

Werk

Jahr: 1924

Kollektion: fid.geo

Signatur: 8 GEÖGR PHYS 203:1

Digitalisiert: Niedersächsische Staats- und Universitätsbibliothek Göttingen

Werk Id: PPN101433392X 0001

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN101433392X 0001

LOG Id: LOG 0074

LOG Titel: Zur Frage der Laufzeitkurven und der Bearbeitung der Erdbebendiagramme

LOG Typ: article

Übergeordnetes Werk

Werk Id: PPN101433392X

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN101433392X **OPAC:** http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=101433392X

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Goettingen State- and University Library.

from the Goettingen State- and University Library.
Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

Contact

Niedersächsische Staats- und Universitätsbibliothek Göttingen Georg-August-Universität Göttingen Platz der Göttinger Sieben 1 37073 Göttingen Germany Email: gdz@sub.uni-goettingen.de

Zur Frage der Laufzeitkurven und der Bearbeitung der Erdbebendiagramme.

Von G. Krumbach. — (Mit fünf Abbildungen.)

Nach einem Vergleich der gebräuchlichen Laufzeitkurven werden aus diesem Material mittlere Laufzeittabellen bis 16000 km Herdentfernung zusammengestellt.

1. Vergleich des Laufzeitkurvenmaterials. Die wichtigste Grundlage für die Bearbeitung von Erdbebendiagrammen sind möglichst gesicherte Laufzeitkurven, die einerseits genaue Lokalisierung der Erdbebenherde gestatten und andererseits auch aus ihrem Verlauf das Material für die Erforschung des Aufbaues des Erdkörpers vermitteln.

Im Laufe der Entwicklung der Arbeitsmethoden ist das Bebenmaterial für die Aufstellung dieser Kurven immer vollkommener geworden, ebenso ist auch eine Reihe von Laufzeitfunktionen bestimmt worden.

Für den Bearbeiter von Erdbebendiagrammen erhebt sich jetzt die Schwierigkeit, welche von den vorhandenen Laufzeitkurven zur Bestimmung der Herdentfernung und der Herdzeit zu verwenden sind. Damit verbunden ist auch die Frage, welche von den verschiedenen Einsatzen innerhalb der Vorphasen bei Benutzung einer bestimmten Laufzeitkurve zugrunde gelegt werden müssen. So müssen sich auch bei der Benutzung der Berichte verschiedener Stationen, die ihre Bearbeitungen nach verschiedenen Gesichtspunkten vornehmen, bei zusammenfassenden Bearbeitungen gewisse Schwierigkeiten ergeben.

Zur Klärung der erwähnten Fragen soll daher im folgenden vor der Bearbeitung neuer Erdbebenkataloge durch die Reichsanstalt eine Gegenüberstellung der gebräuchlichsten Laufzeitkurven vorgenommen, und der Versuch unternommen werden, nach dem jetzigen Stand des Materials eine gewisse Vereinheitlichung zu erzielen.

Es werden von den verschiedensten Stationen hauptsächlich folgende Laufzeitkurven verwendet.

Wiechert-Zöppritz 1907*).	 	(W-Z)	1
Geiger-Gutenberg 1912*) .		(G-G)	
Mohorovičič 1914 **)	 	(M)	
Hecker 1915 ***)	 	(\mathbf{H})	In den Tabellen
Klotz 1916†)		(Kl)	verwendete Abkürzungen
Angenheister 1921*)	 	(A)	e e
Visser 1921 ++)			
Mohorovičič 1922 **)	 	(M)	

Dieses Material soll jetzt untereinander verglichen werden, indem die neuesten Kurven, Mohorovičič 1922, zugrunde gelegt und die Abweichungen für P

^{*)} Nachr. d. Kgl. Ges d. Wiss. Göttingen.

^{**)} Akademie d. Wiss. Zagreb.

^{***)} Gerlands Beiträge.

^{†)} Seismol. Tables, Ottawa.

^{††)} Verhand. No. 7, Batavia.

Tabelle 1. Vergleich der Laufzeiten für die P-Wellen.

