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wegen ist in Fig. 1 der MaBstab des Magnetfeldes zehnmal so grof gewéahlt worden
wie in den beiden anderen Figuren.

Bei diesem und bei allen anderen diesbeziiglichen Versuchen
zeigte sich, dafl die Angaben der verwendeten Askania-Drehwaagen
durch die verschiedenartigsten &uBeren Magnetfelder in keiner
mefbaren Weise beeinflut wurden. Selbst Magnetfeldinderungen,
die 60mal stdrker waren als das Erdmagnetfeld, hatten bei den
verwendeten Instrumenten keinen storenden EinfluB auf die MeB-
ergebnisse. Die bisher erhaltenen Resultate iiber die Abhéngigkeit der Schwer-
kraft vom Zwischenmedium sind also nicht durch storende magnetische Krifte
beeinflufit.

Die Versuche wurden mit Unterstiitzung der Notgemeinschaft der Deutschen
Wissenschaft und der Askania-Werke im Physikalischen Institut der Universitét
Halle ausgefiihrt; allen drei Stellen sei fiir ihr freundliches Entgegenkommen
bestens gedankt.
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On the Determination of the Lunar Atmospheric Tide *)
By S.Chapman, Imperial College of Science and Technology, London

New methods are devised for eliminating the shar diurnal variation, and a large

part of the accidental variations, when determining the lunas atmospheric tide

from hourly values of the barometric pressure. The theory of the method, and
its practical application, are described.

1. The changes of barometric pressure at any station contain two parts
periodic in the solar and lunar days respectively, and may also contain a part
periodic in the year. The remainder is not periodic, but is mainly associated with
variations of sunshine, cloudiness, and other weather conditions, and with the
passage of cyclones and anticyclones.

*) For references the following may be consulted: S. Chapman and M. Hardman,
Mem. Roy. Meteor. Soc. 2, Nr. 19, p. 153 (1928), and J. Bartels, Versff. d. Pr. Met.
Inst. Nr. 346, Abh. Bd. 8, Nr. 9, 1927.
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Let the deviation of the pressure at any station, from its mean value over a
long period, be denoted by p or p(t), a function of the time ¢. This can be re-
presented as the sum of four functions

P& =p,) + 0. ) +p,) + & - - o o 1)
respectively representing the solar diurnal variation, the lunar diurnal variation,
the yearly variation, and the remaining “accidental” variation. The functions p,
and p, vary with the season; p, also varies with the weather, particularly its first
harmonic component — the second harmonic is nearly constant throughout the year,
and its seasonal variation is small; p, varies also with the moon’s distance. These
variations of p, and p, can be represented by combinations of terms periodic in
intervals differing slightly from the mean solar or lunar day, but it is on the whole
more convenient to treat them as variations of the amplitude and phase of a
function of fixed period.

When the mean diurnal variation of p is determined at a particular season or
epoch in the year, p, produces a small non-cyclic term in the variation, different at
different seasons. It is convenient to combine p, and p, into a single function py,
represented, in a given calendar month, by the mean diurnal inequality including
the non-cyclic variation due to p,. This inequality will be supposed determined,
for the given calendar month, from a number of years and not from one only. Thus

Ps=Ps TPy P=Ps+PatPr- - .. (2
The variation pg will be supposed constant throughout each calendar month,
though differing slightly from one month to another. Actually pg varies continu-
ously throughout the year, but the slight change relative to the mean of the month
will be ignored, or regarded as included in p,.

The object of this paper is to discuss the best means of determining p, from a
series of hourly values of the barometric pressure.

2. The range of variation (R,) of pg is in general fifteen or more times as great
as that (R;) of p, at the same station. Hence, and also because of the nearly equal
lengths of the periods of pg and p;, it is imperative to eliminate pg from the whole
variation p(t), when determining p;. If all days over a sufficiently long period are
used together, the hourly values of p being rearranged and summed according to
lunar time, pg is thereby averaged out ; but this will not be so, in general, when only
a limited selection of days in a given interval is considered, such as the days corre-
sponding to a particular lunar distance, or the barometrically “quiet” days,
that is, the days of small pressure range. In such cases pg must be eliminated by
some specific method, either before the re-tabulation of the original hourly data
according to lunar time, or in some other way.

J. Bartels has shown that on quiet days pg is not the same as on the average
of all days; hence when groups of quiet days are dealt with, the pg appropriate
to such days should be used in the elimination.

8. Both pg and p; diminish, in general, with increasing latitude, whereas p,,
on the contrary, increases. On both accounts, p, is most easily determined in low
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latitudes, while above about 50° latitude it is difficult to disentangle p; from pg and
p,. The few existing determinations in such latitudes have been made by confining
the computations to quiet days, of range about 0.1 inch (or 2.5 mm) of mercury.

A simple calculation indicates that though, on the average, for the ¢«high*
latitude stations considered hitherto, this excludes about two days out of every
three, the remaining quiet days give a more reliable determination of p, than is
obtainable, by the methods hitherto used, from all days. For if p, is the average
numerical value of p,, the influence of p, on the mean value of p at any particular
solar or lunar hour, when observations at this hour, on n different days, are
averaged, is given by p,/)/n, when n is a large number. By using all days during a
given period, instead of only the quiet days, n is increased three fold, and p,/{n is
reduced in the ratio 1/¥8, but the p, for all days is more than V'8 times its value
for quiet days, so that the inclusion of the unquiet days, with all the additional
labor which it involves, only decreases the accuracy of the determination of p,.

4. These considerations also indicate that, in order to obtain equally good
determinations of pg and p;, in which the accidental error bears an equal proportion,
in each case, to the range Rgand R, of pg or p,, (Rg/R;)? times as many days must
be used to determine p, as are required for pg; since Rg/R, is fifteen or more,
(Bg/R;)? is not less than 225. In latitude 50° or more, many days must be taken in
order to determine pg, and the number required to determine p, would be enormous,
and almost impracticable, if not reduced by confining the work to quiet days.

5. The object of this paper is to describe certain new processes of computation,
which it is believed are improvements on the existing methods for the deter-
mination of p,. One relates to the elimination of pg, while the other is concerned
with the elimination of the accidental variation p,; it is hoped that the second
process will render unquiet days as useful for the determination of p, as the quiet
days were in the past determinations by the ordinary method.

