C‘ U q NIEDERSACHSISCHE STAATS- UND
-~ L UNIVERSITATSBIBLIOTHEK GOTTINGEN

Werk

Titel: Archiv fir mathematische Logik und Grundlagenforschung

Verlag: Kohlhammer

Jahr: 1970

Kollektion: Mathematica

Digitalisiert: Niedersachsische Staats- und Universitatsbibliothek Gottingen
Werk Id: PPN379931524_0013

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN379931524_0013

LOG Id: LOG_0005
LOG Titel: Hierarchies of number-theoretic functions. .
LOG Typ: article

Ubergeordnetes Werk

Werk Id: PPN379931524
PURL: http://resolver.sub.uni-goettingen.de/purl?PPN379931524

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational,
research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections
are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission
from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online
system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further
reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the
source.

Contact

Niedersachsische Staats- und Universitatsbibliothek Gottingen
Georg-August-Universitat Gottingen

Platz der Gottinger Sieben 1

37073 Géttingen

Germany

Email: gdz@sub.uni-goettingen.de


mailto:gdz@sub.uni-goettingen.de

Arch. math. Logik 13 (1970), 39—51.

HIERARCHIES OF NUMBER-THEORETIC FUNCTIONS. I.*
By M. H. L6B and S. S. WaINER

Herrn Professor Dr. KURT ScHUTTE zum 60. Geburtstag gewidmet

Introduction

The present paper is concerned with a method of classifying number-theoretic
functions by means of hierarchies.

Previous related results are contained in Grzegorczyk [5], giving a hierarchy
classification of the primitive recursive functions, and Péter [9], giving a hierarchy
classification of the multiple recursive functions, refined in Robbin [12] by ex-
tending the method of [5]. Our results may also be viewed as an approach to the
general problems discussed by Péter [10], regarding the question of extending the
class of constructively describable recursive functions beyond those previously
considered.

In Section 2 we introduce a general procedure for generating hierarchies, which is
applicable to a wide variety of classes of number-theoretic functions, including
such which also contain non-recursive functions. It is proved that the hierarchies
may be extended through the ordinals of Cantor’s second number class without
collapsing. In particular, our procedure provides a proper extension of Grzegorczyk’s
hierarchy [5]. In fact our hierarchies coincide with the latter at level w.

In Section 3 we show that restricting the ordinals appropriately to the construc-
tive ordinals yields hierarchies of recursive functions.

Section 4 presents a simplification of our general method for the case where the
ordinals range over those below &,. We conjecture that, in the latter case, the class
of functions obtained is co-extensive with the class of ordinal recursive functions
of Kreisel [7].

In Section 5 we show that, at level w®, we can obtain precisely the class of multiple
recursive functions, thus providing an alternative scheme to [8] and [9] for intro-
ducing these functions.

Our procedure depends on a particular method of diagonalization which, at each
non-limit stage, is analogous to the steps in the Grzegorczyk hierarchy.

1. Notation

Let N denote the set of natural numbers 0,1,2, ..., and for any fixed k€N,
let N* denote the set of all k-tuples of natural numbers.

This paper is concerned with functions whose arguments and values belong to .
All our functions are totally defined, i.e. if a function has k& argument-places, then
its domain will be N*.

* Eingegangen am 3. 12. 68
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Lower-case italics @, b, ..., x,y,2z (with the exception of f, ¢ and k), with or
without subscripts, denote natural numbers.

A sequence &, x,, . . ., z; will sometimes be denoted by .

Lower-case Greek letters, other than 4, g, and u, with or without subscripts, will
denote countable ordinals.

The letters f, g, and h, with or without subscripts and superscripts, are used as
function-variables. Capital letters are also used to denote particular functions.

4 denotes the least-number operator.

If T'is a numerical term with the free variables zy, . . ., #, thenlz, . . . z,- T denotes
the function whose value, for any particular r-tuple {a) is the result of substituting
a, for z,, . . ., a, for z, respectively, in 7.

Members of N will be identified with the finite ordinals.

Suppose that C is any class of functions.

