CoP—P—--- is zero in K®(.;%) (i.e. acyclic). In the second case I is
isomorphic to - --0—>I°& X—0--- in K®(s%.) In the first case, we are
reduced to a complex of smaller width.

fo fra1
4.2. COROLLARY. Let Xj— X;—---—X;_,— X; be a cycle in
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Db(kA) (chpare 0.1). Then each X; is isomorphic to T"X; for some
X; e mod kA and some fixed n e Z.

4.3 The computation of Auslander-Reiten triangles in D?(kA) is divided
into two steps.

First let Z"=T'Z for some i € Z and some indecomposable non-projective
kA-module Z. Then we have the Auslander—Reiten sequence 0— X %> Y % Z— 0.
Let w € Ext;z (Z, X) = Homps ) (Z, TX) be the corresponding element. Then
we obtain a triangle

T'u

T'X T'Y

T

Tiz 1Y, Tivix.

It is straightforward that the properties (AR1), (AR2) and (AR3) of 3.1 are
satisfied.

Let us now turn to the case Z' = T'P(a), i € Z, where P(a) is the indecom-
posable projective kA-module associated with the point a of A; for simplicity, we
will assume that i = 0. Denote by E the following kA-module (considered as a
contravariant representation of A): E(x) is the vector space freely generated by
the paths of the form p:x ——a or q:a ——x (so we have E(x) =0 if x is not
comparable with a in the order defined by the arrows of A); if x 2y is an arrow
and x <a, E(a): E(y)— E(x) maps p onto the composed path ap; if x =a, E(«)
maps q onto q' or 0 according as q has the form q’a or not.

L

The paths (resp. the non-trivial paths) stopping at a generate a submodule of
E which is identified with P(a) (resp. with the radical P(a) of P(a)). The quotient
E/P(a) (resp. E/P(a)) is identified with the indecomposable injective I(a)
attached to a (resp. with the quotient I(a) of I(a) by its socle).

By w we denote the composition P(a)-> E & I(a), by n € ExtL; (I(a), P(a))
=Hompsz, (I(a), TP(a)) and n’' € Ext}z (I(a), P(a)) the extensions associated
with the exact sequences 0— P(a)-> E £ [(a)— 0 and 0— P(a)> E & I(a)— 0
(i denotes an inclusion, p a projection).

LEMMA. The sextuple associated with the sequence
- [Tp,—T™n'] _._+ (r." w
(*) T7I(@) ——— T"1(a) ® P(a) — P(a) > I(a)

is an Auslander—Reiten triangle.
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Proof. Clearly, I(a) = vP(a). By the proof of Theorem 3.6, the Auslander—
Reiten triangle starting at TP(a) = T~ I(a) has w as last morphism. So it suffices
to verify that the sextuple of our lemma is a triangle. This directly follows from
the diagram below, where E denotes an arbitrary module, P P two submodules
of E, I and I the quotients E/P and E/P respectively; by [X % Y] we denote a
complex vanishing in degrees #0, 1 which has X as O-component, Y as
1-component. For the other notation, see the particular case above.

00— Pl 20— P2 (P

¥ I

[P —— E] =5 (PO P [.]

By construction, the first line is a triangle, and the vertical morphisms are
quasi-isomorphims of K®(mod kA). Since [P @ P— E] is quasi-isomorphic to
TP @ I, the first line is isomorphic in D®(kA) to the following sequence:

lpn]

P%I ioTpi, TP,

The assertion now follows from (TR2).
The triangle (*) will be called a connecting triangle. We point out the analogy
to connecting sequences in the theory of tilting modules [HR].

4.4 Using the results of 3.5 it is now easy to derive the structure of
I(D*(kA)). Let I' =T, ; be the Auslander—Reiten quiver of kA. Denote by I; a
copy of I' for i € Z, by I' the quiver obtained from the disjoint union LI,.; I; by
adding an arrow from the injective module I(a) in I; to the projective module
P(b) in I, for each arrow from b to a in A.

PROPOSITION. The quiver I'(D®(kA)) is I.
4.5 From the structure of I' ([G2], [Ri2], [Ri3]) it now follows:

COROLLARY.

(i) If A is @ Dynkin diagram then I'(D®(kA)) 3 ZA.
(i) If A is a tame quiver (i.e. kA is representation- -tame) then the components
of I (D”(kA)) are of the form ZA and ZA./r for some r e N.
(i) If A is a wild quiver (i.e. kA is representation-wild) then the components
of ['(D®(kA)) are of the form ZA and ZA..
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46 LetAbea Dynkin quiver and denote by k(ZA) the mesh category of ZA
(see [G2], [R]).

PROPOSITION. ind D?(kA) is equivalent to k(ZA).

Proof. By 4.5, both categories have the “same” quiver. Using 4.3 it is easy to
see that we can represent the arrows of ZA by irreducible morphisms of
ind D®(kA) which satisfy the mesh relations and are globally stable under 7. This
provides us with a full and dense functor F :k(ZA)—ind D®(kA). Let x,y €
k(ZA). Since F commutes with 7, we may assume that F(x) = T°P for some i € Z
and some indecomposable projective kA-module P. Under these assumptions,
Hom, 3, (x, y) #0 implies F(y) = T'Y for some indecomposable kA-module Y.
But then [R] implies that

Homy 24, (x, y) =Hom,; (P, Y)=Hompr i, (F(x), F(y)).
Thus F is faithful.

47 IfAisa Dynkin quiver, the Euler characteristic x4 is positive definite
and the set of roots ®={xe€Z"|xwi(x)=1} is finite. A non-zero element

x=(Xgy,..., x,,) € Z" is positive if x; =0 for all i. Then dim induces a bijection
between ind kA and R* = {x € & | x positive} [BGP], [G1].

COROLLARY. Let A be a Dynkin quiver. Then dim induces a bijection
between ind D?(kA)/T? and R.

Proof. By 4.1 and the previous remark x,i(dim X*) =1 for X" € ind D(kA).
Therefore dim is a map from ind D® (kA) to R. As for x € R either x or —x is
positive dim dim is a surjective map. The definition of dim shows that dim™' (x) is a
T?-orbit for x € R. Hence we obtain a bijective map from ind D*(kA)/T? to R.

4.8 Let A be a finite graph and Ay, A, be quivers without oriented cycles
and underlying graph equal to A. If A, can be obtained from Az by a sequence of
“reflections” [BGP], [G2] and a quiver isomorphism we write A; ~
The following lemma is straightforward.

LEMMA. ZA, and ZA, are isomorphic as translation quivers if and only if
-~ Az.

-

COROLLARY. If D*(kA,) is triangle-equivalent to D*(kA,), then A, ~

Proof. By 4.5 the components of F(D"(kA )) not isomorphic to ZA., or ZA../r
are isomorphic to ZA. Thus ZA, and ZA, are isomorphic as translation quivers.
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This corollary allows us to introduce the notion of type for the finite-
dimensional k-algebras investigated in section 7.

5. Dynkin algebras

5.1 Let A be a finite quiver without oriented cycle having n vertices. The
square of the translation functor T is an automorphism on D®(kA). The root
categrory R(A) is by definition the quotient category of ind D® (kA) by T2 The
canonical functor #:ind D®(kA)— ®(A) is a Galois covering in the sense of
Gabriel [G3].

If A is a Dynkin quiver, the root category R(A) coincides with the cylinder
introduced in [H2].

In the following we will use the same notation for ®(A) and its quiver.
Observe that .%(Z) is not necessarily connected. We call a vertex x e%(ﬁ)
regular if x is contained in a component of the form ZA., or ZA../r (compare 4.5).
All the other vertices are called transjective vertices. Note that this does not
coincide with the definition of [R] since 7”x is defined for each neZ if x is
transjective in our sense.

5.2 In 2.2 we have defined the dimension vector dim X" for X € D®(k4).
Let x € R(A) and X°, Y" € 77 '(x). Then clearly dim X" =dim Y". Thus dimx =
dim X" does not depend on the choice of X' in &~ !(x). It will be called the
dimension vector of x.

This definition allows us to consider two subcategories of 52(5). Let 92*(5)
and %‘(Z) be the full subcategories of R(A) consisting of those x € ®(A) such
that dim x is positive and negative respectively. Then TR*(A) = R~ (A).

53 For all xeR(A) we define a function f.:R(A)—Z by f.(y)=
dim,; Homgz (x, y) — dim, Homgs, (y, 7x).
LEMMA. £,(y) = (dim x, dim y).

Proof. Let X', Y" eind D®(kA) such that #(X')=x and x(Y") = y. Since x is
a covering functor we obtain:

L) = 2 dim, Homps 4 3) (T*X, Y') - Z dim, Homps 3, (Y-, tT%X")

ieZ ieZ
= >, dim, Hompsz) (T?X", Y*) — 2, dimg Hompp ey (T%71X°, Y7)
ieZ ieZ

(3.8)
=(dim X", dim Y") = (dim x, dim y ).
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5.4 A subset T ={t,...,t,} of vertices of R(A) is called a tilting set if the
following two conditions are satisfied:

(i) Homg, (t;, v;)=0 forall i j
(i) dim¢y, ..., dim¢, form a Z-basis of Z".