6. The two processes will first be discussed in relation to a particular set of
determinations of p, on which the writer is engaged, but the principles involved can
easily be applied to cases in which other modes of tabulation of the original hourly
data are adopted.

The determinations referred to are for Honolulu, Kimberley, and several
Canadian stations. In this work the published hourly data were used in a modified
form, after a plan due to J. Bartels, which is very convenient in such compu-
tations as these; instead of using the hourly values themselves, the hour-to-hour
differences 4 were tabulated on the computation sheets. The published hourly
values were given to the nearest 0.01 inch, and A rarely exceeded + 0.09 inch,
and could therefore be represented by a single positive or negative digit, taking
0.01 inch as the unit.

These hour-to-hour differences were tabulated in rows of 25, indicating the
hourly changes of p over a period of 25 hours, consisting of a complete solar day
together with an hour of the next day; 25 hours were taken because this is approxi-
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mately the duration of the lunar day. The series of differences, which may be
denoted by Ay, 4,, . .. Ay, represented the differences for the solar hours 28 —1%,
gh__9ob .. 260 — 25k,

The entries were checked by a method likewise due to J. Bartels. On each
daily row the differences between the final and initial values of the pressure
for three 8-hour intervals were noted, i. e., for the intervals 9® — 1k 17h — 9h,
258 — 17%; let these be denoted D, E, F. They should of course equal the sums
of the three successive groups of eight A’s fcr the day, i.e.

7 15 23
AD-_—Edr’E:EAN F—_'—Edr """ (3)
r=0 r=32s8 r=16
and this check was applied to the entries A, to A,,. The value of 4,, was simply
copied from the first entry (d4,) for the following day.

The Greenwich lunar transit time for the 25-hour day represented by each row
of A’s was entered on the same row. In entering these times from the Nautical
Almanac, the minutes were omitted, so that 12 18™ or 1® 50™ would both be entered
as 1. Thus the transit times 12, as entered on the sheets, would correspond to an
average solar time 11/,b, i. e., to the middle of the interval to which 4, relates.
The times, as entered, ranged*) from 1* to 25h.

Each daily row of 25 A’s was also classified according to the distance of the
moon on that day; four groups were considered, denoted by the letters 4, N, P, R;
the group 4 comprised days of apogee and the two days before and after; likewise
the group P comprised the five days centred at each perigee. The groups N and
R comprised the days between the 4 and P days, or the P and 4 days, when the
moon was respectively nearing or receding from the earth.

The data for a single calendar month in one year were entered on each sheet.

7. “Vertical” sums of the A’s, that is, sums by columns, were formed on each
sheet ; if divided by the number of days (i. e. of rows) involved, these would give
the mean values of Ay, 4,, . .. A4,, for the month. Such sums were combined from
all the sheets for the same calendar month in several years; let the sequence of sums
thus obtained be denoted by S, Sy, . . . Sa4, 50 that, if N is the total number of days
involved, these divided by N give the mean values of Ay, A,, ... Ay, which
represent (in the form of hour-to-hour differences) the mean solar diurnal variation
Ps» including any non-cyclic variation due to p,. Apart from accidental error,
which should be much reduced in the mean A’s, S, and S,, should be equal.
The mean non-cyclic variation, given by (Sy + ... + Sp3)/3, represents the
variation in 24 hours, at the given season of the year, due to p,.

*) These times 11/,b to 251/,b are those which occur within the interval 26b—1h
represented on the daily rows. If this interval had been taken as 25h — Ob, the
transit times entered would range from 0 to 24, really corresponding to 0/,b to 241/,b;
this would have been slightly preferable in connection with the mathematical notation
used in the following discussion, though not in any sense affecting the results of the work.
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The sums S, to S,5 were checked by forming sums also of the D’s, E’s and F’s;
let the sums be denoted by Dy, Eg, Fg. Clearly

7 15 23
D=8, Eg= 28, Fg= >68, - - L @)

r=20 r==8g r =16

For later use (cf. §§ 15—18) a further sequence of numbers S; was formed,
defined as follows:

— Otor—= 7 andr — 24 Sf.:Sr._-éDSl
= 8tor =15 Sy =S, —lEqg . ()
— 16 to r = 23 S¢— 8, — 17,

These numbers were written down to the nearest unit, that is, fractions occurring in
+ (Dg, Eg, Fg) were ignored.

8. Sloping sums of the A’s were made in such a way as to combine the A’s
corresponding to a particular lunar hour, just as the sums S, refer to a particular
solar hour. Such sums were made not only for all the days in the same calendar
month in several years, but also separately for the groups of days 4, N, P, R.
The sloping sums were made with the aid of templates sliding in a frame, so
constructed and used as to indicate the A’s which refer to the same lunar hour;
in different rows these occur in different columns. In the rows for days of transit
time 1%, as entered, the difference A, refers to the hour centred at the lunar hour r;
in the rows for days of transit time n®, A, refers to the hour centred at the lunar
hour r — n + 1. The sloping sums are equivalent to vertical sums on a sheet
containing the daily rows of A’s written in the same cyclic order as on the original
sheets, but beginning with the entry 4, _, for days of transit time n®; this implies a
transposition of the first n — 1 entries, on the rows for such days, to the end of
the sequence.

The combined sloping sum, for the days of a particular group (say group 4)
for the same calendar month in several years, may be called a lunar sum. Let the
sequence of sums be denoted by L . (r = 0 to r = 24), the 4 (or N, P, R) indicating
the group of days concerned; they are sums of hour-to-hour differences for hours
centred at the lunar times Ob, 1B, ... 24b,

Let the number of days of transit time nP involved in such a sum associated
with group 4 be denoted by N7 _,, and let R4 be the total number of days involved,
given by

N4 = N4ag+---+N&L ..o (6)
Clearly (cf. §7) .
N=RNP LRV LNALRNE . . . ... ... )

The lunar sums for the groups 4, N, P, R were checked by comparing their
combined sum with the lunar sum for the whole series of days.

9. In connection with the process for eliminating part of the influence of p,
on the determination of p;, in a manner to be described later (§§ 15—18), the
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following further tabulation was made relative to the N days referred to in
§§7, 8.