Then E (C) is the smallest class of functions which contains C and is closed under
the operations of

(1) Substitution
flag, .o w) =g (@, ..., %), .., by, ..o, 2)).
(ii) Lemited Recursion
fO, 2, ..,z =Ry (2, .. oy 20) s
fly+ Ly, ..,2)=be (¥, 2. s @ [ s+ - 5 %)) s
2 @) S by, @, -0 05 2,)
Thus, by the work of Grzegorczyk in [5], the class & of Csillag-Kalmar elementary
functions can be characterized as follows:
E=E(Ax-0, Az -z + 1, ¢ x;, Axy - a¥) .

For any class C of functions, we let P (C) be the smallest class of functions which
contains C' and is closed under the operations of Substitution and Primitive
Recursion.

Thus P(Az-0,Az-x + 1, Az z;) is the class of primitive recursive functions, which
we denote by Z.

2. Extending the Grzegorczyk Hierarchy
In [5] Grzegorczyk defined a sequence of classes of functions & (¢ ¢ N) such that
(i) for eachz € N, & C &+,
(ii) 2=¢,

() y &'=2.

1EN
Robbin, in [12], extended this result by constructing a sequence of classes
E,(x < w®) such that
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(i) whenever « < 8 < w®, E,C Ej,
(ii) for each k& > 0, LJM E, =9,

where 9, denotes the class of k-recursive functions defined by Péter in [9].

We shall use methods similar to those of Robbin in order to develop a framework
within which various extensions of the Grzegorczyk hierarchy can be constructed.

Definition 2.0

By a fundamental sequence to a limit ordinal «, we mean an w-sequence {o;};¢ y of
ordinals, such that

(i) foreachs e N, o, <oy, <a,
i) limo; = & .
(i) lim o

Now, in [12], Robbin specifies, for each limit ordinal less than w®, a particular
fundamental sequence to that limit ordinal.

On the other hand, the development of our general framework is based on arbitrary,
but fixed, fundamental sequences to all the limit ordinals under consideration.
Since every countable limit ordinal has such a fundamental sequence, we are able
to define classes €, where « now ranges over all the countable ordinals.

Definition of the Functions F2:

For each countable limit ordinal 8, let {8} (7), ¢ € N, denote a (arbitrarily chosen)
fixed fundamental sequence to 8, i.e. {#} is a function mapping N into # with the
properties

(i) foreachieN,{f} ) <{f}e+1)<§,
(i) lim {8} ()= §.
We now define F as follows:
Def. 1. Fy(@)=(n + 1) (x + 1),
Def. 2. F2_, (x) = Fi(a),
Def. 3. F§(x) = F5 @) (05(x)), B & limit ordinal,
Def. 4. F2+1(z) = FY(F2(x)), y +0,
where, for B a limit ordinal,
{95(0) =0
0s(m + 1) = 1, (2 > 05(m) & (D) Py m + 1) () > Floy iy () -

We shall now exhibit some of the basic properties of these functions.
First, however, we need the following
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Definition 2.1

A function f is eventually majorized (e.m.) by a function g if f and g are totally
defined and there is a number p such that for all x = p, f(z) < g(z) .

Lemma 2.2

For every countable ordinal ¢, if Ax. F¢(x) is eventually majorized by Ax. F§(x)
whenever « < f < o, then

(i) Anz. F?(x) is totally defined,

(ii) for all n and z, F*(x) > max(n, ).

Proof

We proceed by transfinite induction over the countable ordinals.

Clearly, the result holds when ¢ = 0.

Suppose that the result holds for %, and that o = + 1.

Then if Az Fg(x) is e.m. by Az - F}(x) whenever a < ff < ¢, we know that Az - F¢(x)
is e.m. by Az - F'}(x) whenever « < f# < %, and hence (i) and (ii) must hold for 7.
But Anx - F2(x) is defined from Anx - F2(x) as follows:

F3(x) = F7(x)

{F.’,'“(x) = F3(F3(=)) -
Therefore, since, by (i), Anx - F7(x) is totally defined, so must be Anx - Fg(x).
Also, since (ii) holds for %, we have by Def. 2, F3(x) = Fi(x) > z, for all x.
From this, it can easily be proved by induction that (ii) holds for ¢ = 5 + 1.
Hence, if Az - F(x) is eam. by Az - F§(x) whenever o« < < o, (i) and (ii) hold for
c=n+1.
Finally, suppose that ¢ is a limit ordinal and that the result holds for every
ordinal less than o.
Then if Az Fi(x) is e.m. by Az - F§(x) whenever « < f# < ¢ it is clear, by the de-
finition of g,, that g, is totally defined, and that for every 2 we can apply the
induction hypothesis to deduce that F{; () (¢,(2)) is defined and greater than x.
Hence, by Def. 3, we have for all