	1	M ^	W	-Z	G	-G		H		<u>v</u>	Abwe	ichg. geg	Mohor	ovičič
⊿ km	min	sec	min	sec	min	sec	min	sec	min	sec	δW-Z	δG-G	δн	δv
1 000 2 000 3 000 4 000 5 000 6 000	2 4 5 7 8 9	12 13 56 20 27 32	2 4 5 7 8 9	16 17 58 22 32 32	2 4 5 7 8 9	16 17 58 22 32 39		19 56 22 34 35	2 4 5 7 8 9	16 17 58 22 31	+ 4 + 4 + 2 + 2 + 5 + 0	+ 4 + 4 + 2 + 2 + 5 + 7	$\begin{array}{c} - \\ + 6 \\ + 2 \\ + 0 \\ + 7 \\ + 3 \end{array}$	+ 4 + 4 + 2 + 2 + 4 + 7
7 000 8 000 9 000 10 000 11 000	10 11 12 13 13	29 21 12 04 50	10 11 12 13 14	31 28 23 15 04	10 11 12 13	43 42 30 17	10 11 12 13 14	31 26 19 19 02	10 11 12 13 14	43 39 31 20 05	$\begin{array}{c} + & 2 \\ + & 7 \\ + & 11 \\ + & 11 \\ + & 14 \end{array}$	+14 $+21$ $+18$ $+13$	$\begin{array}{c} + & 2 \\ + & 5 \\ + & 7 \\ + & 15 \\ + & 12 \end{array}$	+14 $+18$ $+19$ $+16$ $+15$

Tabelle 2. Vergleich der Laufzeitdifferenzen S-P.

	3	M	w	-Z	G-	·G	y	Ţ	Abweich	ng. geg. Mol	norovičič
⊿ km	min	sec	min	sec	min	sec	min	sec	δw-z	δG-G	δv
1 000	1	43	1	48	1	48	1	47	+ 5	+ 5	+ 4
2000	3	18	3	23	3	23	3	19	+ 5	+ 5	+ 1
3 000	4	35	4	43	4	43	4	35	+ 8	+ 8	+ 0
4 000	5	37	5	47	5	48	5	36	+ 10	+ 11	- 1
5 000	6	35	6	42	6	43	6	40	+ 7	+ 8	+ 5
6 000	7	31	7	36	7	35	7	35	+ 5	+ 4	+ 4
7 000	8	29	8	29	8	26	8	26	+ 0	3	- 3
8 000	9	26	9	20	9	13	9	16	— 6	13	— 10
9 000	10	16	10	10	9	57	10	04	6	— 19	— 12
10 000	10	58	10	58	_		10	46	. 0	_	12
11 000	11	28	11	41	_	-	11	25	+13		 3

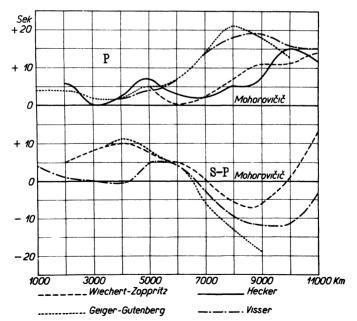


Fig. 1. Vergleich der Laufzeitkurven.

(Tabelle 1) und S-P (Tabelle 2) bestimmt werden. Die angegebenen Werte δ geben die Korrekturen, die an den Mohorovičic-Kurven anzubringen sind, um die übrigen Kurven zu erhalten. (Siehe Tabelle 1 und 2, Fig. 1.)

Es zeigt sich bei beiden Zusammenstellungen, daß bei der Aufstellung der Laufzeitfunktionen ganz verschiedene Einsatze zur Verwendung gekommen sein müssen.

Die Zeiten für die P-Wellen liegen gleichmäßig bei allen anderen Autoren später als bei Mohorovičič, ebenso haben wir bei S-P stets denselben Gang der Abweichungen.

Diese Verschiedenheiten sind auf die Unterscheidung der nebeneinander vorkommenden Einsatze eP und iP (Mohorovičič 1914) zurückzuführen.

bezieht sich bei Mohorovičić die Laufzeit der "normalen Primae" auf die im Diagramm früher gelegenen schwachen Einsatze eP eines Erdbebens.

Bei allen übrigen Autoren sind die späteren scharfen Einsätze verwendet worden, welche auch von Stationen mit weniger empfindlichen Instrumenten zur Aufzeichnung gelangen.

Wegen der Verschiedenheit des verwendeten Materials erscheint auch das Verfahren von Klotz, die Herdentfernung nach Wiechert-Zoppritz (Klotz, Tabelle 5) und die Herdzeit nach Mohoro-

vičič (Klotz, Tabelle 1) zu bestimmen, für die Bestimmung der Herddaten ungeeignet. Ebenso sei an dieser Stelle auf eine irrtümliche Bestimmung der Laufzeit der Wechselwelle durch denselben Autor hingewiesen, die auch schon früher von mir erwähnt wurde.