In [H2] we gave a different definition in the case of Dynkin quivers. But it is easy
to see that both are equivalent.

55 Let T={t;,...,t,) be a tilting set of R(A). the coefficients of the
Cartan matrix Cg of the k-algebra End 7 formed by all n X n-matrices f = (f;)
such that f; e Homg, (t, ) are given by (Cg);)=dim, Homg ) (8, t;) =
(dim z;, dim 5;).

A finite-dimensional k-algebra of the form End 7 is called a A-root algebra.

5.6 LEMMA. Let A be a tame quiver and I = {t,, . . ., t,,} be a tilting set of
R(A). Then T contains a transjective vertex.

Proof. If t,, . . . , t, are regular vertices of R(A), then dim¢,, . .., dim1, are
linearly dependent, for they lie in the hyperplane of vectors of defect zero [DR].

5.7 We call a tilting set I of R(A) cycle-free if the quiver of End 7 contains
no oriented cycle. The tilting set formed by the marked vertices of the following
picture is not cycle-free (A = D, and identification is along the dotted lines).

5.8 Let A be a finite-dimensional k-algebra, (A, sMp, B) a tilting triple
(compare 1.7), & and ¥ the full subcategories {Y emod B|M ®p Y =0} and
{Y emod B | Tor? (M, Y) =0} of mod B respectively. In [HR] it is shown that
(%, %) is a torsion theory on mod B. If every indecomposable B-modules lies
either in & or in %, we say that the torsion theory splits. Following [AH], a
finite-dimensional k-algebra A is called an iterated tilted algebra if there exists a
finite quiver A without oriented cycle and a sequence of tilting triples
A;, aMYy,, ., Ais1)o<i<m such that the associated torsion theories (%41, %+;) on
mod A,,, split and that A,= kA, A,, = A. This quiver Ais uniquely determined
up to the relation ~ introduced in 4.8 and will be called the type of A.
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5.9 Of special interest to us are iterated tilted algebras of type A, where A is
a Dynkin quiver. This we assume for the rest of this section. It was shown in
[AH] that these algebras are simply connected (for a definition see [BG] or
[BLS)). By 2.6 we infer that Ko(A) and K(kA) are isometric if A is an iterated
tilted algebra of type A.

5.10 THEOREM. Let A be a simply connected A-root algebra (5.5). Then A
is an iterated tilted algebra of type A.

For a proof of this theorem we refer to the appendix.

5.11 Let us give an example of the embedding of ind A into ind D® (kA) for
an iterated tilted algebra of type A. We consider the algebra A defined by the
bounded quiver

This is an iterated tilted algebra of type A,: With the notation of 5.8, we have
m =2; A, is the algebra of the quiver

Of————O————O0¢—0
and A, the algebra of the bounden quiver

M' is the direct sum of the A,-modules with dimension vectors [1000], [1111],
[0011] and [0001]; M? is the direct sum of the A;-modules with dimension
vectors [1000], [1100], [0111] and [0001]. The Auslander—Reiten quiver I,
has the following form. The dotted lines indicate the Auslander—Reiten
translation.

Up to translation of T there are ten isomorphism classes of indecomposable
objects in D?(A) (compare 5.13). The embedding of ind A into ZA, is illustrated
in the following figure. The vertices marked by * correspond to indecomposable
A-modules.

. 4
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5.12 A finite-dimensional k-algebra A is called a Dynkin algebra of type A if

A is simply connected and there exists a Dynkin quiver A such that K,(A) and
Ky(kA) are isometric.

THEOREM. Let A be a basic finite-dimensional k-algebra and A a Dynkin
quiver. Then the following are equivalent.

(i) D®(A) is triangle-equivalent to D*(kA).
(ii) A is @ Dynkin algebra of type A.
(iii) A is a simply connected A-root algebra.
(iv) A is an iterated tilted algebra of type A.
(v) A and kA are tilting-equivalent.

Proof. (i)=> (iv) By 3.2a) of [H3].
(ii) > (iii) This follows from 8.8.
(iii) > (iv) By 5.10.

(iv) > (ii) By the remark in 5.9.
(iv) > (v) trivial.

(v)=>() By 1.7.

COROLLARY. Let A be a Dynkin algebra of type A and set R,=
{x €Z" | xa(x) = 1}. Then dim induces a bijection between ind D®(A)/T? and R,.

Proof. By 5.12 there is an equivalence F of triangulated categories from
D®(A) to D?(kA). By 2.6 we obtain an isometry f: Ko(A)—> Ko(kA) such that
dim F(X") = (dim X")f for X' € D?(A). It follows that f induces a bijection
between R, and &, ;. By 4.7 the assertion follows.

5.13 At this stage we want to point out why we used the bilinear form on the
Grothendieck group to define isometries instead of using the quadratic form yx
which might appear more natural.

Consider the algebra A given by the bounden quiver

Then mod A is directed as I, shows:
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FA =

Since I, is not simply connected, we immediately see that Ky(A) is not isometric
to Ko(kA) for a Dynkin quiver A (5.12).

But x, is congruent to xp, as the following calculation shows. The matrix
representing x4 is

We choose
o 1 0 0 0
1 0 -1 0 -1
8= -1 0 1 -1 O
0 0 0
1 0 0 o0

Then g € GLs(Z) and

2 -1 0 0 0
-1 2 -1 0 0

gxa8'=| 0 -1 2 -1 -1
0 0 -1 2 0

0 0 -1 0 2

This is the matrix representing xp,.

The preceding calculation shows that x, is positive definite. We infer that A is
not even an iterated tilted algebra of type A, where A, is an arbitrary quiver
without oriented cycle.
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6. Cycles in mod kA

Throughout this section let A = kA for some finite quiver A without oriented
cycle.

6.1 LEMMA. Let X,, X,, X; be A-modules. Suppose that f:X,— X, is
surjective and g : X,— X injective. Then there exists a module Y and linear maps
hy:X;—> Y and h,: Y — X; such that

0-XI2% x, &y X, 50 is exact.

Proof. Consider the following exact sequence

(*) 0— Xz'x') X3_)X3/X2_) 0.

Since A is hereditary, Ext} (X3/X,, f) is surjective. Let 0— X; 2y X5/ X,—0

be a preimage of (*) in Exti(Xs/X;, X;). Then we obtain the following
commutative diagram of exact sequences

0_>X1'L"Y_’X}/X2_—')0

bk

0 _’Xz —"g;'*X:;—P X3/X2 — 0
with h, injective and A, surjective. By construction we have that

) (4) .
0— X, P, X, DY =25X,—>0 is exact.

6.2 THEOREM. Let € be a full subcategory of mod A which is closed under
extensions and direct summands. If € contains a cycle (0.1), € also contains an
indecomposable Z such that End Z # k.

The proof results from the following steps:
1) If X, Y e € and f e Hom, (X, Y), then imf € € (apply 6.1).
2) If € contains a cycle, it contains an even cycle, i.e. a cycle of the form
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X| X3 X2n—-l P
Xo X, Xa Xon =X

where all f,; are injective and all f,;,; surjective.

In the sequel, we suppose that among all even cycles the given one has
minimal length 2n. We also assume that End X; = k for all i. This implies n =2.

3) Hom, (Xp, X;) =0if 2<i<2n.

Suppose there exists 0+ f € Hom, (X,, X;). By 1) all indecomposable sum-
mands of im f belong to €. So there exists an indecomposable A-module Y in €
and linear maps X,<> Y £ X; with f’ surjective and f” injective. This yields a
cycle of length less than 2n in €, contradicting the minimality of the given cycle.

In the sequel, we suppose that dim X;+ dim Hom, (X;, X;) is smaller or
equal to the corresponding sum of any other even cycle of length 2n.

4) Each non-zero f € Hom, (Xj, X;) is injective.

In fact, suppose that there exists 0 # f e Hom, (X,, X;) which is not injective.
As Homy, (X,, X;) =0 by 3) fis not surjective. By 1) there exists an indecom-

posable A-module Y’ € € and linear maps X,<> Y’ £ X, with f' surjective and

f" injective. Consider the exact sequence 0— K-> X, £ Y'— 0. As f, is injective
its restriction to K is non-zero. Therefore Hom, (i, X;)#0. In particular,
dim Hom, (Y’, X;) <dim Hom, (X,, X;) and dim Y’ =<dim X, contradicting the
minimality of dim X, + dim Hom, (X;, X3).

By 6.1, there is a diagram

/‘\
/‘\/\

&fi) )

such that (+) 0—X; 2% v @ X, 25 B, X;—0 is exact. Let Y=€D]_, Y, be a

decomposition of Y into indecomposables. Let g; and h; be the corresponding
components of g and h.

5) r=2. In particular h; #0 for all i.

The first follows from the minimality of the given cycle. Suppose h; =0 for
one i. Then Y; cker (f) =im (gf;). Thus Y; is a direct summand of im (gf;). But
X, 3im (gf;) is indecomposable. Hence the sequence splits, contradicting again
the minimality of the given cycle.
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6) Each non-zero f € Hom, (X, Y) is injective.

In fact, apply Hom, (X,, —) to (+). By 3) it follows that Hom, (X,, X;) >
Hom, (X,, Y) = @], Hom, (X,, Y;). Let u € Hom, (X,, X;) be the preimage of
f. Thus u # 0 and injective by 4). Therefore we have that f = ug is injective.