Fi(x) = Foy o) (05 (%)) > 2.
Now, by Def. 4, F2+1(x) = F(F%(x)), and so it can easily be proved by induction,
that (i) and (ii) must hold for ¢.
Hence, if Az - F(x) is e.m. by Az - F}(x) whenever a < f# < o, (i) and (ii) must
hold for ¢ a limit ordinal.
This completes the induction step, and so Lemma 2.2 is proved.

Lemma 2.3

For every countable ordinal g, if Az - FO(x) is eventually majorized by Az - F'§(2)
whenever & < f# < g, then
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(i) for all » and z, F?(x + 1) > F2(x),

(ii) for all » and z, F?+1 (z) > F2(z) .

Proof

Again we proceed by transfinite induction over the countable ordinals.

First, the result clearly holds when ¢ = 0.

Suppose, now, that the result holds for 5 and that o =» + 1.

Then if Az - F(x) is e.m. by Az . F'}(x) whenever a < 8 < o we can apply the induc-
tion hypothesis and deduce that for all » and z,

Fi(x) <Fy(x 4+ 1) and Fi(x) < Fr+i(x).
Hence, by Def. 2, we have, for every x,
FY(x) = Fi(x) < Fi+l(x) < Fi*'(x + 1) = F(x + 1) .
Therefore, if < y, F3(x) < F(y) .
Now, if we assume that for every x, F7(x) < F?(x -+ 1), then we have, by Def. 4,
F2+i(x) = FY(F2(x) < F(F2(x + 1)) = Frtl(x + 1),

which holds for every =.
Hence, by induction, (i) holds for ¢ = # + 1.
Also, by Lemma 2.2, F§(x) > «, for all z, and so we have, by Def. 4,

Fui(x) = FY(F4 () > F1(2) ,
for all » and «.
Hence, by induction, (ii) holds for ¢ = 7 + 1.
Thus, if Az - F(x) is e.m. by Az - F§(x) whenever « < f < g, then (i) and (ii) must
hold for ¢ = 7 + 1.
Finally, suppose that ¢ is a limit ordinal, and that the result holds for every
ordinal less than o.
Then if Az - FQ(x) is e.m. by Ax - F§(x) whenever o < f# < 0, it is clear that g, is
totally defined, and that for every x, we can apply the induction hypothesis to get

Fly @) (y) > Fg () (2) whenever y > z.
But, from the definition of g,, we have, for all z, g,(x + 1) > g,().
Hence, for every z, we have the following:
FY(@ + 1) = F z11) (06 (% + 1)) by Def. 3.

> F o) (0o (2 + 1)) by definition of g, .

> F?a} @) (Qo (x»

= F3(x) by Def. 3.
From this result it again easily follows that (i) and (ii) hold for ¢ a limit ordinal.
Hence, if Az - F(z) is e.m. by Az - F§(x) whenever « < # < 0, then (i) and (ii) hold

for ¢ a limit ordinal.
This completes the induction step, and hence the proof of Lemma 2.3.
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Lemma 2.4

For all countable ordinals «, §, if « < § then Aa - F(x) is eventually majorized by
Az - F(x).

Proof

We use transfinite induction to prove that for every o, if « < ¢ then Az - F2(x)
is e.m. by Az - F9(x).
The result is trivial when ¢ = 0.
Suppose, now, that ¢ > 0, and that for every é < g, if o < J then Az - FO(x) is e.m.
by Az - F§(x).
We consider two cases:
(a) If 0 = 5 + 1 then by the induction hypothesis, Az - F2(z) is e.m. by Az - F'§(x)
whenever & < < 7.
Hence, by Lemma 2.3, for all n and z, F+1(x) > F2(x).
Therefore, for every x = 1 we have