Es wird von Klotz namlich gegenüber den üblichen Darstellungen angenommen. daß eine Wechselwelle PS vor dem zweiten Vorläufer gelegen sei. war zunachst zu vermuten, daß dieser Kurve ein besonderes Beobachtungsmaterial zugrunde läge. So wurde daher zur Kontrolle auf Grund der Theorie die Laufzeit der Wechselwelle rechnerisch bestimmt.

Hierbei wurde die alte Annahme bestätigt, daß die Wechselwelle PS bei etwa 30° Herdentfernung beginnt und hinter dem zweiten Vorläufer gelegen ist.

Bei einer erneuten Prüfung wurde dann festgestellt, daß die Klotzsche Laufzeitfunktion auf einen Ansatz in der Berechnung der Laufzeit PS zurückzufuhren ist:

$$T_{PS}(\Delta) = T_P(\Delta/2) + T_S(\Delta/2).$$

Die beiden Komponenten der Wechselwelle sind also addiert worden ohne Berücksichtigung des Reflexionsgesetzes:

$$\sin i_P : \sin i_S = v_P : v_S,$$

das z. B. bei 60° Herdentfernung genähert die beiden Anteile $\Delta_P = 15°$ und $\Delta_S = 45^{\circ}$ liefert.

2. Aufstellung mittlerer Laufzeitkurven. P. Da die Laufzeitkurven von Wiechert-Zöppritz, Geiger-Gutenberg, Hecker, Visser nach Art der Aufstellung und in den Zahlenangaben genähert übereinstimmen, so erscheint es zunächst das richtigste, nach diesen Daten durch Mittelwertbildung eine mittlere Laufzeitkurve herzustellen.

Bis $10\,000\,\mathrm{km}$ Herdentfernung läßt sich die Rechnung in dieser Weise durchführen.

Von 10000 km an wurde die Laufzeitkurve von Angenheister unverändert übernommen. Diese entspricht den am Kern gebeugten Wellen und stellt sich als gerade Linie dar. Der Anschluß zwischen den beiden Laufzeitkurven ist sehr gut, so daß eine Ausgleichung nicht erforderlich war.

Es hatte nahegelegen, auch in diesem Bereich das Material von Visser zur Bearbeitung heranzuziehen. Dieses ist indessen nach Angaben des Autors von Milne*) übernommen worden und wird von ihm selbst als unsicher erachtet, "da die Beobachtungen über 110° hinaus zu zweifelhaft erscheinen, um eine Korrektur der Milneschen Kurve zu gestatten". Die Laufzeitkurve von Angenheister ist als sicherer anzusehen, da sie sich auf ein umfangreicheres Bebenmaterial stützt und gerade in neuerer Zeit eine weitgehende Bestätigung durch Beobachtungsmaterial hochempfindlicher Seismographen gefunden hat.

Für die Laufzeitdifferenz S-P besteht das Material von drei Autoren: Wiechert-Zöppritz, Geiger-Gutenberg, Visser. Dieses wurde von 9000 km Herdentfernung in der obigen Weise verwendet. Für größere Herdentfernung haben wir nur das Material von Wiechert-Zöppritz und Visser, daß jedoch größere Abweichungen untereinander aufweist. Auf Grund des weit umfangreicheren neueren Beobachtungsmaterials von Visser wurde dessen Angaben der Vorzug gegeben, da hier eine Mittelbildung unzulässig erschien.

Der Anschluß der mittleren Kurve und der Kurve von Visser ist auch hier ohne Korrekturen durchführbar, da schon bei 5000 km Herdentfernung die Abweichung von der mittleren Kurve nur 1 sec beträgt und bei 9000 km den Wert 0 erreicht.

Reflektierte Wellen. Fur die Aufstellung der Kurven der reflektierten Wellen wird das Material von O. Meissner-Potsdam **) verwendet, das in seinem vollen Umfang zur Verfügung gestellt wurde. Der Anschluß an die übrigen Daten läßt sich ohne weiteres durchfuhren, da die Laufzeitdifferenz R-P als Funktion der Laufzeitdifferenz S-P gegeben ist. Die Laufzeit der Wechselwelle PS wurde vorläufig in der Weise aufgestellt, daß die Differenz PS-S verwendet wurde, wie sie durch Geiger-Guten berg gegeben ist.