Choose some i such that fyg; #0. Then

7) Since 2n is minimal, h; is neither surjective nor injective.

8) Ext} (X3, X3) #0

Otherwise, (+) induces an exact sequence

0— Hom, (X;, X;)— Hom (X, @ Y, X;)— Hom, (X;, X;)— 0.

Denoting dim, Hom, (M, N) by (M, N), we infer that

(X1, X;) = 2:‘4 (Y, X3) + (X2, X5) — 1

= (Y, Xs3) + 2 (Y, X;)

J*Ei

> (Y, X;) since (Y, X;)#0 forall jbyS5).

It follows that the cycle

Rt X
I SN
0 VA X,
where Z' is an indecomposable direct summand of im ; is a contradiction to the
minimality of dim X, + (X, X;).
9) If 0— X;— E— X;— 0 does not split, End E is isomorphic to the algebra
of dual numbers.
This is a straightforward computation.

7. Piecewise hereditary algebras

7.1 We call a finite-dimensional k-algebra A piecewise hereditary if D°(A) is
triangle-equivalent to D® (kA) for some finite quiver A (which is uniquely
determined up to the relation ~ introduced in 4.8). By 1.4 it follows that A has
finite global dimension.

A finite-dimensional k-algebra is piecewise hereditary if it is tilting-equivalent
to some kA (compare 1.7). Note that in 5.12 we have shown the converse for
Dynkin algebras.
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7.2 LEMMA. Let X, Y be indecomposable modules over a piecewise
hereditary algebra A. Then:

(a) Extly (X, X)=0fori>1.

(b) If X, Y occur in a cycle (0.1) of mod A, Extl (X, Y)=0 fori>1.

Proof. (a) Denote by F a triangle-equivalence from D®(A) to D®(kA). By
4.1, F(X)=T/X' for an indecomposable kA-module X’ and some j € Z. Then

EXtIA (X, X) = HomD"(A) (X, T’X) 3 HomD"(kj) (F(X), TIF(X))
~Extiz (X', X')=0 for i > 1.

(b) If X, Y occur in a cycle of mod A, it follows from 4.2 that F(X) and F(Y)
are isomorphic to 7'X’ and T’Y’ for some indecomposable kA-modules X' and
Y’ and some j € Z. Thus

Extk (X, Y) = Home(A) (X, T‘Y) 3 Home(kj) (XI, TiYI)
=Extiz; (X', Y')=0fori>1.

7.3 LEMMA. A piecewise hereditary algebra A is a factor algebra of a
finite-dimensional hereditary k-algebra.

Proof. Assume Pof—'> P, ELINNEN P, =P, is a cycle of indecomposable pro-
jective A-modules. Denote by F a triangle-equivalence from D?(A) to D?(kA).
Using 4.2 and F we obtain a cycle Xo— X,— - - -— X, = X, of indecomposable
kA-modules, satisfying Extiz (X;, X;)=0 and End X; 3 k. But this contradicts
Corollary 4.2 of [HR] (or Theorem 6.2 above).

7.4 The following theorem is a generalization of a result due to Ringel [RiS].
We closely follow his proof and recall that an A-module Z is called a brick if
End Z =k.

THEOREM. Let A be a piecewise hereditary algebra and M be an indecom-
posable A-module which is not a brick. Then M contains a brick Z such that
Ext} (Z, Z) #0.

Proof. It is enough to produce an indecomposable proper submodule X of M
such that Ext} (X, X)#0. Let 0#f € End M be such that im f = S has minimal
length. Then S is indecomposable. If Ext} (S, S) #0, we set X =S. Otherwise,
we choose an indecomposable X <N =kerf of minimal length such that
Hom, (S, X) # 0+ Ext} (S, X). Such an X exists by 1) below. We will show in
2) that Ext} (X, X) #0.

1) Let N=&;_, N, with N; indecomposable. Denote by p, the canonical
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projection from N to N,. Consider the following diagram of exact sequences:

0— N—M-Ls5—50

S

00— N —FE—7™S§S — 90

The lower sequence does not split. Otherwise, N; would be a direct summand of
M. Therefore Ext} (S, N;) #0 for all i and S < ker f implies that Hom, (S, N;) #0
for at least one i.

2) Let 0#g € Hom, (S, X). Since S has minimal length we infer that g is
injective. Ext} (S, §)=0 implies that g is not bijective. Consider the exact
sequence (*) 0—>S& X% Q—0. The exact sequence Extl (S, S)—
Ext (S, X)— Ext} (S, Q) yields Ext}, (S, Q) #0. So there is a non-split extension
0— Q—>E—S—0. This induces a sequence Q- E'% S5 X% Q for each
indecomposable summand E’ of E. Since Q is indecomposable by 3) below, u and
v are non-zero and non-invertible. We infer that Ext3 (Q, X) =0 by 7.2, and the
exact sequence Ext}y (X, X)— Ext} (S, X)— Ext? (Q, X) yields Ext} (X, X) #0.

3) Suppose Q = D:_, 0; with Q; indecomposable and r > 1. We may assume
that Ext} (S, Q,) #0. Denote by i, the inclusion from Q, to Q. Consider the
induced sequence:

(**) 0—S Y > 0, 0

|l

*) 0—S—X—0Q0—0

The upper sequence does not split, for X is indecomposable. Since Ext? (S, §)=0
by 7.2 the exact sequence Ext}, (S, §)— Ext}, (S, Y)— Ext} (S, Q,)— Ext4 (S, S)
yields Ext} (S, Y)#0. Let Y =€D!_, Y; with Y; indecomposable. As (**) does
not split, Hom, (S, Y;) #0 for all i. So there exists j with Ext} (S, ¥;)#0 and
Homy, (S, Y;)#0. But this contradicts the choice of X. Hence Q is
indecomposable.

7.5 COROLLARY. Let A be a piecewise hereditary algebra. Then the
following are equivalent.
(i) A is representation-finite.
(i) For all bricks Z, Extly (Z, Z)=0.
(iii) Every indecomposable A-module is a brick.

Proof. For the convenience of the reader we copy the proof from [Ri5].
(i)=> (ii) Assume there exists a brick Z, with Ext} (Z, Z)#0. By 7.2 the
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brick Z satisfies Ext3(Z, Z)=0. Thus, we can construct indecomposable
A-modules of arbitrary length, using the process of simplification (see [Ril] or 3.1
of [Ri6]).

(ii) > (iii) This follows from 7.4.

(iii)) > (i) This is true in general for finite-dimensional k-algebras. It follows
directly from the representation theory of Schurian vector-space categories (for a
survey, see [Ri3]). In our situation, where A is a factor algebra of a
finite-dimensional hereditary k-algebra, one considers the category of A-modules
as the category of representations of a bimodule of the form zgM,, with B a
proper factor algebra of A (see [Ri3] or 2.5 of [Ri6]), and uses induction.

7.6 COROLLARY. Let A be a representation-finite piecewise hereditary
algebra. Then mod A is directed.

Proof. Let X;— X,—---—> X, =X, be a cycle of indecomposable A-
modules. Denote by F a triangle-equivalence from D?(A) to D?(kA). It follows
from 4.2 that F(Xp)— F(X,)— - - -— F(X,)) = F(X;) may be considered as a cycle
of indecomposable kA-modules. Let € be the smallest full subcategory of
mod kA closed under extensions and direct summands containing F(X;) for
0<i<n. Then for Y e € there exists an A-module Y' with F(Y')=Y. In
fact let Y;, €% and (*) 0> Y, Y5 Y,—0 be exact in mod kA. We may
assume that Y, =F(Z,) and Y, = F(Z,) for some A-modules Z,, Z,. We have
Exti; (Y2, Y)) = Hompb ) (Yz, TY)) 3 Hompr(a)y (2, TZ)) = Extl (Z,, Z)). Let
w e Hompr 5y (Y2, TY;) be the element corresponding to (*). Then
w=F(w') for some w'e Homp4,(Z,, TZ,). Let 0 Z, 5> Y' £ Z,— 0 be the
corresponding element in Ext} (Z,, Z,). So we obtain the triangle Z, Ly &
Z,*> TZ, in D?(A). Thus also F(Z,)-£25 F(Y')££Ls F(Z,) £ F(TZ,) is a
triangle isomorphic to ;% Y = Y, = TY,. In particular F(Y') =Y. The assertion
now follows from 6.2 and 7.5.

7.7 COROLLARY. Let A be a representation-finite piecewise hereidtary
algebra. Then the indecomposable A-modules are uniquely (up to isomorphism)
determined by their composition factors.

Proof. This follows from [H1] using 7.6.

7.8 THEOREM. Let A be a piecewise hereditary algebra of type A Then A
is a cycle-free A-root algebra.

Proof. Let P(1),..., P(n) be a complete list of representatives from the
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isomorphism classes of mdecomposable projective A-modules. Let F be a
triangle-equivalence from D?(A) to D*(kA). Let X; = F(P(i)) for 1<i<n. Then
A=End @®", X;. In 5.1 we have introduced the covering functor x :ind D*(kA)
— R(A). Let t, = n(X;) for 1<i<n. We claim that 7= {¢,, ..., t,} is a tilting
set of R(A). Using 2.6 and 5.2 we see that dim¢,, ..., dim¢, form a Z-basis of
Z". Since & is a covering functor (see [BG] or [G3]) we obtain:

Homgyz) (t;, tt;)) = Homg ) (7(X;), n(tX}))
= Homgyj, (7 (X;), tn(X)))
= I_I HomD”(kA) (X,, TTZIX)

lez

=1 Homprz) (! X;, Xi) (by3.8)

leZ
= IL! Hompr 4 (T*7'P(j), P(i))
=0.