Fd(x) = F&(x) > Ff(x) .
Thus Az - F§(x) is em. by Az - F(x) .
But, by the induction hypothesis, if « < 7, then 1z - F2(x) is e.m. by Ax - I (x).
Hence, for every o < 0, Az - F3(x) is e.m. by Az - F(z).
This completes case (a).
(b) If gisalimitordinal, then for any « < o thereisa number p such thata < {0} (p)
Now, by the induction hypothesis, there must be a number ¢ such that for every
x = q, Floy o) () > F () .
Also, by the induction hypothesis, if 8 < ¥ < o then Az - F§(x) is e.m. by Az - F9(x).
Hence by definition of g,, g, is totally defined and, if ¥ > z, g, (y) > 0,(2).
Thus, by definition of g,, we have for every x = max(p, q),

Fy (@) = Foy 2y (05 () Z Floy ) (05(*))
and Fyy oy (05(%) = Floy y (%) > F(2) ,

since g,(x) = @, and since, by Lemma 2.3 and the induction hypothesis, if y = z,
then F5 o) () = Figy ) (2)-

Hence Az * FQ(x) is e.m. by Az + F3(«x), and this holds for any « < o.

This completes case (b).

Cases (a) and (b) together constitute the induction step, and so we have proved
Lemma 2.4.

With the aid of this last result, it is now easy to obtain the next Lemma, which
we state without proof.

Lemma 2.5

For all countable ordinals «, §, if « < f then for each n, Ax - F%(x) is eventually
majorized by Ax - F;’ (@).
Combining Lemmas 2.2, 2.3, 2.4 and 2.5, we obtain the following:
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Lemma 2.6
(i) For each a, Anx - F7(x) is totally defined.
(i) For each «, and all n, x, F?(x) > max(n, ).
(iii) For each « and all n, z, y, if 2 > y, F2(x) > F7(y).
(iv) For each « and all m, n, z, if m > n, F?(x) > F2(x).
(v) For all «, 8, if « < f8 then for each n, Az - F7(x) is eventually majorized by
Az - F(x).
Lemma 2.7
For each o and all #» and «, if max(n, ) = 1 then F?_, (x) > F*(z).

Proof
Suppose that x = 1.
Then by Lemma 2.6,
F3 (@) = F3(2) > Fo(a) -
Now assume that F7_, (x) > F () .
Then by Def. 4 and Lemma 2.6,

Fpit (@) = F 1 (Fihq (@) > Fo o (FR () -
But F*(z) = 1, 50 F2 ., (F" () > F3(F™(2) .
Hence FHl(z) > FI(F7(x)) = Fpti(z).
Thus we have proved, by induction, that for alln and allz = 1, F?_, (x) > F(x).
Now F9(0) = 1 and so by Def. 2 and Def. 4,
F}11(0) = FQ 1 (F§41(0)) = Fg ., (F2(0)) > F2(F2(0)) -

But, again by Def. 4, F)(F9(0)) = FL(0) and so we have FL,(0) > F1(0).
Furthermore, if we assume that F7,,(0) > F7(0) for m = 1, we can similarly
prove that F7 1 (0) > Fm+1(0).

Hence, by induction, F7_,(0) > F2(0) for all n = 1.

Thus F?,,(x) > F?(x) whenever max(n, ) = 1.

Now, by Lemma 2.7 and the fact that for each «, g, (0) = F2(0) by Def. 2, we get

Lemma 2.8
For each « and every k = 1 we have, for all n and z,
Fy (@) = FR(2),

with equality holding only when n = 2 = 0.

We now consider a method of extending the Grzegorczyk hierarchy (which is
uniform in the choice of fundamental sequences to limit ordinals).

The results contained in Lemmas 2.6 and 2. 8are of basic importance to the work
which follows, and we shall use them without referring to them explicitly.
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Definition 2.9
For each «, define €, as follows:
€, =E({Ax -0, zy -z +y, Az -2} U {Az - F}(2)| B < ).

From Def. 2.9 it is obvious that whenever « < §, €, C €.
We now prove that the hierarchy {€,} does not collapse.

Theorem 2.10
Let « be any countable ordinal > 0.
Then for every function f € €,, there is a number p such that, for all z,, . .., z,,
f@y, .-, 2,) < FB(max(xy, .. ., %,)) .
Proof
First of all, notice that F¢(x) > 0 for all x, and that, for all z,, . . ., z, and each
t(l=i<m),
Fi(max(xzy, ..., x,) > ;.

Also, F{(max (z, y)) = F§(y) > x + y, for all x and y.

Now take any f < a.