Die einzelnen Werte wurden in der genannten Weise von 100 zu 100 km errechnet. Unregelmäßigkeiten, die gerade bei den Reflexionen auftreten, sind absichtlich nicht ausgeglichen worden, da es sich um wirklich vorhandene Unstetigkeiten der Laufzeitkurve zu handeln scheint und nicht um etwaige Beobachtungsfehler.

Hauptwellen. Zur Aufstellung von Laufzeitkurven für die Hauptwellen und Wiederkehrwellen sind die Ergebnisse von Zeissig-Mack ***) zu verwenden:

vL_1 .						3.9
vL_2 .						3.6
vL_3 .						3.4
vL_{\star} .						3.3

Die neuen mittleren Laufzeitkurven sind in Tabelle 3 zusammengestellt worden.

^{*)} Milne, Brit. Association Reports 1903.

^{**)} Phys Zeitschr. 1920.

^{***)} Zeitschr. f. angew. Geophys. 1922

Tabelle 3. Mittlere Laufzeitkurven

⊿ km	P	S-P	1	⊿ km	<i>F</i>	•	S-	P		⊿ km		P	S-P
100	14	12		800	1	10	8	36	1	1500		199	156
200	28	12		900		23		97	l	1600		211	165
300	42	34		1000	- 11	36	10		l	1700		223	175
400	55	45		1100		50	11		i	1800		235	184
500	69	55		1200		63	12			1900		246	193
600	83	66		1300		75	13		l	2000		257	202
700	97	76	i i	1400		87	14		ı	2100		268	210
	II		1		li			l	ı		II		
	220	00 bis	4500 km.					460	00	bis 590	$00 \mathrm{km}$,	
J km	P S- P	PP-P	PPP-P	PS-P	SS-P	l	⊿km	P S-	P .	PP-P	PPP-	PPS-P	$SS \cdot P$
						<u> </u>		107.0					
2200	279 219	16	31			1	4 600	485 3		90	113	385	552
2300	290 228	19	36			ı	4 700	492 3		92	117	392	563
2400	300 236	23	40			1	4 800	499 3		94	120	399	574
2500	310 244		44		005	ı	4 900	506 3		97	125	405	584
2600	320 251	30	47		325	1	5 000	512 4		99	130	411	594
2700	330 259	3 4	52		337	١	5 100	520 4			136	418	603
2800 2900	340 266 349 274	37 41	56 60		$\begin{array}{c} 352 \\ 365 \end{array}$	1	5 200 5 300	527 4 533 4			141 147	424 430	613 625
3000	358 281	44	63		378	İ	5 400	539 4			152	436	633
3100	367 288	47	66		390	ı	5 500	546 4			157	442	642
3200	376 295	50	70		402	1	5 600	552 4			162	448	652
3300	384 302	53	73		413	ļ	5 700	558 4			168	453	662
3400	393 307	57	77		425	1	5 800	564 4			173	459	670
3500	401 314	60	80		436	l	5 900	570 4			177	465	679
3600	410 320	62	84		447	1	6 000	576 4			182	471	688
3700	418 326	65	87		458	1	6 100	583 4	60	122	187	477	696
3800	426 332	68	90	332	469	[6 200	589 4	65	124	192	483	706
3900	434 338	70	92	339	478	l	6 300	595 4	71	126	197	489	716
4000	442 344	7 3	95	345	490	ſ	6 400	601 4	77	129	202	495	725
4100	4 50 3 5 0	76	98	352	501	1	6 500	607 4			207	501	734
4200	457 356	79	101	358	512	1	6 600	613 4			211	507	74 2
4300	464 362	82	104	365	521	ĺ	6 700	619 4			216	513	750
4400	471 368	85	107	372	532	1	6 800	625 4			221	519	758
4500	478 374	88	110	379	542	1	6 900	631 5	02	141	226	525	767
	700	00 bis	9500 km.			L		9600	bi	is 12 00	00 km.		
7000	637 507	144	231	531	776	ı	9 600	777 6	30	214	325		993
7100	643 513	148	236	536	785	l	9 700	782 6	3 4	216	328		1000
7200	649 518	152	240	543	794		9 80u	787 6			332		1006
7300	655 523	155	244	549	803	l	9 900	792 6			335		1014
7400	660 528	158	247	555	812		10 000	796 6			339		1022
7500	666 533	161	250	561	820		10 100	800 6			342		1026
7600	672 538	164	253	567	829		10 200	804 6			346		1032
7700	677 543	$\frac{167}{169}$	$\begin{array}{c} 255 \\ 258 \end{array}$	573	838		10 300	808 6		227 229	349		1039
7800 7900	683 547 688 552	172	258 260	579 585	847 855		10 400 10 500	812 6 815 6			$\frac{352}{355}$		1045 1050
8000	694 557	174	262	591	864		10 600	820 6			358		1056
8100	699 561	176	265	597	872		10 700	824 6			361		1061
8200	704 566	179	268	603	880		10 800	828 6			364		1067
8300	710 571	181	272	609	888		10 900	832 6			367		1072
8400	715 576	184	276	616	896		11 000	836 6			368		1075
8500	720 581	187	280	823	904		11 100	840 6			370		1080
8600	726 585	190	284	629	911		11 200	844 6			372		1085
8700	731 590	192	288	636	919		11 300	848 6			375		1090
8800	736 595	195	293	643	929		11 400	852 6	90	235	377		1095
8900	741 600	197	298	650	938		11 500	856 6	92	235	379		1100
9000	746 604	200	302	656	946		11 600	860 6			381		1105
9100	751 609	202	306	663	955		11 700	864 6			384		1111
9200	755 613	204	310	669	962		11 800	868 7		_	386		1116
9300	760 618	206	314	676	970		11 900	872 7			388		1122
9400	766 622	209	317		978	ı	12 000	876 7	U5	289	390		1127
9500	771 626	212	321		985	ı	ļ	I					