The numbers D, E and I entered in each daily row (§ 6), together with a
further number, denoted by G, which was simply the D for the following day,
were recopied on a sheet which had 100 columns, divided into 25 sets of four;
each set was headed by one of the numbers 1 to 25, and in each set the four columns
were headed D, E, F, G. The numbers D, E, F, G for the days of transit time nb
were entered in the set of columns headed n® ; inks of four different colours were used
in the tabulations on this sheet, each colour distinguishing the days belonging to
one of the groups 4, N, P, R. The numbers in each colour in each column were then
summed; let the four sums in the column D of the set headed n® be denoted by
DA D¥ D? DE and the total sum by D,_,, 1. e.,

n—1’ n—1’ n—1° n—1’
Dyy=Dn + Dy + Dy +Dyys. . ... (8)

similarly for the columns headed E, F, G.

The sequences D,, E,, F, were rewritten in three successive rows (1, 2, 8)
of 25 columns, 0 to 24, the sequences being shifted backwards through 4, 12 and
20 places respectively, i. e., transposed so as to begin with D,, E;; and F,y. The
sums by columns were formed, in row 4; they may be denoted by H,.. In a further
row (5) the sum of the numbers in columns r, r + 1 of row 4 was entered in each
columnr, i.e., the sums H, + H_ . This sequence of numbers was then multiplied
by k=sin8 ¢/sin2 ¢, where ¢ = 2 7/25 = 14.49; thus k = 0.9048/0.4818 = 1.878;
this new sequence was entered in row 6. In row 7 the sequence G,, shifted one
place forward, so as to read Ggy, Gy, - - ., Gag (1. €. G, _ ;) was written. The sum of
the numbers in each column of rows 6 and 7 was written in row 8; let this sequence
be denoted by Jy, Jq, ..., Jog ‘

Similar sequences J2, JY, JT, JF were formed for the groups of days 4, N, P, R.
Evidently, for each value of r,

J,=Jr+J¥ I+ TE 9)

The formation and use of these sequences for the partial elimination of the
influence of p, on the determination of p, constitutes the main point of this paper.

10. The sequences L., S7, J,, N,., for the various groups of days 4, N, P, R,
and for these groups combined, were analyzed to determine the second harmonice
component. Only this component was calculated, because previous investigations
have shown that there is no appreciable component of frequency other than
2 in the lunar day; tidal theory indicates that there must be a diurnal component
depending on the moon’s declination, but it is so small as to have escaped detection
as yet; it may in time be determined, from a large amount of material at a suitable
station, perhaps with the aid of the refinements of computation here introduced.
The present discussion will refer only to the second component, but the same
principles can be applied to the determination of any other harmonic.

Zeitschrift fiir Geophysik. 6. Jahrg. 26
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The sequences analyzed, such as L,., will be regarded as sequences of values of
functions f (6), with the period 2 7, for the values 6 = r ¢, where ¢ = 277/25 = 14.4°.
Let the component of frequency ¢ be denoted (for L,) by

Ly $in (00 +1) - v« v oo v e (10)

with a similar notation for other sequences. Then by the theory of harmonie
analysis, Ly, and I, may be derived from the formulae

: ) 9; 2 .
L exp (ils) = 5% > Lexp(—irgg)- - - - - - - (11)
Or=0
or
24 &
L exp(—ily) = — 5= S Loexp(ireg) - - - - - - (12)
Or=o
by separating the real and imaginary parts; thus
9
Ligycosly, = — > L.sinrc g
25,2, ,
T (13)
Lgysinl, = — > L,cosré g
25 =

Since we are here mainly concerned with the case ¢ = 2, the suffix ¢ may be
omitted except when it is not 2. Moreover, in the further formulae of this paper
involving summations with respect to , the limits will be indicated only when they
are not from 0 to 24; when no limits are indicated, it is to be understood that the
summation is over the whole range (0 to 24) of r.

It is convenient to write

L,=TLcosl, Lg=Lsinl. ... .... L. (14)
so that
Lsin(20 +0)=L,sin20 + Lgeos20 . . . .. .. (15)

similarly for the other sequences analyzed.

In connection with a given set of data (referring to a particular month
or seasonal set of months), the sequences to be analyzed for the second
component are S¢ and five sets of sequences L,., J,, N,, for the groups 4, N, P,
R and the whole set of days: in all, this is 1 + 5.8 or 16. The analysis leads to
the harmonic constants S¢, s¢; L, I; J, j; N, n; the last six appear five times,
with the upper affix 4, N, P or R, or with no upper affix.

11. The lunar sums L, would represent p; if pgand p, were fully averaged ouf,
but in general this is not the case, and pg and p, have to be eliminated from the
lunar sums by specially devised means.

It may be questioned whether pg should be eliminated from the data month by
month, using for each month the pg derived from that month, or whether the mean
P from the same calendar month in a series of years should be used for all those
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months. The choice is perhaps not of great importance, since only a small fraction
of pg is likely to remain in any lunar sum. The second method is here used, and is
perhaps preferable because pgy as determined from one month only may be appre-
ciably in error owing to p,, which is much more completely eliminated when pg
is determined from several months: the reason might not be a valid one if pg were
really different, in the same calendar month, in different years, but this is not the
case to any great extent, at least as regards its second component, with which we
are principally concerned.

In many previous investigations, by the writer and others, pg has been re-
moved at the outset by subtracting the monthly mean value at each solar hour from
the values for that hour on each day, the differences being the basis of the sub-
sequent work. The mean hourly values thus subtracted may be derived from a
single month, or may be the means from the same calendar month in a series of
years: the former has generally been the plan adopted.

When J. Bartels’ method of using hour-to-hour differences as the basis of the
subsequent computations is adopted, as here, pg is not removed at the outset,
and must be eliminated at a later stage.

One method of doing this in connection with the lunar sum for each set of
days, e. g., for the total set of 9 days referred toin § 7, is to form an auxiliary sheet
on which, in 25 rows, the sequences of hour-to-hour differences representing N, pg,
N, pgs - - ., Nog pg are entered, the sequence in the n'® row being transposed so as to
begin with its nt® term. Thus the sequence in the ntt row will be

(Nn—l/m) {Sm Sn+1, T Sgu Sor ] Sn—l}‘ """ (16)

Sums by columns then give the amounts by which pg affects the lunar sums.
The difference between the lunar sequence and this sequence will represent p,
freed from pg, but usually containing a residue of p,.