Since Az - F'§(x) is e.m. by Az - FY(x), it is clear that there is a number p such that
F(2) = Fi(x + p) < Fo(x + p),

for all .

But F(x + p) < FQ(FE(x)) = FL+1(x).

Hence F§(x) < F£2+1(x), for all z.

Also, it is clear that F3(x) < F%(x), for all 2.

Hence, if I is any initial function of €,, there must be a number ¢ such that, for

all zy, ..., 2,,

Iy, ..., 2,) < Fi(max(zy, .. ., z,)).
Now suppose there are numbers ¢, py, . . ., p,, such that
9(y) < Fi(max(y)) for all y,
and foreach:=1,...,m,

h;(x) < FPi(max(x)) for all x.
Suppose also that f is defined from g, Ay, . . ., k,, by substitution, as follows:
@) = gy (@), . . .. b (@)
Then if p = max(p,, . . ., p,) We have, for all a,
f(x) < F¢(max(hy (), . . ., by ()
< Fi(max(F?:(max(x)), . . ., FP»(max ())))
= F? (Fg (max (a?)))

= F2te+l (max (x))
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since, for any n, F2(x) is just the n + 1 — st. iterate of F?, applied to .
Finally, suppose f is defined by limited recursion from functions #,, k,, ks for
which there are numbers p;, p,, p; such that, for each ¢ =1, 2, 3,

b;(x) < FPi(max(x)).
Then, since f is bounded by %,, we have, for all a,
f(x) < F#*(max(x)).

We have now considered all possible ways of defining functions in €,.
Hence the Theorem is proved.

Theorem 2.11

Let « be any countable ordinal > 0.
Then for every function f € €, there is a number p such that whenever max (x) = p,

(@) < F . (max(x)).
Proof

Take any function f € €,.
Then by Theorem 2.10, there is a number p such that, for all e,

f(®) < F2(max(x)).
Suppose max (&) = p. Then we have
(@) < F™x® (max (x)) = FS ., (max(x)).

Theorem 2.12
For any two countable ordinals « and g, if « < f then €, C&;.

Proof
First, by the results of Grzegorczyk in [5], it is clear that
EQQx-0,Axy -z +y, Ae-a, ez + 1) = &1

is strictly contained in

E(Az-0,lzy -+ y, Ax-x;, Az -2 + 1, Az (z + 1)?) = &2
But the first class is just &,, and the second €, and hence €,C €.
Now let « be any countable ordinal > 0. .
Then by Theorem 2.11, Az - FO_, (x) eventually majorizes every unary function
in €,, and so cannot be a member of &,.
However, Az - F? () € &; for every countable ordinal § > a.
Hence, for every g > a, €, C ;.
This completes the proof of Theorem 2.12.

We shall now show that the hierarchy {&,} is a proper extension of the Grzegorczyk
hierarchy.
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First we define two w-sequences of binary functions:
do(@y)=y+1,
4@y =c+y,
A, (@ y) =2y,
Aprs(0,9) =1,
Anis@+1,y) =4, 5(4nis(@ 9), 9).
The function Anxy - 4, (x, y) is a slight variation of the Ackermann function used

in [1].
Go(x,y)=y+1,

Giz,y)=2x+y,
G y)=(@+1)-(y+1),
Gris(0,y) =G,y + 1L y+1),
Gris(@+ 1,y) = Gpis(@, Gpis(, y)) .

The function Anxy - G, (x, y) is that used by Grzegorczyk in [5].
Ritchie [11] and Cleave and Rose [3] have obtained various “monotonicity”
properties of the above functions.

We shall make use of the following properties which can be proved fairly easily.
(1) Foralln, 2, y,2, f < 2, G, (x,y) < G, (2, 9) .

(2) Forall n,z,y,2,if y < 2, G, (x,y) < G, (2,2).

(3) Forallm,y,andall x = 1,

Ani2(Ani3@,9), Anis(®,9) 2 Apia(dnis(® 9), 9).
We can now prove the following relationships between the functions 4, F, G.

Lemma 2.13
FOI‘ a'll n, ¥, ys Fﬁ(?/) § Gn+2(x> ?/) .