Using again that 7 is a covering functor we infer that A =End J and obviously is
cycle-free.

8. Directed root algebras

8.1 In 2.4 we gave the definition of the Cartan matrix C, for a basic
finite-dimensional k-algebra A. For the formulation of our results we need some
additional terminology. A matrix C e M;(N) is called schurian if C;<1 and
C;=1for 1=<i, j=<s. We say that C € M,(N) is directed if C is an upper triangular
matrix up to conjugation by permutation matrices. A basic finite-dimensional
k-algebra A is called schurian if C, is schurian and directed if C, is directed. Let
A be a basic finite-dimensional k-algebra. Then A is given by a bounden quiver
(A, 1) [G2]. This will be abbreviated by A =k(A, ). We say that (4, 1) is
semi-commutative if A is schurian, directed and for all vertices i, j of A and paths
w,, w, from i to jin A either both paths are contained in / or both paths are not
contained in I.

Let A(A) be the k-category associated with A in the following way [BG]. Let
e,...,e, be a complete set of primitive orthogonal idempotents of A. Then
ey, ..., e, are the objects of A(A) and Hom,, (e;, €;) = e;Ae;. The composition
of morphisms is the multiplication of A. We say that A(A) is A-free [Bo2] if
A(A) does not contain a full subcategory isomorphic to A(kE) with E = A, for
some r € N.
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8.2 In this subsection we assume that A is either a Dynkin or a tame quiver.
We want to show how certain tilting sets arise quite naturally. Let A be a
schurian, directed, basic finite-dimensional k-algebra such that K,(A) and
Ko(kA) are isometric. Let f be an isometry and P(1), ..., P(n) a complete set of
representatives of the isomorphism classes of indecomposable projective A-
modules. There exist uniquely determined vertices t,, . . ., t, of ®(A) (5.1) such

that dim ¢, = f(dim P(i)), for x,i(f(dim P(i))) =1.

LEMMA. J ={t,,...,1,} is a cycle-free tilting set of R(A).

Proof. By construction dim¢,, . .., dim¢, form a Z-basis. If J is a tilting set
it is clearly cycle-free, for C Cy= CA 'So it remains to check the conditions
Homg, (&, t¢;) =0.

Since A is schurian we have 0<(dim¢, dimg) <1 for 1<i,j<n. Let
t;, t;€ J. We want to show that Homgz, (¢, ;) =0. If Homgj, (¢, t;) =0 then
Homyy i, (¢, ©t;) =0, for (dim¢;, dim¢) =0. So assume Homg s (t;, ;) #0.

We distinguish the following cases:

(1) t; is a transjective vertex.

Applying T and 7 if necessary, we may assume that #; belongs to %*(A) and is
projective as kA-module. Then Homg;, (t;, ;) #0 implies ¢ € R*(A) and
Homg,j, (¢, ;) =0.

(2) ¢ is a transjective vertex.

This is dual to (1).

This finishes the proof if Aisa Dynkin quiver.

(3) t, t; are regular vertices.

@) t, ;e R*(A).

By 5.6, J contains a transjectwe vertex f. Applying 7 if necessary, we may
assume that ¢ is a projective kA-module. Since Hom, 3 (5 t)=#0 t; and ¢; belong
to one component € of the Auslander-Reiten quiver of kA. Set o = add € and
suppose that Extiz (4, ;) = Extl (4;, ;) #0. Since o is a serial abelian category,
the conditions Homy (#;, t;) # 0 # Extl (1, ;) imply that each simple object of &/
occurs as a Jordan—Holder factor of 1, @ ¢, or equivalently of 71; @ ts;. It follows
that each vertex of A belongs to the support of 1t ® 1 hence that
0+ Hom (¢, t; © tt;): contradiction.

(ii) ;e R*(A), e R~ (A).

Suppose that Hom,,m) (4, ©) = Homga, (&, Tt;) #0. Set ¢ =Tt e R*(A).
As in (i) above, the assumptions Hom,; (1, t})#0#Extiz (1, 1)) =
Homy, 3, (4, t;) lead to a contradiction.

It would be interesting to know if the previous lemma still holds when A is a
wild quiver. The proof does not generalize, for 5.6 is false in this situation.
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8.3 For the next auxiliary results let A be a hereditary basic finite-
dimensional k-algebra.

LEMMA. Let X, Y be indecomposable A-modules such that Ext} (Y, X)=0.
Then every non-zero map f:X— Y is either injective or surjective.

For a proof we refer to [HR], 4.1.

8.4 LEMMA. Let X,, X, be indecomposable A-modules such that
Extk (Xl) Xv,) =0 for 1<i<2 and Ext}; (Xz, Xl) =0. If HomA (XI) Xz) #0 then
Ext}q (Xl’ Xz) =0.

Proof. Since Ext} (X,, X;)=0 a non-zero map f e Hom, (X;, X;) is either
injective or surjective by 8.3. If f is surjective, f induces a surjection
Ext} (X;, X;)— Ext}, (Xi, X;). So Ext} (X;, X;) =0 implies Ext}, (X;, X;)=0. If f
is injective, f induces a surjection Ext} (X, X,)— Ext} (X;, X>).

8.5 LEMMA. Let X,, X, be A-modules such that Ext} (X;, X;)=0,
End X;=k for 1<i<2. Hom, (X;, X;) =Hom, (X,, X;) =0, Ext} (X;, X;)=0
and dim; Ext} (X, X;)=1. If (*) 0> X,— E— X,—0 is a non-split extension
then End E = k and Ext}; (E, E) =0. In particular, E is indecomposable.

Proof. 1t follows from [Ri4], 2.1 that End E = k. The exact sequence (*)
yields Ext} (X;, E)=0=Ext} (X;, E). Applying Exti (-, E) gives now the
assertion.

8.6 Let A be a finite quiver without oriented cycle.

PROPOSITION. Let T € R(A) be a cycle-free tilting set and suppose that Cy
is schurian. Let t,, t;,t3€ . If there exist 0#f € Homgs, (¢;, t;) and 0#ge
Homm(j) (tz, t3) such that fg =0 then Homg(j) (tl; t3) =(.

Proof. Applying T if necessary, we may assume that r, e R*(A). We
distinguish the following cases:

(i) t;, t;€ R*(A).
In this case we are dealing with kA-modules. As fg =0 and J is a tilting set f is
injective and g is surjective. The exact sequence (*) 0— K—t,% t;— 0 yields
exact sequences

Hom (#;,8) 1
Homyz) (t1, tz) — Homy; (ty, t5) = Extiz (t;, K)—0
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and Homyj (t,, t;) 3 Hom,z (¢, t3)— Ext}3 (¢, K)— 0 using that J is a tilting
set. By assumption Hom, 3 (¢;, g) =0. So we have Hom (¢,, t;) 3 Ext! (t,, K) and
Ext! (t,, K) = 0. Since f is injective, the induced map Ext' (¢,, K)— Ext' (¢;, K) is
surjective. Hence 0= Ext' (¢;, K) = Hom (¢,, ;).

(ii) 1,€ R™(A), ts€ B*(A).
Let f:t;—t; be non-zero. If f is injective, the induced map Ext'(t3, Tt,)—
Ext' (¢,, Tt,) is surjective; this contradicts the assumption that Hom (¢5, #,) = 0. If
f is surjective, so is Ext' (Tt,, t;)— Ext' (Tt,, t;); this contradicts the assumption
that Hom (¢, ;) = 0.

(iii) t, t; € R™(A).
Since 0+ Homgj) (¢, t2) = Extij (¢, Tt;) we obtain a non-split extension of
kA-modules () 0— Tt,— E—t,— 0. E is indecomposable and Ext}z (E, E)=0
by 8.5. Applying Hom, ; (—, Tt,) yields:

(**) 0—Hom (t,, Tt;)— Hom (E, Tt;)— Hom (Tt,, Tt;) 2 Ext' (t;, Tt;)—
Ext! (E, Tt;)— 0.

By assumption Hom (7t,, Tt;)#0 and d=0. So Hom (E, Tt;)#0. As J is a
cycle-free tilting set (*) yields that Ext' (Tt;, E) =0. By 8.4, applied to Tt;, E, we
conclude Ext' (E, Tt;) =0. Therefore 0= Ext'(t,, Tt;) = Homgygs) (t;, t3) from
(+4).

(iv) t,e R*(A), ts€ R (A).
This is dual to (ii).

8.7 THEOREM. Let A= k(E, I), where (E,I) is semi-commutative and
A(A) is A-free. If Ko(A) is isometric to Ko(kA) for some quiver A which is either
Dynkin or tame, then A is a cycle-free A-root algebra.

