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Wave Front Sets and Singular Supports
of Convolutions

Gunter Bengel
IMPA. Rua Luiz de Camoes 68, Rio de Janeiro GB, ZC-58, Brazil

1. Introduction

If S and T are distributions with compact support, the convolution theorem of
Lions-Titchmarsh [7] states that

co supp(T*S)=co supp T+ co suppS (1.1)

where co K means the convex hull of the set K in IR". This theorem is used if one
wants to prove that the convolution equation Txu=f, fe &(Q,) has a solution
ue£(2,) where Q,, Q, are open sets in R* with Q,>Q, +suppT, [5-7,9]. If one
looks for solutions ue 2'(R2,) when fe2'(Q,), a similar theorem for singular
supports is needed.

co sing supp(T*S)=co sing supp T+ co sing supp S . (L.2)

But unfortunately this is only true under additional conditions, e.g. if supp T (or
suppS) consists of a finite number of points [ 7], or if T is the characteristic function
of a compact convex polyhedron [2, 3]. But if T is the characteristic function of a
sphere there is a distribution Sed’(R") such that (1.2) does not hold [3].
C. A.Berenstein and M. A. Dostal conjectured in [3] that this is always the case for
characteristic functions of convex, compact sets with smooth boundary and proved
it in the meantime in [4] by carefully estimating the Fourier transform of T. We will
prove this conjecture even for non convex bounded sets with smooth boundary.
This is an immediate consequence of Theorem 3.2 which gives a necessary condition
on T for the validity of (1.2) for all Se&"(R").

The proof is based on the following formula for the wave front set of the
convolution TS

WEF(T«S)C{(x+,8); (x,0)e WF(T), (v,£)e WF(S)}. (1.3)

This formula is a special case of Theorem 2.5.14 in Hormander [9], but we will
give in this case a simple direct proof. In Section 2 we state the definitions and simple
properties of wave front sets which we need. For the proofs we refer to [9], where
the notion of wave front set was introduced in analogy to M.Sato’s notion of
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singular spectrum [12, 13]. Section 3 contains the proof of (1.3) and in Section 4 we
show by a counterexample that the condition in Theorem 3.2 is only necessary but
not sufficient and therefore (1.3) is in general a proper inclusion. The construction of
the counterexample uses ideas of Ehrenpreis [5] and Hormander [8]. For the
consequences concerning convolution equations we refer to [8]. Finally we want to
mention that in [6] a connection is made between our Theorem 3.2 and
Hormander’s characterization of singular supports by supporting functions [8].
Some of the results of this paper were announced in [1].

I want to thank C.O.Kiselman and O. von Grudzinski who showed me some errors in a first version
of this paper.

2. Wave Front Sets

n 1/2 n
As usual we note || =( Y i,f) the euclidean norm and x¢= ) x,&, the scalar
k=1 k=1

. . z 0
product of vectors x, ¢ in R". For a multiindex « we set o] = ) o, and Di= ( —i 6_5)
k=1

A pseudo-differential operator of order m is an operator of the form
Ly )
o= | T et 00(E10:

where (&)= e“f"éq)(x)dx is the Fourier transform of e Z2(R") and the symbol
a(x, £)e €*(R" x IR") satisfies inequalities

ID:DEa(x, ) £C, 5 k(1 +IE"* where (x, K xR"

K compact in R", for some constant C, ; x. 4 can be extended to a continuous
operator 4 : &'(R")—2'(R"). If A can be extended to an operator 4 : 2'(R")— 2'(R")
we call 4 a properly supported operator. For more detailed information we refer to
[9] and [11].

The characteristic set y(4) of the pseudo-differential operator A of order O is
defined by

P(A)={(x, £)e R" x (R™\{0}); lim infla(x, t£| =0} .

Definition 2.1. For a distribution Te 2'(R") the wave front set WF(T) is defined by
WEF(T)={y(4), ATe ¢~ (R")}

where A4 runs over properly supported pseudo-differential operators of order 0.
Since the a(x, t£) as functions of (x, &) are equicontinuous, y(4) and WF(T) is
closed and the definition implies immediately that WF(T) is a “cone” in
R" x (R™\{0}). If = is the projection of R*xIR" on the first factor we have
n(WF(T))Csing supp T and one can even show ([9], Thm. 2.5.3).

Proposition 2.2. n(WF(T))=sing suppT.

It is clear that for a ¥™-function ¢ the fibres of WF(T) and W F(¢T) coincide
over every point x where ¢(x)=0. So the fact that (x, £)e WF(T) is a local property
of the distribution T and we can restrict ourselves to distributions with compact
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support. For distributions Te &'(R") the wave front set can be characterized by the
Fourier transform T as follows ([9], 2.5.5).