Proof
By definition, F%(y) = G,(z, y) for all z, .
Now assume that for all z, y,

Fiy) = Gpis(@,y) .
Then for all ¥, we have

FRoa@) =FlY) S Cnss(@,9) S Guys(y + Ly + 1) = Goy5(0,9) -
Suppose now that, for all y, FZ_,(y) < G, (=, y).
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Then we have the following:
Fiil(y) = Ff 1 (F%11(y) by Def. 4
= F) 1 (Grislz, y)
= Gnis(0, Grys(2, y)
= Gris(@ Grysle, y)
=Gz +1,9),

and this holds for every ¥.
Hence, by induction, FZ_,(y) < G, s(x, y) for all z and y.

Therefore, again by induction, we have for all n, 2, y, F2(y) < G, , ,(x, ¥).
This completes the proof.

Lemma 2.14
For all n, @, y, 4, ,(x, y) =< FZ(y).

Proof

Clearly Ay(z,y) =z -y < (& + 1) (y + 1) = F§(y), for all z, y.
Now assume that for all x and ¥,

Apia(, y) = FLy) -
Then for all y, 4,,,,(0,y) = 1 < F9_,(y), and also, for all y, we have

Anis(Ly) =4a,5(Ly) =" =4 (Ly) =y = F},(y).
Suppose, now, that x = 1 and that for all ¥,
Ay gl y) = Fr o (y) .
Then we have the following:
Apisl@+1,y) = Ay o(4n 5@ 9), Y)
< Api2(Anis(®@ y), An s y)) by (3)
< Fhwn @0 (4, (=, 9)
= F 1 (4n (2, y)) by Def. 2
= P (FRa @)
= Fi1i()
and this holds for every .
Hence, by induction, 4, 4(z, y) < FZ_,(y) for all z, y.
Therefore, again by induction, we have, for all n, z, y,
Apia(@,y) = FR(y) -

This completes the proof.
4 Mathematische Logik (18, 1/2)
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Definition 2.15
We define classes #" and &" as follows:
Fr=EQx-0,Az-x+ 1, e x, zy - 4,(x, y)
Er=EQz-0, Az -2+ 1,02 x;, Azy - G (2, 9)) .
The classes 6™ are those considered by Grzegorezyk in [5].

Lemma 2.16
For each n, #7+1 C €,.

Proof

We know that, for every n, Az - 0, Ax - 2; and Azy - x + y all belong to &,.
Also F(x) =« + 1, and so Az - z + 1 € €, for every n.
Hence, all we need do is show that for each =,

Awy - Ay (2, y) €E,.

Clearly, Azy « 4, (x, y) € €,.
Assume that Axy - 4, ..(z, y) €E,.
Then Axy - 4, (%, y) €€, 4, since €, CE, ;.
Now Azy- A, .(x,y) is defined by a simple primitive recursion from
z'xy : An+1 (xy y)'
Also, by Lemma 2.14, we have

Apin(@ y) = Fi(y) < FiHV (@ + y) = Fl (e + ).

Therefore, Azy+ A4, ,,(x,y) is defined by limited recursion from Azy- A4, (2, ¥)€ €,y
and Azy - Fp (@ + y) €€,y

Hence Azy - 4, .5, y) €€, 1.

Thus, by induction, Azy - 4, ., (x, y) € €, for every n, and this completes the proof.

Lemma 2.17
For each n, €, < &"+1.

Proof

Clearly, €, = &*.

Assume that €, ¢ &711, so that €, C £m+2 since £7+1C £ +2.

Hence Az - F9(x) € £m+2.

Now Azy - FZ(y) is defined by a simple primitive recursion from Az - F3(z), and
by Lemma 2.13, FZ(y) < G, ,(, y) for all , y.

Therefore, Azy - FZ(y) can be defined by limited recursion from iz - F3(x) € & +*
and Azy - G, ,(x, y) € En+2.

Hence Axy - FZ(y) € &+2.

But F3,,(x) = F%(x), and so Az - FY_,(x) € 67+2,
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Thus, all the initial functions of &, belong to &»+2, and so it is clear that
@n+1 g éan+2‘

Hence, by induction, we have, for every n, €, < £7+1.

Now Ritchie [11] and Cleave and Rose [3] have proved that, for every n, #» = &
Hence, by Lemmas 2.16 and 2.17, we have the following result:

Theorem 2.18
(i) For every n, €, = &7+1,
(ii) nngN €, =2.
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