Proof. Since A(A) is A-free, H*(A, k*)={1} by [Bo2], 2.3. So every
directed schurian algebra B which has the same simplicial frame as A [BrG] is
isomorphic to A.

Now let 7 € R(A) be the tilting set constructed in 8.2 and B = End 9. Then
Cg=Cy=C,=:C, and B is schurian and directed. So it remains to show that
S.B=S8,A (=simplicial frame of A). For this, we identify J with the set of
vertices of the quivers of B and A. Let t=(t,...,%)c I be a strictly
increasing sequence (C,,,, =1 for all p). It follows from 8.6 that t € S, B if and
only if C;; =1 (use induction on n, Proposition 8.6 being the case n=2).
Similarly, t € S,A if and only if C,; =1 (because (E, I) is semi-commutative). So
S.A=8S,B.

8.8 COROLLARY. Let A=k(E,I) be a finite-dimensional k-algebra,
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where mod A is directed. If Ko(A) is isometric to Ko(kA) for some quiver A which
is either Dynkin or tame, then A is a cycle-free A-root algebra.

Proof. 1t follows from [Ri6], 2.4(9’) that A is representation-finite, whence
A(A) is A-free. Moreover [BrG] 3.1 and 3.3b and [Bo2], 2.3 imply that (E, I) is
semi-commutative. The assertion now follows from 8.7.

9. Frobenius categories

9.1 Let o be an abelian category and let % be a full subcategory of & which
is closed under extensions. Let & be the set of exact sequences in & with terms in
the subcategory 9. Following [Q] we call the pair (%, &) an exact category. An
object X of B is called F-injective if all exact sequences 0> X—>Y—>Z—0in &
are split. Dually an object Z of @ is called ¥-projective if all exact sequences
0> X—>Y—>Z-0in & are split.

We say that the exact category (B, ¥) has sufficiently many ¥-injectives if for
all X € B there is 0> X—Y— Z—0in & such that Y is $-injective. Dually we
say that (B, &) has sufficiently many &-projectives if for all Z e B there is
0—» X—Y—Z—0in ¥ such that Y is #-projective.

An exact category (B, &) with sufficiently many &-injectives and sufficiently
many &-projectives such that the ¥-projectives and the F-injectives coincide is
called a Frobenius category [He].

We are mainly interested in the associated stable category. This is a category
@ with the same objects as %B. For a pair X, Y € % denote by I(X, Y) the set of
morphisms from X to Y which factor over an ¥-injective. Then the morphisms in
#B from X to Y are given by Hom (X, Y)=Homg (X, Y)/I(X, Y) (compare
[AB], [He]). The residue class of a morphism u:X— Y is denoted by u.

Following [He], the suspension functor 2! is a self-equivalence on %, where
(B, &) is a Frobenius category. We assume that T = Q' is an automorphism on
. This is possible if for all X € B the isomorphism classes of X and £27'X have
the same cardinality (compare [He]).

9.2 We include some examples to which these concepts may be applied. Let
A’ be an additive ‘category with splitting idempotents and % the category of
bounded complexes over B’. The set & of exact sequences is given by pointwise
split exact sequences over #’. Then it is easily seen that (%, &) is an exact
category. It is even a Frobenius category where the ¥-projective complexes are
built from complexes - - - 0— X X—0- - - with X € B’ by forming direct sums.
The stable category 3 is the homotopy category of 4. And the automorphism T
is just the shift functor on 3.
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The category of finite-dimensional modules over a finite-dimensional selfin-
jective k-algebra is a Frobenius category. This example includes the case of a
group algebra of a finite group over a field. A third kind of example is the
category of graded modules over the exterior algebra (see [BGG]).

9.3 Let (%, ¥) be a Frobenius category and & the stable category. We
define a set J of sextuples in 3.

Let X, Y € B and u € Homg (X, Y). Consider the following diagram in %:
X —>Y

I(X) — C,

;1 lw

TX = TX

where 0— X 5 I(X)5 TX— 0 is in & and I(X) is Y-injective. C, is the pushout
of u and x.

Since A is closed under extensions in some abelian category & the pushout C,
in B coincides with the pushout in &. A sextuple of the form X Y = C, > TX
and its image in #B will be called standard. A sextuple XY % Z *> YX of

objects and morphisms in @ lies in 7 if it is isomorphic in B to a standard
sextuple.

9.4 THEOREM. The set J is a triangulation of B

Proof. We check the axioms from 0.3.
(TR1). By definition J is closed under isomorphisms and every morphism can
be embedded into a triangle. Clearly the sextuple X-1> X-% 0 TX lies in J.

(TR3) It is easily seen that it suffices to consider the case of standard
triangles.

Consider the following two standard sextuples.
X —Y X —S Y

N

I(X) > C, and I(X') — C.

| Pk

TX =—=TX TX' — TX'
and two morphisms f and g such that fu’' = ug in 3.
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There exists a morphism a:I(X)— Y’ such that ug =fu' +xa. We have
morphisms I :I(X)— I(X') such that fx'=xI; and Tf:TX— TX' such that
Lx' =xTf. We obtain morphisms gv’':Y— C,. and L' +av':1(X)— C,.. This
yields a morphism h : C,— C, such that vh =gv’ and @th = Ii' + av’, for C, is a
pushout.

We claim that hw' = wTf. For this it is enough to show that vhw' = vwTf and
uhw' = awTf. For the first observe that vwTf =0 and vhw' =gv'w’ =0. For the
second we have awTf =xTf =Lx'=La'w'=La'w' +av'w' =i’ +av')w' =
ahw'.

Thus ( [, g h) is a morphism of triangles.

Before proving (TR2) let us state the following two remarks.

1) If0— X5 Y- Z— 0 is a short exact sequence in ¥, we will say that u is a
proper monomorphism and v a proper epimorphism. We claim that every
morphism of 3 is isomorphic to the residue class u of a proper monomorphism u.

Indeed, given a morphism X<> V of & and a proper monomorphism X %> I of
X into an Y-injective I, f is clearly isomorphic to the residue class of (f, x). On
the other hand, & contains the short exact sequence

0-xEyvar coso

where C is the pushout occuring in the following commutative diagram with rows
in &.

0 — X1 —5TX—0

b

0—VE3HC—TX—0

'2) Consider two exact sequences 0—>X*“>Y%Z—0 and 0—Y5
I-— TY—0 of ¥, where I is $-injective. They induce the commutative diagram
with exact rows

00— X—5Y = Z—s0

|k

0— X4 | 5 TX—0

We claim that X— Y—>Z—5>TX belongs to 7. Indeed, this follows from the
diagram:
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0 0

|

0—X 4 Y —>Z—0

uil (" ‘) ”

0 — 19 2691 W,z 50

[

o«—;<‘—

o3

It follows from (TR3) that it suffices to prove (TR2) and (TR4) for triangles
constructed in 2) above.

Let us now turn to the proof of the sufficiency in (TR2). With the notation
of 2), it suffices to prove that y5z5 x5 TY, or equivalently

YSZ5TX ELNY % belongs to . But this follows from the last two columns of
the diagram

Xy 2z
,1 lw
Jl—"—’—»l-——"—»TX

l lr.,

TY=—7=>TY

The necessity in (TR2) is superfluous, since it follows from the other axioms:
Indeed, suppose that B2 C %> TA =" TB lies in J. By the first part of

(TR2), TA =2 TB =2 TC =™ T2A lies in J. By (TR1), J contains a triangle

A% B X5 C' 25 TA, hence the induced triangle TA =™ TB =1 TC' =% T24.
By ((TR3) and consequences) there is an isomorphism

TA 25 TB =25 1C = 124

| II l ||

TA —> TB —>TC"""T2A
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which induces the wanted isomorphism

A—— B ——>C—>5TA

[

A—s B 5 C'—5TA

TR4). Let (X, Y, Z',u,5,i"), (Y, Z, X', v,j,j') and (X, Z, Y', wv, k, k') be
triangles. By a previous remark, it is enough to consider the case where u and v
are proper monomorphisms. In order to simplify our notations, we write B/A
instead of coker m whenever m is a proper monomorphism and no confusion is
possible. We also choose a proper monomorphism Z ™>I, and a proper
monomorphism I/X*J, where I and J are ¥-injective. This yields proper

monomorphisms X <> [ and Y = .

Axiom (TR4) now follows from the obvious commutativity of the following
diagram, where u;, u,, v;, v,, f, f; denote the morphisms “naturally”’ induced by
u, v, m and n.

X — X
Y — Z S z/)y—25)y

N

Y/X - z/x L 77y 2209, gi(v/X)

—uy l_”’2 l‘"z
v

/X = 1/1X 25> 1Y

9.5 Let (B, ¥) be an exact category. Let ¥ be the free abelian group
generated by the isomorphism classes of objects in B and %, the subgroup
generated by [X] —[Y]+ [Z] for all exact sequences 0> X—>Y—>Z—0 in &.
The Grothendieck group Ko(B)= Ko((B, ¥)) is by definition the factor group
F|%. ‘

Let (8, &) be a Frobenius category and denote by % the subgroup of K(%)
generated by [P] for all #-projectives P in %B. The following corollary is an
immediate consequence of the remarks 1) and 2) above.