Proposition 2.3. (x, )¢ WF(T) if and only if there is a function pe 2(R") with
@(x)=0 such that for any integer N there exists a constant Cy with

[T < Cy(1+In)™" @.1)
for any n in a conic neighborhood of £.
We now determine the wave front set in two cases we need in Section 3.

Examples. 1) Let Qbe an open set in IR" with smooth (¢®) boundary and let T be the

L . . 1. Q .
characteristic function of Q, T= y,, with y, = { 0 if zz o The singular support of

T is 0Q and we have only to determine the fibre of WF(T) over each xe Q. We
claim that WF(T)={(x, {); xe0Q, &= +tn, t >0}, where n is the normal to the
boundary. (This is related to Proposition 2.1.3, Chapter 111 of [13].) For the proof
we suppose x=0e dQ. In a neighborhood U of 0 let JQ be given by the equation
x,=h(xy,...,x,_ ), he €, and let A; be the differential operator of order 1

0 oh oh
Aj=—-— 5%, 6 6 — with the symbol 1(5 +¢&, ) Ajis the derivation along the curve
X, = h(x1 yeees Xpo 1) x,=const. for k=j and we see that 4, T=0. If we multiply 4; by

the elliptic pseudo-differential operator of order — 1 with the symbol (1 +|¢|?)~1/2

for |{=1 we do not change the characteristic sets. We have y(4;)=1{(x, {); ¢

=-¢, %} so the fibre of WF(T) over the point x=0 is generated by the vector
Xj

n= (— oh Y ey — Oh , 1) the normal at 0Q.
0x4 0x,_4

By reason of symmetry n and — n are in the fibre of WF(T). By differentiating T
with respect to the normal n, we get the distribution J,, defined by <d,,¢ >

= | @(x)dw. The properties of wave front sets show that
o

WF(T)=WF(d,q).
2) Let T be the distribution defined by

. O(xqy ...y X,)
T, ¢>= lim |{—""dx,...dx,, 2(R".
T.e> y,—»o+! Xy +1yy !

We claim that WF(T)={(x,¢); x, =0,£=1¢(1,0,...,0)t>0}. In fact singsuppT
={x;x, =0} and the Fourier transform of T is T Y(¢&,)®(x,, ..., X,), where

0 0
Y(£,) is the Heaviside function Y(& 1)={ for &<

1 for &,>0° So for any e 2(R") we

have

o . 31
eTQ)=(p=T)S)= g o1, &5, .., &)t
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and @T(¢) is rapidly decreasing for any direction &+(1,0,...,0). Since
sing supp T+ @ by Proposition 2.3 WF(T) must be given by the formula above.

3. Convolutions and Wave Front Sets

With these preparations we will give now the announced result on the wave front set
of the convolution T*S of two distributions with compact support.

Proposition 3.1. Let T, Se &'(IR") be distributions with compact support, TS their
convolution. Then we have

WE(T+S)C{(x+y,)eR" x (R"™\{0});
(x,8)e WF(T), (y,$)e WF(S)}

Proof. (This is a consequence of Theorem 2.5.14 [9], but a direct proof is simpler in
this case.) Let z be a point of sing supp(7T*S), and suppose that for any x, y with x + y
=z we have (x, £ )¢ WF(T) or (y, £)¢ WF(S). We construct a finite partition of unity

{0}, 0, 2(R") with )" ¢@;(x)=1in a neighborhood of supp T'and for each j a finite
j

partition of unity {v; .}, v ;€ 2(R") with Yoy ;.x(x)=lin a neighborhood of supp$§,
k

such that ze suppg;+suppy; , but z¢suppe;+suppy;,, for all k% 1. We define
T;=¢;Tand §; ,=v; ,S,so we have T+ S= Z T;*S; ,. Moreover, by Proposition 2.3

we can suppose that the partitions are so fme that T, i(n) or S ;,1(n) are rapidly
decreasing for # in a conic neighborhood of &. It follows that T(n) ;.1(n) 1s rapidly
decreasing for 1 in a conic neighborhood of £ and every j and so by Proposition 2.3
we have (z,{)¢ WF(T;*S; ). Since z¢supp(T;*S; ;). k+ 1 we have (z,£)¢g WF(TxS).

From this proposition we can deduce now a necessary condition for the validity
of formula (1.2) of the introduction.

Theorem 3.2. Let Te&'(R") be a distribution with compact support such that the
equation

co sing supp(T+*S)=co sing supp T+ co sing supp S (1.2)

holds for any distribution Se &'(R"), then the fibre of W F(T) over every extreme point
x of cosingsuppT is all of R™\{0}.

Proof. Let S, be the distribution defined in Section 2, Example 2 and put S=yS,,
where y is a function in Z(R") with suppy C {x;|x|<«} for some constant « and
w(x)>0 on |x|<a. We have

WES)={(x,&); x, =0, |x|Za,&=1-(1,0,...,0), t >0} .