This method has been used by J. Bartels, and the same plan in principle had
been followed by the writer in some previous investigations, in which the original
hourly values of p, without removal of pg, were taken as the basis of computation.

12. The elimination of pg, so far as it affects the second harmonic in the lunar
sums, can be achieved more simply in the following way.

The second harmonic in the sequence of sums at the foot of the auxiliary sheet
is the sum of the second harmonics in each of the 25 rows. In the first row this
harmonic is (No/M)S sin (2 § + s), in the notation of § 10; in row r, owing to the
transposition of the first r — 1 terms after the remaining terms, the harmonic is
(N,./9)S sin (20 + s + 2 r¢g). Thus the second harmonic in the total is

(S/M) X N,sin (260 + s 4 27 )
(S/T) {sin (20 + s) X N,cos2r g + cos (26 + s)EN,sinzrqp}l (17
22 (S/M) {Nsinnsin (2 f + s) + Ncosn cos (2 6 + s)}
= 2 (SN/R)cos (20 + s —n)
by (19).

26*
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Thus the part of the second harmonic in L which is due to pg can be determined
in simple terms by analyzing the sequence N, once the sequence S, (which is the
same for the four groups of days 4, N, P, R and the whole set) has been analyzed.

This is substantially the method here adopted for the removal of pg, but
instead of dealing with the sequence S,, the modified sequence S¢ (§ 7) is con-
sidered ; this is only a part of pg, and this part affects the second harmonic term of

the lunar sequence L, by the amount
25 8¢ N

2 N
{sin (v — s¢) sin 2 O + cos (n — s) cos 2 A}

cos (20 4 s¢ —n)

25 8°N
T 2w
= S5s8in26 4+ Sgcos26
where the equation gives the definition of the numbers S¢, S%; similarly (with the
superfix 4, N, P or R attached to %%, N and n) for the lunar sums L, . . ., LF.

The reason for this modification is bound up with the method here intro-
duced to eliminate a large part of the accidental variation p,. This will be described
in §§15—18.

13. Imagine that chords of the graph of p(f) are drawn joining successive
points at 1P, 9% and 17® on each solar day. These chords form a rectilinear
graph which defines a function p~(f) — the “rectilinear” part of the barometer
variation, in 8-hour intervals. Let

pPH=p@—p @. ... .. ... (19)
so that p¢ () is the function — the “curved” part of the barometric variation,
in 8-hour intervals — which is left over if p~(f) be subtracted from p(t).

The graphs of the component functions of p(t), that is, of pg(?), p; (), p,(t)
may be similarly analyzed into “rectilinear” and “curved” parts, pg, p,, p, and pg

.. (18)

p;, Py, relating to the same 8-hour intervals. Evidently
PO =ps®+p®+pO - ... (20)
pe () = pS) + PEO) + PO - o o e (@1)
The hour-to-hour differences associated with the function p~(t), when written
out in a sequence of 25 terms as for p(f), are evidently (c¢f. § 6) equal to
1 D (eight times), 5 E (eight times): 1 F' (eight times), § G. . . (22)
For the mean pg(f), from the N days of a set of data (cf. § 7) they are 1/(8 N)
multiplied by Dy, E, Fg (each eight times in succession) and G, while for pS(t)
they are S¢/N. Thus the expression (18) represents the part of the second harmonic
in the sequence L, due to the component function pg(t).

14. Of the functions p, p~, p°; Pg Ps PS5 Pp Pis Prs Pa» Pas Pos the first three
are directly known from the observations ,while the vertical sums (§ 7) determine pg,
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and therefore also pg, p¢, at least within limits of accidental error which are small
compared with pg itself. The last six functions are not known, but the relation
between p,, p, and p; can be determined owing to the known (purely lunar
semidiurnal) character of this variation.

Suppose that
p,=Csin(204+¢) . ... ... ... .. (28)

where 6 denotes lunar time, measured from lunar transit, and reckoned in angle at
the rate 2 7z per lunar day; C and ¢, which depend on the lunar distance, may be
considered constant in each group of days 4, N, P, R, with values indicated by C4,
¢4, ..., while C, ¢refer to the mean values. Then to the term L, of the lunar sum,
derived from N days, p, contributes the amount

NClsin {27 4+ 1)@ + ¢} —sin {(27r — 1)(p+c}]

= 2N Csingecos(2r ¢ + ¢) } cee (29)

being N times the difference between p, at the lunar hours r + % and r — },
at which 26 has the values (27 + 1)@ and (2r—1) @: thus the true lunar (semi-
diurnal) component of the sequence L, is

2NC sin g cos (20 + ¢)
=29?Csin<psin(20+c+%n)] ------- (25)
=(C"sin (20 4+ ¢)
where
' =2NCsin ¢, d=c+im .. .. ... . (26)

It will be shown in §19 that the separate contributions of p~ and p¢ to L, are,
very approximately, respectively

0.1959 C'sin (26 + ¢’ + 5.2385%)
0.8052 C'sin (20 + ¢ — 1.27% |

In latitudes 50° or over, p, is responsible for most of the variation p, and it has
a range of three inches or more. Its changes are usually gradual, the rate often not
varying much within eight hours. Consequently the rectilinear part of p, is nearly
equal to p, itself, while the curved residue, p¢, i much smaller. The new method
here introduced is to eliminate pg, leaving only the smaller part of p,, that is, p°,
to be eliminated by the averaging resulting from the combination of many days’
data. Though the method is most useful for stations in moderate or high latitudes,
it may be employed with advantage also for stations in low latitudes.

15. Since p, is unknown, the distinction between p, and p, cannot be made
except & posteriori; the following is the plan adopted for the removal of p;.

The lunar sums L, are made up of contributions from the six parts of p,
namely,

Pss Pis Pas PS> Pl> Pa » = o v v oo v e e (28)



The contributions made by the first three parts (which together equal p~), and also
the contribution by the fourth part, p¢, are removed, leaving, as the residue,
only the contributions made by p; and p¢ ; it is assumed that the latter is rendered
inappreciable by averaging, so that the residue of the lunar sums is composed
solely of p;’. Owing to the known relation (cf. 25, 28) between p; and p;, the latter
can be inferred from the former.