Laufzeiten d	ler	P-Wellen.	12 100	bis	16 000 km.
--------------	-----	-----------	--------	-----	------------

4	T	Δ	P	⊿	\boldsymbol{P}	_ ⊿	\boldsymbol{P}	4	\boldsymbol{P}
12 100	880	12 900	912	13 700	945	14 500	977	15 300	1009
12 200	884	13 000	916	13 800	949	14 600	981	15 400	1013
12 300	888	13 100	920	13 900	953	14 700	985	15 500	1017
12 400	892	13 200	924	14 000	957	14 800	989	15 600	1021
12 500	896	13 300	928	14 100	961	14 900	993	15 700	1025
12 600	900	13 400	932	14 200	965	15 000	997	15 800	1029
12 700	904	13 500	937	14 300	969	15 100	1001	15 900	1033
12800	908	13 600	941	14 400	973	15 200	1005	16 000	1037

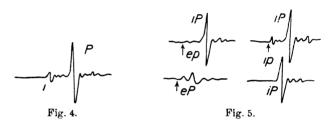
Bei der ganzen Darstellung kann es sich zunächst nur um einen Versuch handeln, der als Grundlage für weitere Untersuchungen dienen soll. Bei Verwendung dieser Kurven bei einer Bearbeitung eines umfangreichen Bebenmaterials sind die Gesichtspunkte für die endgültige Aufstellung einer durchaus gesicherten Laufzeitkurve zu gewinnen.

Zum Schluß sind noch einmal die Ergebnisse dem Ausgangsmaterial in Fig. 3 und Tabelle 4 gegenübergestellt.



Fig. 3.

Tabelle 4. Abweichungen der Ausgangskurven von den mittleren Laufzeitkurven.


	T					S-P			
⊿ km	M	W-Z	G-G	Н	v	M	W-Z	G-G	V
1000	136	0	.0		0	108	0	0	— ı
2000	257	0	0	+ 2	0	202	+ 1	+1	— 2
3000	358	0	0	_ 2	0	281	+2	+ 2	- 6
4000	442	0	0	0	0	344	+3	+4	- 8
5000	512	0	0	+2	 1	402	0	+1	-2
6000	576	— 4 .	+3	— 1	+3	455	+1	0	0
7000	637	— 6	+ 6	 6	+6	507	+2	1	— 1
8000	694	— 6	+ 8	— 8	+ 5	557	+3	— 4	— 1
9000	746	 3	+4	 7	+ 5	604	+6	 7	0

Station and Datum 4		a			S		J			M		M		C	А	Remortingen
km	h m s	T	<u>п</u>	E B	H	Αμ	h m	L	h m	E	Рγ	h m s T	Αμ	T	4	Demetrangen

- 3. Bemerkungen zur Auswertung der Seismogramme. Aus der vorstehenden Bearbeitung des Materials der Laufzeitkurven geht hervor, daß bei der Auswertung der Seismogramme zwei verschiedene Laufzeitfunktionen zur Verwendung gelangen können:
 - Die Laufzeitkurve von Mohorovičič, welche sich auf die im Anfang eines Seismogramms gelegenen schwachen Einsätze bezieht;
 - 2. die oben aufgestellte mittlere Laufzeitkurve, welcher die stark ausgeprägten Einsatze zugrunde gelegt sind.