Now let x be an extreme point of sing supp T and suppose that the fibre of WF(T)
over x is not all of R"™\{0}. By a linear change of variables we can suppose
(x,&)¢ WF(T) for £=1(1,0, ..., 0), t >0. Now there is a point y, |y| =a, such that x + y
is an extreme point of co sing supp T+co sing suppS but there is no 5 such
that (x,n)e WF(T) and (y,n)e WF(S) and by Proposition 3.1 it follows that
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(x+y,n)g WF(TxS) for all ne R"™\{0}, and x + y¢sing supp(T*S). But since x+y
is an extreme point of co singsuppS-+cosingsuppT, x+ y¢sing supp(T*S)
implies x + y¢co sing supp(T*S).

An immediate consequence is

Corollary 3.3. Let T be the characteristic function of an open, bounded set Q in R"
with smooth boundary, then there is a distribution Se &'(R") such that (1.2) does not
hold.

Proof. WF(T)={(x, &), xe 0, £ =t-n, teR}, n the normal to dQ at x by Example 1
in Section 2. So the condition in Theorem 3.2 is not fulfilled.

Remark. The distribution S for which (1.2) does not hold is explicitely constructed in
the proof of Theorem 3.2.

By a similar argument we deduce from Proposition 3.1

Corollary 3.4. Let T, Se &'(IR") be distributions with compact support such that (1.2)
holds, then for every extreme point zeco sing supp(TxS), there are extrerie points
xeco sing supp T and yeco sing suppS and £ IR"™\{0} such that (x,}c WF(T) and
(. §)e WE(S).

4. A Counterexample

In this section we will construct an example which shows that the necessary
condition of Theorem 3.2 is not sufficient. So the inclusion in (3.1) is in general a
proper inclusion. For this construction we need results of Ehrenpreis [5] and
Hormander [8].

Proposition 4.1 ([5], Theorem 2.6). Let Te &'(R") be a distribution with compact
support. If for every Se &'(R") with T+Se 2(IR") we have Se 2(IR") then T is slowly
decreasing in the following sense:

sup{|T(n); neR", In— & < Alog2+|Z)} 2 (4 +&) ™ 4.1)
for EeR" and some constant A.
For the proof we refer to [5] or [7].

Proposition 4.2 ([8], Theorem 5.2). Let {{;} be a sequence in R" with |{;|—> 0, E a
subset of R" such that d(¢;, E)/log|¢;|—> o0 for j—co.

Then there exists a continuous function f with compact support such that
sing supp f = {0} and

14 jlf(é ;) does not converge to 0 when j—o0, 4.2)
Py m(N=sup{IfQ)IEI"; C€E, LT,
[{— ¢ <mlog|¢|} <o0. (4.3)

(4.3) implies that [ is not slowly decreasing, so by Proposition 4.1 there is an Se &'(R"),
S¢D2(R" such that S* fe Z(R"), i.e. sing supp(S*f)=40.

For the proof Hérmander considers the space # of all continuous functions
with support contained in {x;|x|<1} such that fe #°(R™\{0}) and such that the
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semi-norms defined by (4.3) are finite. These semi-norms together with sup|f| and
sup|D*f| where K runs over all compact sets in IR"\{0} induce a locally convex
topology on & for which & is a Fréchet space. Hormander then shows that there is
an fe# for which || If(& ;)| is not bounded, so (4.2) does not hold. By choosing ¢;
and E we prove now:

Proposition 4.3. There is a distribution Te &'(R") with WF(T)= {0, R"™\{0}} and
which is not slowly decreasing. By Proposition 4.1 this means that there is a
distribution Se &'(R") with S¢ 2(R") but T+«Se Z(R").

Proof. Let {n,} be a sequence of points, |#,| =1, which is dense in the unit sphere of
R". If t;=e¥, E={neR"|p|=e**'j=1,2,..} and &P =1, we have
d(EW, E)/log|é%)— oo for j— oo and each k.

We set F,={feF ;£ |f”(é§"))| <}, # the space considered by Hormander,
and introduce a locally convex topology on &, by the semi-norms of % together

with the semi-norm sup|¢¥||f(é%). &, is a Fréchet-space and continuously
embedded in #, but by Proposition 4.2 %, + #. By the open mapping theorem %, is
either closed in & or of first category in %,. In either case %, is of first category in &

0

and so | ) %, as countable union is of first category in &#. Hence there is an fe &

k=1
with f¢l ) #, ie. [EW) |f(é‘j"))| not bounded for j— oo and each k. So f(¢) is not
rapidly decreasing in any direction #, and since wave front sets are closed, we have
WF(f)={0,R"™\{0}}. On the other hand (4.3) implies that f is not slowly
decreasing.
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