The removal of the contributions made by pg, p7, p,, that is, by p~, is made in a
single stage, for convenience ; the process is described in §§ 16—18. The inclusion of
a part of p, itself, namely p;, in this elimination, is inevitable because it is at this
stage impossible to separate p; and py; but the fraction of p, removed is only small,
as is shown by comparison of (25) and (27).

It is unnecessary to remove the whole of the contributions made to L, by p~
and pg, as we are only interested in the second harmonic component of the lunar
sums. Hence the analysis is confined to the removal of the second harmonie in the
contributions of p~ and pS. The second harmonic in the contribution by pg has
already been found, namely (18).

16. The contribution by p~ to the lunar sums L, consists of the sum of the
contributions from each of the daily rows involved. These appear on the compu-
tation sheets as the sequence of hour-to-hour differences (22), i. e.,

1D (eight times), 3 E (eight times), $ F (eight times), 3§ G

But in the lunar sums this sequence is transposed (§ 8), so that if the day is of
transit time nt, the nt® term comes first. The combined contribution from the days
of the same transit time n® can be considered as a whole, and is represented by
the sequence

1D,_, (eight times), 1E,_, (eight times), 1F,_, (eight times), 1 G,_; (29)
(where D, _,, ... are as defined in § 9), transposed as stated.
17. Consider the second harmonic component of a sequence of the form
D (eight times), E (eight times), F' (eight times), G . . . . . (30)
such as (29). Let it be denoted by 4 sin (2 6 + a). Then, by § 10,

: 7 15 23
Aeia__{ 2 e—2iryp +E26—2irtp +F2 e—2ir(p+ Ge-wi(p}
r= r=3s8 r=16
0 (30)
—_ _i —161¢ 324¢ —2irp 2 i '
= 3E {( + Ee + Fe— )rgoe + Ge
since 50 ¢ = 4 7.
Now
28-2"‘/’ J— 1 —e 1009 —] SlI.IS(pe_“.q) ...... (31)
= 1 —e 20 sin @
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as appears on putting « = — @, x =—8 ¢ in
1 —e?ie — —24¢f®singg . . . . . .. ... (32)
Hence

Aot — 214 sm8q)

e~y — 23 — 39 27 Q9
T | g @I A B 4 e “l’)—}—Ge’} (33)

If the sequence (80) is transposed so as to begin with the m'2 term, the
second harmonic component is changed to Asin {20 +a +2(n—1) ¢}, or
Asin(20 + a,_,), where

Oy =a+2m—De . ... ... ... . (34)
and therefore, by (88),
Aeian—l — Aeto+2n—1ip — _2_3 ]_Sin_8_(p e2m—1igp
25 | sing

+ (D_ef7iq1 + Ee—2i¢ + Fe~39iq)) + GeZniqz} (35)

18. Let the contribution made by p~ to the second harmonic of the
lunar sums, through the days of transit time n®, bé denoted by 4, sin (2 0 -|— a,).
It is obtained (cf. 26) by substituting the values D, _,, +E,_,, $F,_,, 3G
for D, E, F, G in (35). The whole contribution, which will be denoted by

[[sn@b+@ ... .......... (36)

is obtained by summing the resulting expression for the values of n from 1 to 25,
or of r=n—1 from 0 to 24. Hence

n—1

24
[sin@0+® = S dusin@0+a) .. .. .. (37)

n =0
whence it follows that

[1ee =>4, o
1 ﬁ sin 8 ¢
- 8 25{

2 i — 7L 231¢ —391¢
g Sle D, e + E, e~ + F,e )

+ 2 G, er+2 i(p}

sin 8 ) . (38)
= IOO{ Sln‘pq) z‘l’z(Dr+3+E,.+u+Fr+19)621rtp |

+ 2 Gr—y e?ir(p}

i Js1n8q>

= 100 (g S+ S e

where
Hr=Dr+3+Er+11+Fr+19 --------- (39)
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These are the numbers H,, already defined in §9. The sequences D, E, F are here
regarded as periodic, so that an increase or decrease of the suffix by 25 leaves any
term unchanged.

Since
1.4 e 2% = 2cospe™® . ... ...... (40)
it follows that
sin8¢ sin8 ¢

2irp — —2ig) g2rig
sin @ e 2 H, N = sin 2 @ SVH, (1 4 em2i) e2r an

— 2039 S (1, 4 oy brin

T sin2¢

Hence, remembering the definition of J, in § 9, it appears that

[[e® = ﬁ SJ,erie oL (42)

But by analogy with (12) it follows that, denoting the second harmonic of the
sequence J, by Jsin (260 + j)

Jemli —= — %;- S Jeerire oL (43)
Hence
[[ee=—tdes ... .. ... ... (44)
so that
HA:Hcoéﬁz—éJcosjz —1J, ... (45)
]‘IB =[]sne =iJsinj=1Jg. ... ... ... (46)

in accordance with the notation (14).

Thus the analysis of the sequence J, of § 9 suffices to indicate the second
harmonic of the contribution made by p~ to L,.

19. It remains to determine the contribution made by p; to the second har-
monic component of L_; this contribution has been eliminated in p~, and this
undesired elimination must be allowed for.

On the monthly sheets of hour-to-hour differences 4 the value A4, on a day of

transit time nh, corresponds (§ 8) to an interval centred at the lunar hour

r—mn +1 (4 25). The part of this A4, which is due to p, is (§ 14)
Csin[{2r—n+ 1D+ 1} +c] —Csin[{2(r—n+ 1) — 1} p +¢] |
~ = 2Csingcos{2(r —n+1)p + ¢} J

which is the real part of

2Csingexpi{2(r—n+ D)o +c}- - -« - o o - (48)

(7)
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Magnitudes D, E, F, G, analogous, with respect to p, to D, E, F, G
with respect to p (§ 6) may be obtained as follows. For D, the value is the real
part of

2Csin¢p‘é expi{2(r —n + 1)@ + ¢}
r=0 - - - (49)

7

= 2Csingexpi {—2(n —1)p +c¢} > exp2irg

r=20

By using (31), with the sign of ¢ changed, (49) becomes

2Csin8gexpi{—QR2n—Ne—+c} .. ... ... (50)
so that
D, = 2Csin8¢cos {(2n — 9 —c}- - - -+ - - . - (1)
Similarly
E, = 2Csin8gcos {2n —2B8)p —c} . ... ... (52)
F, = 2Csin8¢@cos {2n —4l)p —c}; . . . . . .. (53)

all these equations refer to days of transit time nmb.
The quantity G, is the D, for the next day, which is obtained from (51)
by changing » to » + 1, i.e.,

G, =2Csin8¢@cos{2n—TNep—c} ....... (54)

since the time of lunar transit is one hour later each day, according to our treatment
of the lunar day as being of duration 25 solar hours. Actually it is 242 50™, so that
in one out of about six days the next day’s transit time (as entered) is the same as
for the day itself. The error caused in our work by ignoring the difference between
25® and the length of the lunar day will be considered in § 24.