COROLLARY. The Grothendieck group Ko(®B) of the triangulated category
B is the factor group Ko(B)/P.
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10. Repetitive algebras

10.1 Let A be a finite-dimensional k-algebra and Q = Hom, (A, k) the
minimal injective cogenerator. Q carries a canonical A-bimodule structure. The
repetitive algebra associated with A is by definition the doubly infinite matrix

algebra, without identity,

‘ An—l
Qn—l An
Qn An+1 .

s
]

0

in which matrices have only finitely many non-zero entries, A, = A is placed on
the main diagonal, Q, = Q for all n € Z, all the remaining entries are zero, and
the multiplication is induced from the canonical maps A ® , 0—>Q, 0 ®, A—>Q
and the zero map Q ® , Q— 0.

This algebra was introduced in [HW] in connection with trivial extension
algebras.

We define an A-module X as a sequence X = (X, f,) of A-modules X, and
A-linear maps f,: X,,— Homy, (Q, X, ) satisfying f,_, - Hom, (Q, f,) =0 for all
n € Z. Instead of (X, f,,) we also write

f-2 fa fo h
o Xy~ Xy~ X~ Xy~ Xy

or simply
o X~ X ~Xg~ Xy~ Xy - -
if we do not want to specify the maps f. A morphism h:X=(X,,f,)—>Y=

(Y., 8.) is a sequence h = (h,) of A-linear maps h,:X,— Y, such that the
following diagrams commute for all n € Z

X, N Hom, (Q, X,+1)
h,.l lH‘"“A(Q' hy i)

),n _gn_’ HomA (Q’ Yn+l)

The category of A-modules is equivalent to the category of modules over some
locally bounded k-category [BG].
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We denote by Mod A the category of all A-modules X = (X,, f,) such that
dim, X, <o for all n€Z, by mod A the category of all A-modules X = (X,, f,)
such that dim, (D, X,) <.

An alternative description of mod A will be given at the end of this section.

We have a canonical embedding of mod A into mod A which sends X € mod A
onto (X,, f,) where X, = X and X,, =0 for n #0.

It is quite easy to see that mod A is a Frobenius category and that the
suspension functor can be chosen so as to be an automorphism (9.1, compare
[HW]). The indecomposable projective-injective A-modules are given by

fi
0~ X~ Xy ~0- -

where X;., is an indecomposable A-injective module, X; = Hom, (Q, X;,,) and
ﬁ' = idX,»'
Using 9.4 we see that the stable category mod A is a triangulated category.

10.2 There is a rather useful notion in the theory of triangulated categories
which was introduced in [BBD]. We recall the definition. A t-category is a
triangulated category 2 endowed with two full sub-categories 2=° and 2>° which
are closed under isomorphisms and such that for 2" =T""*(2>°) and 2=" =
T~"(2=°) the following three conditions are satisfied:

(1) For X € 2=° and Y € 9" we have that Hom (X, Y) =0.

) 92<°c 2<! and 97 c 9>°.

(3) For X € 9 there is a traingle B'— X— B"— TB' such that B’ € 2=° and
B"e @71
Under these conditions, we say that the pair (2<%, 27°) is a t-structure on 9.

The derived category D?(sf) of an abelian category & has a natural
t-structure (see [BBD]).

Denote by ¥ the full subcategory 2=° N 27° of . ¥ is called the heart of the
t-structure. It is shown in [BBD] that  is an abelian category.

PROPOSITION. Let A be a finite-dimensional k-algebra. Then the triangu-
lated category mod A has a natural t-structure (M=°, M7°) with heart equivalent to
mod A.

Proof. Consider the full subcategory #>° (resp. #=°) of mod A formed by
the objects which admit a decomposition Y@ Z in mod A such that Z is
projective-injective and Y,=0 for n<0 (resp. for n>0). We claim that
M>' = T~ (M>°) is the full subcategory of #>° formed by the objects Y = (Y,, f,)
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such that the induced sequence

f fo
Q0®, Y ,— Yy—<Hom, (Q, Y;)

is exact in mod A. Indeed, this subcategory is obviously closed in ngg/i under
isomorphisms. Therefore, in order to prove that T~'V belongs to it if V € #>°, it
is enough to consider the case where V, =0 for n<0. In this case V has a
projective cover P=(P,, g,) in modA such that P, is zero for n<0 and

P, Hom, (Q, P) is injective. These two conditions are shared by all sub-
objects of P, in particular by the kernel of P— V in mod A, which is isomorphic
to T7'V in mod A. Conversely, suppose that Y € #° and that the sequence
above is exact. In order to prove that Y e.#™', we may replace Y by an
isomorphic object of mod A, hence restrict to the case where ¥, =0 for n <0. We
then choose an injective hull [, of Y, in mod A and set P, =Hom, (Q, I,) for
n=1.

fo
The injection Y,— Hom, (Q, Y;)— Hom, (Q, I,) = P, obviously extends to
the monomorphism e below, so that Y is isomorphic to T !(cokere), where
coker e € M™°.

"'0~)’()~Y|~Y2"’
e e,,l e,l ,zl
P 1 P

0~ ~D -~ -
0 P L

Now consider a morphism h:X— Y, where X € #=° and Y € #>'. In order to
prove that £ =0 in mod A, we may suppose that X, =0 for n >0 and Y, =0 for
n <0. The diagram below then implies h, =0, hence & =0.

Xo —> Hom, (Q,0)=0

[

0— Y() - HomA (Q» YI)

This proves condition (1). The inclusion #™' = #>° is clear from the above. The
inclusion #="'c M=° follows from dual arguments. It implies #<°c M=
Finally, if X =(X,, f,,) € m_odA, we construct a triangle B'—> X — B"— TB' such
that B’ € #=° and B" € M by setting B, = X, and B}, =0 for n <0, By =kerf,
and By =imf,, B, =0 and B, = X, for n >0.
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10.3 PROPOSITION. Let A have finite global dimension and € be a full
triangulated subcategory of mod A which contains mod A and is closed under
isomorphisms. Then € =mod A.

Proof. By assumption, X € € implies 7X € € and T~ 'X € €; moreover, a
triangle (X, Y, Z, u, v, w) of mod A belongs to € if two of its objects do.

First we show that X € € if X e #™°. We proceed by induction on e(X) =
min {e e N: X, =0 for n >e}. If e(X) =0, X is isomorphic to an object of mod A
and belongs to €. So we may suppose that e(X) =e =1 and that Y € € if Y € #™°
and e(Y) <e. We then proceed by induction on the injective dimension id (X,) of
X, in mod A: A minimal injection i: X,— I into an injective A-module I extends
to a morphism j:X—J of mod A, where J denotes the projective-injective such
that J,=1, J,_.,=Hom, (Q, I) and J, =0 if n #e¢, e — 1. Clearly, J belongs to €,
and so does C = coker j (e(C) <eif id (X,) =0 and id (C,) <id (X,) if id (X,) > 0).
It follows that im j € 6. Since e(kerj)<e, we finally have that kerj € €, hence
X € 6. By duality, we obtain that #=°c €. Our proposition now follows from
axiom (3) of 10.2.

COROLLARY. Let A have finite global dimension and € be a full triangu-
lated subcategory of mod A which is closed under isomorphisms and contains the
full subcategory 4% of mod A formed by the injectives. Then € =mod A.

Proof. It is enough to show that each X e mod A belongs to €. For this we
use induction on r = id (X) for X e mod A. For r =0 there is nothing to show. So
let X e mod A with id (X)=r=1. Let 0— X— I— Y — 0 be exact in mod A with
I e 4¥. Then id (Y) <r. The above exact sequence yields a triangle X >I—> Y —
TX in r_nLdA. As I and Y belong to 6, we infer that X € €.

Note that we have a corresponding result for the derived category D?(A). If A
has finite global dimension, the smallest full triangulated subcategory of D?(A)
which contains 4% and is closed under isomorphisms coincides with D®(A).

10.4 LEMMA. There exist an exact functor I:mod A— mod A and a mono-
morphism u :id— I such that 1(X) is injective for each X € mod A.

Proof. For each X =(X,,f,)emodA, we define I(X)=(l, d,) by I,=
Hom, (Q, X,+.) ® Hom, (4, X,) and d,= (3 (3"
structure of I, is induced by the right A-module structure of Q and A, and where
6, :Hom, (Q, X,+,)— Hom, (Q, Hom, (A, X,.,)) is the canonical isomorphism
mapping @ onto ¢ — (a—> @(aq)). We define u(X):X— I(X) by u(X), = [f.5,],
where &,:X,,— Hom, (A, X,,) maps x onto a — ax.

), where the left A-module
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With the notation above, we set S(X)=cokeru(X) and denote by
a(X):I(X)— S(X) the canonical projection. This defines an exact functor
S:mod A— mod A mapping injectives onto injectives. The induced functor
mod A— mod A will be denoted by §.

10.5 Let C<°(mod A) be the full subcategory of the category C®(mod A) of
bounded complexes which is formed by the complexes vanishing in positive
degrees. The translation functor T is defined on C<°(mod A), and the mapping
cone C;. of a morphism f* in C=°(mod A) is contained in C<%(mod A).

For i =0, denote by C[—i, 0] the full subcategory of C<°(mod A) with objects
X =(X",d") such that X" =0 for n<—i. Identify C[0,0] with mod A. By
induction on i we will construct functors F;:C[—i, 0)]—>modA such that
FilC[——i+1,0] =F_,.