Die beiden Kurven entsprechenden Einsatze werden bisher mit dem Symbol P gekennzeichnet. So erscheint daher die Unterscheidung eP und iP, sofern nicht beide Phasen gleichzeitig im Bericht verwertet werden, nicht ausreichend.

Liegt z. B. folgendes Diagramm vor:

so wird der Bearbeiter den ersten Einsatz mit iP bezeichnen, und es geht in diesem Falle nicht aus dem Bericht hervor, daß die zugeordnete Zeit der schwachen Phase im Bereich des Vorläufers entspricht.

Würde man für diese Phase zur Kennzeichnung ein neues Symbol einführen, p, so würden die Angaben ep, ip, eP, iP in einem Bericht sofort einem späteren Bearbeiter das exakte Material liefern. Die Bezeichnung P und S bleibt nur für die Haupteinsätze bestehen.

Es seien jetzt noch einige Diagrammbeispiele mit den neuen Bezeichnungen angeführt (siehe Fig. 5):

4. Ausführung der Stationsberichte. Für die Zusammenstellung des Stationsmaterials für den Stationsdienst und auch für Sammelberichte hat sich das nebenstehende Schema als zweckmaßig erwiesen. In die Kolonne P und S sind die Zeiten für die stark ausgeprägten Einsätze, nicht aber p und s einzutragen.

Wegen der großen Unsicherheit des Einsatzes der Hauptwellen ist die Zeitangabe in Bruchteilen von Minuten vorgesehen. Aus demselben Grunde wird bei den Nachläuferwellen nur die mittlere Periode angegeben, die wegen der Rückschlüsse auf den Wellenweg wichtig erscheint*). Neu eingeführt wird an Stelle von F die Dauer des Bebens D in Stunden.

Alle weiteren Einsätze, insbesondere auch ep, es oder eP, eS (Mohorovičič), sowie Besonderheiten des Bebens, Angaben über das Schüttergebiet usw. fallen unter die Rubrik Bemerkungen.

Die einzelnen Komponenten des Bebens stehen in der Reihenfolge NEZ untereinander.

Jena, Reichsanstalt für Erdbebenforschung, Oktober 1925.

Graphische Methode zur Berücksichtigung des topographischen Einflusses und des Einflusses der unterirdischen Massen auf die gravimetrischen Beobachtungen.

Von B. Numerov.

Für Schweremessungen wird ein Verfahren angegeben, daß es ermöglicht, sowohl die Terrainkorrektionen graphisch zu ermitteln als auch die Diskussion der unterirdischen Massen, die die Schwereanomalie hervorrufen, zu erleichtern.

1. Es gibt zwei Methoden der Gravitationsbeobachtungen: es werden erstens Schwerebeobachtungen mit Hilfe des Pendels ausgeführt; zweitens erlaubt die Drehwage von Eotvos die Eigenschaften der Potentialfunktion der Schwerkraft zu untersuchen. Die Resultate der Pendel- und Drehwagenbeobachtungen werden hauptsächlich zu geologischen Zwecken verwendet. Um ein Urteil über die Dimensionen und die Form der inneren unterirdischen Massen zu erhalten, hat man zuerst die Beobachtungen für die Anziehung des außeren topographischen Reliefs in der Umgebung des Beobachtungsortes zu korrigieren; der Vergleich der für das Relief korrigierten Werte mit den normalen, die aus der Betrachtung der Erde als homogenes Spheroid folgen, ergibt die Schwereanomalien, auf Grund welcher man über die innere Konstitution der oberen Erdschichten beurteilen kann. Das Problem der Bestimmung der Form und der Dimensionen der unterirdischen Massen auf Grund der Schwereanomalien ist mit bedeutenden Schwierigkeiten verbunden, so daß eine allgemeine Losung derselben kaum möglich ist. Bei der praktischen Anwendung der Schwerebeobachtungen sind die Kenntnisse des geologischen Aufbaues, der Erdbohrungen sowie auch die theoretischen Berechnungen des Einflusses der unterirdischen Massen von einigen bestimmten, hauptsächlich regelmäßigen, geometrischen Formen von großer Bedeutung. Das Hauptproblem der Gravimetrie, abgesehen von der Methodik der Beobachtungen und der Instrumentenforschungen, ist die Berücksichtigung des Einflusses der außeren

^{*)} Diss. Wellmann, Hamburg 1923.