Let the second harmonic in the sequence § D, (eight times), 3 E, (eight
times), 3 F, (eight times), G, for a day of transit time n, be denoted by
K,_,sin(26 +%,_,). Then, substituting 2D,, ..., 3+ G, for D, ..., G in (88),
we have

iCSi—‘bs P [sm 8¢ {e’”‘l’ cos (2_n —9¢ — c)
5

+ e=Bigcos(2n — 28 @ —¢) + e~ 2ivcos(2n — 41 @ — c)} (83)
+e2ivcos (2n— T g —c)-l

In L, this second harmonic appears as K, _,sin{20 +k,_, +2 (n—1) ¢},
owing to the transposition of the first n — 1 terms of the sequence for the days of
transit time n®; moreover it occurs N, _ times, this being the number of such days.
If the second harmonic of the whole contribution of p; to L, be denoted by
Ksin (2 60 + k), we have

Ksin(20+k)=2N,.K,. sin(20 +k, +2r@) . . . .. (56)

K, _expik,_, = sin
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80 that

e iCsin 8 ¢ T[sinSq; (@r—To 5=
Ke =—0 SN, g e cos(2r — T —c¢)

+ ei@r—2¢cos (2r — 23¢9 — c)
+ @7 =399 ¢cos (27- —39¢ — c)} -+ ei(‘-”+2)‘l’cos(2r— So ——-c)]

(57
1Csin 8 sin 8
- 50 Q)E[Sm;( r+3+1Vr+11+Nr+19)
+ Nr+2e”‘ﬂ]e‘<2'—”‘l’cos (2r— lo ——c)
By using (40) with the sign of ¢ changed, (57) may be rewritten as
(K/C)etk—0
isin 8 sin 8
= = 1009’ 2[ Sln(qu ( r+%+Nr+ll+Nr+19)
+ N, égv'iqy] (1 f-epiler—no—c) — iNsin8 g (3 sin8 ¢ + e7up> .
T 100 sin @ (58)

zs1n8¢p

10 2z(<p+c)2l

+ Nr+2e7iq?] etrig

Let the fourth harmonic component of the sequence N, be denoted [by
analogy with (10)] by

sin 8 o,

r+3 +Nr+11 + Nr+19)

sin (1]

=NRNysin @0 4+n);. . ... ... (39)
N, is likely to be a very small fraction. Then, by (12),
NNyye ine = — 25 > Noetrio . .. . ... .. (60)
80 that ;
SN, petrio = 5 RNgetmamemiv (61)

Hence (58) may be written

. ) isin8¢ (,sin8¢
i(k—c) — . 717
(B/2N Csin ) € = 2()Osin(p<3 ey i «p)

—_ L Si.n_Sq_)‘N“)e ing— 2t(q)+c)lﬂq’ (e—12ip | ¢~ 44up + e 7cup)
400 smq; sin @ (62)
isin 8 @ sin 8 @
—ig .
te ] 200s1nq><3 sin @ Te ”’7)
1 sin 8 sin8¢

—ml\fm—sﬁexp{ i(ng+2c— 4(p)}[ (142cos 7 )+4e~ 7“/’]

By means of a few numerical calculatlons this can be reduced to the form
(Ketk)[(2N Cisin pei€) = 0.1959 exp iy |

. (63)
+ 0.0210 Ny exp {— i (n, + 2¢ — 4)} |
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where
yx=052850 A=12241° . . . . .. ... .. (64)

Usually N ,, which is the ratio of the semi-amplitude of the fourth harmonic in the
sequence N,., to the mean N,, will be a small fraction, less than 0.1; if the N,’s
are all equal, N ,)is, of course, zero; its value is easily determined in any actual case.
If it does not exceed 0.1, the term containing it may be neglected, as being only
1 per cent or less of the whole expression (63), and affecting the final determination
of p, by not more than 3 per cent. If, however, in any particular instance, N,
exceeds 0.1, a correction to the final value of p, can readily be made on this
account. Hence in place of (68) we may use the approximate form

(Keh)[(8N Cisinpete) = 0.1959¢x . . . . . . .. (65)

By (25), p, contributes to the lunar sum L, the second harmonic
2NCsin @sin (260 + ¢ + 4 7w), of which the amplitude and phase may be re-
presented by 2NCsin pef©+ 2™ or 2NCisin @ ec, just as Ke'* represents the
amplitude and phase of K sin (20 + k), the contribution of p; to L,. The equation
(65), neglecting the term in N, may be interpreted as indicating that the second
harmonics in L, due to p; and to p, have amplitudes which are in the ratio 0.1959,
while in phase the former is 5.285% in advance of the latter. Thus the process used
to eliminate p, from the lunar sums also removes one-fifth of p;; this fraction is too
small to outweigh the great advantage gained in the reduced accidental error in the
determination of p;.

The second harmonic component of p,, due to pj, which remains in the lunar
sums after p~ and p; have been eliminated, is clearly (if we neglect N ,)

C'lsin (20 + ¢') — 0.1959 sin (2 6 + ¢ + 5.235°%) 66
= 0.8052 C'sin (2 0 + ¢’ — 1.27°) } ©%)

20. The complete calculation of p; or C sin (2 6 + ¢) can now be summarized,
with respect to the complete lunar sum L, for a given calendar month or season;
the procedure for the sum derived from any other group, such as the 4, N, P, R
groups, is of course precisely similar.