Let i =0. Using the identification of C[0, 0] with mod A, we define F, to be
the canonical embedding of modA into modA (10.1). Suppose that F_,:
C[—i+1,0]—>mod A is already constructed. Let X" = (X", d%) be in C[-i, 0].
Denote by X'* = (X'", d%-) the complex such that X'” =0 for n =0, X'" = X" for
n<0 and d% =d% for n <—1. Then T~X"" is contained in C[—i + 1, 0] and d'
induces a morphism ey from 7-X'* to X° whose mapping cone is X*. The functor
FE_, isA defined on T-X"", X° and ex. Consider the following pushout diagram in
mod A

F_\(ex)

F(TX")  FLA(X)
J’#(ﬁq(r'x")) 1“1\"

I(F_(T™X")) > Cr,_y(ex)
ln(F._l(T-X"» l""'

S(E._I(T_X")) — S(E_I(T_X'))

Then we set F(X') = Cg_ ey

Next we show by induction on i that Fjc—i+1,0=F-,. If i=1 and
X' e C[0, 0], then T~ X' vanishes, and we have to consider the following pushout
diagram in mod A:

— Fy(X°)

L
0 F(X°)
:

|

—-_'——..0

Thus F(X") = K(X").
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Suppose that the assertion is true for j<i and let X' e C[—i+1, 0]. Then

T~X'" € C[—i+2,0]. We compute F(X") and F,_,(X") by means of the following
two pushout diagrams in mod A:

F(T~X") 222 F (X%

lu(r,,z(rr'» l

I(F_(T~X"))— F;_4«(X")

| l

S(F_(T~X"))y=== S(F;_(T"X""))

F_(T x") 229 £ (x%)

lu(f; (T X)) 1
I(F-(T"X")) —— F(X)
S(E_(T"X")) —> S(E_(TX"))
By induction F_,(T™X"")=FE_(T"X"), F_y(X°)=FE_(X°) and F_s(ex)=
E_i(ex). Therefore F,_,(X') = F(X").

LEMMA. The functor F = ligl)i F;:C=°(mod A)— mod A satisfies F icr-i0) = F;
for i =0 and is associated with a canonical isomorphism n : FT ~ SF.

Proof. The first assertion is clear. So it remains to construct 7n:FT — SF.
Let X € C=%(mod A); then there exists i such that X € C[—i, 0], but X ¢

C[-i+1,0]. Clearly X"=T (TX")' and erx =0. Thus we have to consider the
following pushout diagram in mod A:

F(X')———0

lu(ﬁ(X')) 1

I(F(X) 290 F(TX)

1”“‘}('\")} nl

S(F(X")) == S(F(X"))
Note that F,,(TX') = F(TX") and that S(F(X')) = S(F(X")). We set n(X') =v.

10.6 The proof of the following two lemmas is clear.
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F(ex)
LEMMA. If X € C=°(mod A), the associated sequence F(T~X'")—>

F(X) ™ Fx) =2
0— F(X) 2 F(x) =

—> F(X"") is a standard sextuple in mod A. In particular
O F (X')— 0 is a short exact sequence in mod A.

Consider C=°(mod A) as a full subcategory of the Frobenius category
C’(mod A) (9.2), and denote by &= the set of exact sequences with terms in
C=%(mod A).

LEMMA. Let 0> X 5 Y 25 Z'—0 be in ¥<°. Then
0-F(X) 2 Fiy) 25 F(z)—>0

is a short sequence in mod A.

10.7 Let C=°(,#) be the full subcategory of C<°(mod A) formed by
complexes with components in 4%. Denote by G’ the restriction of F to C<°(,.%),
by K=°(,#) the residue-category of C=°(,#) modulo homotopy.

LEMMA. G' induces a functor G:K=<%(,$)—mod A associated with a
canonical isomorphism §:GT 3 SG.

Proof. 1t is enough to show that a projective-injective object in C=<%(,.%) is
transformed under G’ into a projective-injective module in mod A. Let I' e
C=°(,¥) be projective-injective. We may assume that I' is indecomposable.
Applying T~ if necessary, we may assume that I is of the form ---0— '3
I°-0---. But then G'(I') = I(I"") (with the notations of Lemma 10.4) which is
a projective-injective module in mod A. Thus G’ factors over K=<°(,.#). Clearly 7
induces a natural transformation &.

10.8 As noted before S induces a functor on the stable category mod A
denoted by S§. It turns out that § is a selfequivalence. Denote by S’ a
quasi-inverse of § on mod A and by a:S’'S—id an invertible natural transforma-
tion. We also choose an invertible natural transformation g:id— SS'.

We inductively construct an invertible natural transformation «,:S'"§"—id
for r = 1. Let o; = o and suppose that «; is constructed for i <r. Then we define
a,(X)=8"(a,-1(5(X))) - ay(X). Clearly a, is an invertible natural
transformation.

Let a, =1id. It follows that for r, ' =0 we have

(1) (X)) = 5" (a,(87(X))) - @(X).

Later we will need two consequences of this formula:
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Q) S"(a,_ (S (Y)) = ay(Y)- a7} (Y) for s—r=0.
B) S*(@L(S (V) = a,(Y) - a7X(Y) for r—s=0.

LEMMA. There exist a k-linear functor G : K®(,$)—>mod A and an invertible
natural transformation &:GT = SG such that G| <, 5)= G and §|x<,s)=E.

Proof. Let X € K®(,%). Then there exists #(X)=0 such that T"®X ¢
K=°(4#). Let t(X) be minimal with this property. Then we define G(X')=
SO (G(TOX").

Note that for » =0 we have isomorphisms

"0, (G(T X)) : S" O G(T ™ X") > G(X").

We define G on morphisms as follows:

Let f':X'—>Y" be a morphism of K°(,%). If t(Y)=t(X) we define
G(f) =S"P(a;(G(T™X"))) - G(T'@f") with r=1t(Y)—t(X). If t(Y)<t(X)
then we define

G(f)=S"OG(T™f) - §"(a,(G(T'™MY"))) with s=1t(X)— ().

Observe that for ¢#(X) =t(Y) both definitions coincide. Clearly G is k-linear and

Let us show that G preserves the composition of morphisms. For this let
X,Y,Z eK’(4¥) and f: X > Y, g':Y = Z' be two morphisms. We con-
sider the case #(Y) <t(Z) < ¢(X):

Let s =t(X) —t(Y), r =t(Z) — (Y). Thus s —r = t(X) — t(Z).

By definition

G(f -8')=S"PG(T"™f g") - §" (e, (G(T"PZ")))

— S"(X)G(T'(X)f') . S"(X)G(T‘(X)g') . S"(Z)(afs_,(GT'(z)Z'))

by naturality of a;_,

- S"(X)G(T'(X’f') . S"(Z)(af,_,(GT'(Z)Y)) . S"‘Z)G(T'(Z)g')
by (2)
=S"(X’G(T'(X)f') . S"(Y’(as(GT'(Y)Y')) . S"(Y)(a/,“l(GT'(Y)Y') . S"‘Z)G(T’(Z)g')

by definition of G(f*) and G(g’)
=G(f)-G@E).

The remaining five cases are similar.
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Next we will define E.

For this let X" € K®(,#). If ¢(X) =0, let E(X") = E(X"). Otherwise #(TX") =
#(X)—1=0. Then GTX =5"¥"'G(T*®X") and §GX = $§"PG(T'PX") =
$8'S"O1G(T'®X).

Then we define E(X°)=pB(S" ¥ 'G(T'™X")), where B:id3S§S' is the
chosen invertible natural transformation.

Clearly £(X") is an isomorphism.

Let f': X"— Y  be a morphism. We have to show that

E(X)-SG(f)=G(TIf) - E(Y").

We present the case #(X)=1¢(Y). The other case is similar.
Let s = ¢(X) —t(Y). Then

G(Tf) - E(Y") = S" O IG(T®TF) - SO o (G(T YY) - B(S "V GT Y )
= §TOTIG(TOTITF) - BS"DTIG(TDVY)) - S5 (e (G(TY)))
= BS"PIG(T X)) - $S"OG(TOf) - $5" M0 (G(TY "))
= £(X)- 5G(f).

Therefore £ is an invertible natural transformation such that EI k<99 = &.

10.9 We have defined an automorphism 7 on m_od/i (9.1) which serves us as
a translation functor for the triangulated category m___od/i. There exists an
invertible natural transformation y:S§3 T [He]. In particular we obtain an
invertible natural transformation §: GT 3 TG with £ = E(yG).

PROPOSITION. G is an exact functor of triangulated categories.

Proof. We have noticed before that G commutes with T up to isomorphism.
Clearly we may restrict to the triangles constructed in Remark 2 of 9.4 and
contained in K=°(,.#). But then the assertion follows from 10.6.

10.10 THEOREM. Let A be a finite-dimensional k-algebra of finite global
dimension. Then G:K°(,9)—mod A is a triangle-equivalence.

Proof. We have to show that G is dense, full and faithful (compare [B1],
[B2]). By 10.3 and 10.9 it follows that G is dense. We show that G is full and
faithful by induction on the width w(X") of the considered complexes X"
wX)=0if X’=0, and w(X)=j—i+1if X’#0# X and X" =0 for n<i or
n > j).