Associated with the sequence L, there are the sequences N,, the number of
days of each transit time involved in it: S, representing p¢ (§ 7); and J,, formed as
described in § 9. The second harmonic in each of these four sequences is to be
formed and expressed as in (10) and (15), i. e., by the numbers

L I; Nymy 86,8 d, 9 « v v v v v v v v v (67)
Ly, Lg; Ni, Np; 85.S5 Jaydg o v v .. .. .(68)
The part of Lsin (26 +1) due to p§ is given by (18); the numbers
25 SN 25 SN
c__ =9 : o c__ =Y —5s%) .. .(b
S4 5 sin (n — ), Sg > H cos (n — s°) (69)

can be calculated, since ! = >\ N, .
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The part of Lsin(26 + 1) due to p~ is given by (86), being

—1J,sn2041Jp00820 . . . . ... .. .. (70)
The residue of Lsin (26 + 1) is therefore
(Ly—S{+1J)sin20 4+ (Lp— Sg — L Jp)cos26 . . . . (71)
Let this be expressed as
QSN0 49 . . .o (72)
so that
Qeosg = Ly — S5+ 1J,, Qsing = Ly —Sg—1Jp . . . (78)

Then (72) represents p; + p¢, and, apart from any residue of the latter which is not
averaged out, we have, by comparison of (72) with (66),

@ = 0.8052 C’, g=c —127°, . . ... ... (74)

Hence, by (26),
C=C/2Nsinp) =Q/(1.6104Nsing) . . . . . . .. (75)
c=c —}m=q—88780 . . .. ... ... (76)

This approximation has been derived on the hypothesis that N, is too small
to affect the calculation.

It is necessary to verify that N,, the ratio of the semi-amplitude of the
fourth harmonic in the sequence N, to the mean value of N, is not more than 0.1;
it is sufficient to do this by treating N, as a sequence of 24 terms, neglecting N4,
and adding together the four quarter-sequences Ny, . . ., Ng; Ng, . . ., Nyy; Npo,
-« Ny Nyg, « . ., Ny the half range of this combined sequence of 6 terms,
divided by the mean of the six terms, is in general a good approximation to N,
which will usually be less than 0.1. If it is 0.1 or more, it is necessary to determine
the fourth harmonic of the sequence N,, so obtaining N, and n, (§19). The
correction to be made to the determination of C and ¢ (§20) on this account will be
very small, and it is scarcely necessary to indicate how it is to be made; the first
approximation to ¢, as obtained in (20), can be used in making the correction.

21. The same plan for reducing the influence of p, upon computations of the
lunar atmospheric tide may be adapted to other modes of tabulation of the data.
One of the modes most commonly used consists of the tabulation of the hourly data,
after removal of p, for each individual month, in lunar daily rows of 26 consecutive
entries, the first of which (in column 0), in any row, is for the solar hour nearest to
the time of lunar transit, while the remaining entries are for the succeeding hours in
order. In this mode of tabulation the entries are taken from two successive solar
days, in proportions depending on the lunar-transit time: and there is no trans-
position of earlier hours after later.

Sinece p, has already been removed from the data, these refer to p, 4+ p,.
Let this be denoted by P. Let P~ be defined, in relation to P, as, in § 18, P
was in relation to p, except that the points where P~ = P will be taken as 0h, 8k,
16®, 24k, instead of 12, 9», 172, The entries for these hours on the lunar daily row
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for transit time nP (where n is taken to vary from 1 to 24), occur in the columns
8§ —c,, 16 —¢,, 24 —c¢,, and sometimes 82 — ¢,: where

c,=n (mod 8), and 1<e¢,, <8 . . . . . . .. .(17)
Let these entries be underlined on each row; in connection with each row, we
consider underlined entries ey, €;, €5, €5, ¢4 as follows: e;, e,, €, are the underlined
entries in one or other of the columns 1 to 8, 9 to 16, 17 to 24 respectively, while
¢ and ey are the entries for the hours preceding that of e;, and succeeding that of
¢, by 8 hours: thus ¢ occurs in column 0 or in the preceding row, while ¢, may
oceur in column 25 or in the following row. Then the 8-hour linear changes of
P~ which affect the row concerned are the differences between these five underlined
entries, 1. e.,
a=e, —e, b=e,—e;, c=¢€3—ey, d=¢e;—ez; . . . .(78)

These changes may be positive or negative; they will usually be expressible in
numbers of one digit only. Let them all be entered (in red ink, say) in the column
8 — ¢,, of the row concerned; let the number of the column be added as suffix to a,
b, ¢, d. The suffix (m, say) will thus be as follows for rows of transit time n:

n= 1 2 3 4 5 6 7 8
n= 9 10 11 12 13 14 15 16
n= 17 18 19 20 21 22 23 24
m= 1 2 3 4 5 6 7 0

Thus to each value of m there correspond three corresponding transit times (n,,,
say). A

In a given set of lunar daily rows, for any years, season, or lunar distance,
let the number of rows fo. which a, b, ¢, d are entered in column m be denoted by N,
and let the sums of the numbers a, b, ¢, d in this column be denoted by 4,,, B,,, C,,.,
D _. Let N be the whole number of rows, so that

m

Also let

7 7
A= 4, D= D, - «.oo.... (80)

m=0 m=0

Let 0, 0, (m == 0 to 7) denote the sequences (each of 26 terms) of sums of the
entries in columns 0 to 25, for the whole :t days, and for the eight sets of N "
days separately. Let ¢7, o, denote the parts of these sequences which are due to
P~; then, apart from a constant additive to all the terms, and which is immaterial
for our purpose, the sequence ¢,, can be defined most simply by the 25 successive
differences between its terms, as follows:

1 1 . 1 1 . 1 1 . 1 .
gAm,'gAm, ceey —sBm, §-Bm7"'! §Cm,§Cm,..., §Dm,...,l
1 : 1 1 .
where 1 A, occurs 8 — m times, B, and § C,, occur 8 times each, : (81)
and §D,, occurs m + 1 times l
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If the semidiurnal component of o, corrected for the non-cyclic variation,
is P, sin (2 0 + p,), that of the sequence (81) is (cf. 28 and 25)

2P, sin @ sin (20 + p,, + ¢ + 3 7).