For this let I', J* € K®(,$) with w(I')=w(J')=1. Then I' = T'l, J' = T'J for
some i, je€Z and I, J € ,¥. Applying T if necessary, we may assume that i =0. If
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j=0 we use that G restricted to ,# equals the identity. If j <0, note that
G(I')e M=° and that G(J) e M™'. Thus the assertion follows from the first
property of the t-structure. So it remains to consider the case j >0, where
G(J')e M=°. Let 0— T~ J— I(T'"'J)— T'J—0 be exact in mod A. Then we
obtain in mod A:

0 0
T Yy=...~ J_, ~ Jo ~0...
(T)=---~ Hom«(Q, Jo) _ Hom (A, Jo)) ~0- - -
l Homk(AyJ—l) l
T =~ K_, ~ K, ~0---
0 0

K, is a direct summand of Hom, (A, J,), since J;€ 4# (by induction on j). Thus
Hom (1, TJ) =0.

Assume that the assertion is true for I',J € K®(,%) with w(I')=1 and
w(J)<r. Let J'=(J', d) e K’(,%) with w(J*) =r. Then there exists s € Z such
that J* is the mapping cone of T°~'J*—J'*, where w(J'*) =r — 1. This gives rise
to triangles T*"'*—>J" —>J' > TJF in K°(4,¥) and GT* ' /*—>GJ" -Gl —
TGT*~'J* in mod A. Applying the cohomological functors Hom (I, —) and
Hom (GI', —) yields the following commutative diagram with exact rows:

Hom (I, T*~J*) —— Hom (I',J'") — Hom (I',J’)

! ! I

Hom (GI', GT*~')*) — Hom (GI', GJ'*) —> Hom (GI', GJ*)

—— Hom (I', T*J°) -—> Hom(I', TI"")
‘lf‘ st
— Hom (GI', GT*J°) —> Hom (GI', TGJ"")

By induction it follows that fi, f,, fi, fs are isomorphisms, hence f;. The remaining
part of the proof is dual.
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COROLLARY. Let A be a finite-dimensional k-algebra of finite global
dimension. Then D*(A) and mod A are triangle-equivalent.

COROLLARY. Let (A, 4Mg, B) be a tilting triple with gl. dim A <o, Then
mod A and mod B are triangle-equivalent.

For a result related to this we refer to [TW].

COROLLARY. Let A be a piecewise hereditary algebra of type A. Then
R e
mod A and mod (kA) are triangle-equivalent.

10.11 For the alternative description of mod A we have to recall the
definition of the trivial extension algebra T(A) of A. The underlying vectorspace
of T(A)=A @ Q, and the multiplication is defined by

(a,9)-(a',q')=(aa’, aq' + qa’)

fora,a'e A and q, q' € Q.

T(A) is a Z-graded algebra, where A @ 0 are the elements of degree zero, and
0 Q those of degree one. We denote by gr mod T(A) the category of finitely
generated Z-graded T'(A)-modules with morphisms of degree zero.

It is straightforward that gr mod T(A) and mod A are equivalent. Moreover,
the forgetful functor from gr mod T(A) to mod T(A) is a Galois covering in the
sense of Gabriel [G3].

Appendix: Proof of theorem 5.10

Al. The following demonstration replaces the proof of theorem 1 of [H2] for
which P. Gabriel communicated us a counterexample.

Let 7 ={¢,...,t,} be atilting set (5.4) whose associated algebra E = End 7
(5.5) is simply connected. Consider the canonical functor 7 :ind D®(kA)— R(A)
(5.1) and the full subcategories I of #(A) and n#~'(J) of ind D®(kA) which are
supported by 7 and n~'(J). Then n~'(J) is a Galois covering of J with Galois
group T?? [G3]. Since End 7 is simply connected, the connected components of
a~'(J) are mapped isomorphically onto J by x. In the sense of the following
definition, the points of such a component form a tilting set J= {ty, ..., t,} of
the quiver I"of D®(kA) (4.4), and we have End J = @, ; Homps3(%;, ;) 3 End 7.
Theorem 5.10 therefore follows from the theorem below.

DEFINITION. A set of vertices I ={t,, ..., 1t,} of I is called a tilting set of
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I if the following two conditions are satisfied:
(i) Homprwi, (i, T') =0 for all r 0 and all i, j.
(i) dimt,, ..., dimt, form a Z-basis of 7".

THEOREM. If A is a Dynkin quiver and = {t,, ..., ,} a tilting set of T,
then End 7 is an iterated tilted algebra of type A.

A2. Proof of theorem Al.

Consider an element of £=End J as a square matrix with entries in
Hompeu i) (f;, ;). Then each object X e D®(kA) gives rise to an E-module CX
which consists of all columns with entries in Homps i, (f,-, X), where j=
1, ..., n. In particular, the objects ¢, € D® (kA) yield representatives Cr; of the
indecomposable projectives, and we have Hompsu i, (5, ;) > Homz (Ct,, Ct)) for
all 4, j.

Let t;, be minimal in J for the order of I" defined by the arrows. Then Ct;, is
simple projective; it is not injective (otherwise Ko(kA) would be the orthogonal
sum of subgroups of rank 1 and n —1). So we have an almost split sequence of
the form

~ [Cup)

00—y, ——-»@Ct —sV—0.

By [APR], the E-module
K=CE1® e @Cf;(,_l@V@Cfil,+1$ s @C;,,

is tilting. In order to show that End K is associated with a tilting set of I, we
consider a triangle of D?(kA) of the form

)
fa—> D1, -——>t~——->Tt
.p:l

By A3 below, ¢' is indecomposable, say ¢' € I'; the set I’ = (J\{t,}) U{t'} is
tilting in I, and £’ = End 9" is identified with End K. So it remains to show that,
for some choice of iy, ' is “better” than J if J is not a slice (=the set of
vertices of a connected full subquiver of I" which contains one representative of
each 7-orbit). In fact, by A4 we can proceed by induction on the cardinality of
the convex hull {J) of I' (= the set of vertices occurring in the paths of I which
start and stop in 9).
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A3. The long exact Hom-sequence of D®(kA) provides us with an exact
sequence

o Clyl r o o
ct,— @ i, — ' — (T,
p=1

io ip*

By Al(i) we have CTt, =0, and Ct' is identified with V.

By construction, we have Hom (¢, X) 5 Hom (Ct;, CX) for all i and all
X € D*(kA) (Yoneda-lemma!). The diagram below shows that Hom (t'. X) 3
Hom (Ct', CX)) whenever Hom (T%;,, X) =0, so in particular if X =¢, or X =¢'
(use the injectivity of Hom (t,, [4,]) 3 Hom (Ct,, Clu,]) to prove
Hom (¢, T~'t')=0). We infer that End¢' 5 End V, that ¢’ is indecomposable
and that End K 3End(t;® --- ©t' D - - - D1,).

Hom (Tt;,, X)— Hom (', X) — & Hom (f; , X) —— Hom (f,,, X)

l | l‘

0 —— Hom (Ct’, CX) — ? Hom (CF; , CX) — Hom (C%,,, CX).

Because of Al(i) and of the minimality of 7, we have Hom (T ™7, ,) =0=
Hom (T~'t;, Tt;), hence Hom (T, t')=0 for r#0 and i#i,. The exact
sequence below and the surjectivity of Hom ([Tu,], Tt;) 5 Hom ([Cu,], Ct;) show

that Hom (¢', T't;) =0 if r #0 and i # i
Hom (@, Tt , T'1;)— Hom (Tt;,, T't;)— Hom (¢, T't)—Hom (D, 1, , T'r).

In case i =i,, the same sequence shows that Hom (¢', T't;)=0 if r#1 and
dim Hom (¢', Tt,) = 1. Finally the exact sequence

@, Hom (¢', T't,)— Hom (¢, T't")—Hom (¢, T™'t,)

shows that Hom (¢', T"t') = 0 if r #0. We conclude that §' = (9\{t,}) U {t'} is a
tilting set of I".

A4. Suppose that J is not a slice. Then we have t7't; € (J) for some i, and we
choose i, so that f, is minimal in J and satisfies ,, <f. The last assumption
implies that t'%;, € (I)\{¢t,,}.

If there is an index j #i, such that Hom (', ) #0, then ¢' € {(J)\{t,} and
() < (TN,
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On the contrary, if Hom (¢', ;) =0 for all j #i,, then (dim¢’, dim¢)=0=
(dim#, dim1;,) = (dim#,, dim t7%) = — (dim 7'z, dim#;) and (dim?', dim7, ) =
—dim Hom (¢', Tt,) = —1=(dim 7', , dim#,). We infer that dim¢ =
dimt7',, and ¢'=T%77'f, for some r. Now f; belongs to the convex hull
(t,, 1Tt,), because Hom (f;,7;,)#0; so we have ¢ e (t,, (tT)%,) because
Hom (f;,, t') #0. Since 17z, is the only vertex of the form T%t~'f, within
(t:,, (zT)t;,), we obtain ¢’ =77, € (I )\{t;,} and again (J"') < (T)\{t;,}.

The induction announced in A2 works!
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