The semidiurnal component of the whole contribution of P~ to ¢~ will be
denoted by I7” sin (20 + @), and satisfies the equations

— 7
IT sin Q04+ ®)= > Prsin(20+p;) . ... .. (82)
m =0
By §10,
2i['<t
- 2Ppsingexpi(ppm + @ + 17) = — > 14, e 2ire
L= 83
15—m 23 —m 24 ( )
+ 3 1B,evito4 S 1C,etire g S %Dme_zm,,]
r=8—m r=16—m r=24—m
g0 that

200 Py ¢ ¢ sin @ exp (ipy) (1 —e—279) = A, {1 —e2i0 @ —m)}
+ (B, e=2696—m 4 (, ¢=2i005—m) (] — ¢~ 16i¢) (84)
+Dme——2itp(24—m){l_e—2i(p(m+1)}

Summing with respect to m, we have, by (82),

4004 [] sin? gexp (im) = (4 — D) + e~ %¢9 S} (B,, — A4,,) e2mi¢
7 7m=0 (85)
+e—32f‘l7 2 (Cm—Bm) ezmiqa+ e~ 1810 2 (Dm—Cm)e2Miq'
m=20 m=0

Let us define a new sequence of 25 terms as follows:

Uy=A—D
Upt1=D,—C, (r =01t 7)
Upyg = C,—B, (r=20to7)
Uy1r=B,—A,(r =0t 7)

Then (85) may be written
4004 l__[_sin2 pexp(ie)

7
= Uyt 3 [Uns1 @@ 00 4 Uy gt i 0ig 4 7,y permtmio] | gg)

m=0

24
= DU, e2rig — __E? Ue—iu
r=0 21

by (12), where U sin (2 0 + u) denotes the semidiurnal component of the sequence U,..
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Consequently,
— — U )
Hexp(zw)_-—_ me—iu ........ . (88)
or
- U
H — ?m ............ (89)
O =—U . . vt (90)

Thus the analysis of the single sequence U, gives the semidiurnal component
of the contribution of P~ to the lunar sequence o.

22. It remains to calculate the part of the sequence ¢~ which is due to pj.
The true lunar diurnal variation being C sin (2 8 + ¢), as in § 19, it is clear that,
on the days of transit time n,,, the lunar hours corresponding to the underlined
entries €y, €,, ey, €3, €4 are

—m, —m +8, —m + 16, —m + 24, —m +82 . . . . (91)
hence it follows that p, contributes to a, a part a,, given by

ap = C[sin{2(8—m)p + ¢} —sin{—2mep —|—c}]} 92
= 2Csin8¢qcos {2(4—m)p + ¢}
and likewise parts b,,, ¢, dr,, to b,, c,, d,, as follows:

by, = 2 Csin8 @ cos {2(12 —m) @ + ¢}
¢n = 2Csin8pcos (220 —m)p + ¢} } - - - - - - 93)
dy, = 2 Csin 8 g cos {2 (28 —m) ¢ + ¢}
Further, let
4, =N, ay, B, =N,b,, C, =N, ¢, Dy =N, dy,. . . . (99

Then the contribution of p; to o~ depends on 4,,, B,,, C,., D,, just as that of P~
depends on 4,,, B,,, C,., D,,. In particular, if the semidiurnal component of the
contribution of p; to ¢~ be denoted by Il; sin (2 8 + ®;), and if V sin (2 6 + v)
is the semidiurnal component of the sequence V, defined, relative to 4,, ...,

as U is defined relative to 4, ..., we have
_ v _
Hl — m, @ == — 0V - - e (95)
Now

7
Vo==A' —D' = 2Csin8¢ > N,[cos{2(4—m)gp + c

"= — cos {2 (28 —m) @ + c}]
. . . . (96)
= 4Csin8gsin24 ¢ > N,sin (2(16 —m) ¢ + c)
m=0

= —4(Csingsin8¢ {N;sin(7Tp 4 ¢)+ N;sin(5¢p + ¢
+ Ny,sin(Bp +¢) 4+ -+ + N,sin(— 7 ¢ + ¢}

since 25 ¢ = 2 7.
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Let us write

No+ N, =N(+v), Ni+Ny=N(G+wv), Ny+N, =N+
N,4+N,=%RG+»)

97
N,—N,=v_, R, N,—N,=wv_3N, N,—N, =v_,N G
NS e l\r4 = v %

Then the numbers » are likely to be small fractions. Also let
oy = ¥; €08 @ 4 vy ¢os 3@ + v3 cos 5@ + vy cos T 98
= 0.969 v, + 0.729 v, + 0.809 v, — 0.187 , 08
oy ="vy8n g+ v ,8n3@g+vgsin5ep+ v, ysinTe 99)

= 0.249 y_, + 0.685 v_, + 0.951 v_5 + 0.982 »_,

Then since

sin @ (cos @ +cos 84 cos 5@+ cos Te)=4%sin 8¢ . . . (100)
(96) may be written

. 1 . sin ¢ )
—_ 2 — ..
V, = — N Csin 8q>{2smc+4Sin8q)(¢x‘smc+a_lcosc)} (101)
Further
Ve—iv — _Zt v, + 2 (D — Cy)eim+ g

m=0

(Cm_' Bpeim+9e L (B, — A;n)e‘zi(m+17)lp}]
7
= 25[1/' 4Csin?8p X N, (2™ +D0sin (2 (24 —m) ¢ + ¢
m=0
+e“’""‘+9)‘/’sin{2(16—m)q> —}—c}—;—e“(m+17)‘l’sin{2(8—m)<p+c}}]
= —3z [V 4Cecsin’ 8o 2 N,, { e—2i@—m)g—icgin {2 (24—m)+c}

+e—2tQs—m)g—icgin {2(16—m)q)+c}+e*‘2‘(8‘m"l’—“sin {2(8—m)p+c| } ]
o (102)

— 25[ —}—2206’°sm98(p 2 N, 3__3——4i(24—m)(p—2ic
_e—“,(lﬁ—m)cp—?ic_e—u'(e—m)qz—Qic}]
2
= i[V—|—6192Ce’Csm28(p 2@06_“8m28q)(2N eAmig) (¢~ 2%y

+ e84t | g—32i¢))]
— BN Ceicsin?8 | 1 4 Lie—icsi 3 pmic SIBQ i
= M Cesm* 8|14 ietesinc4-sie Sin8¢(a181nc+a,lcosc)

7
—le—ssig—2ic(] & 2 cos 32 @) 20 N,/ eum‘w]
m =



— 417 —

Let
oy = v,c082 ¢ + vgcos 6 @ + vycos 10 @ + v cos 14 ¢ | (103)
= 0.876 v, + 0.063 v, — 0.809 v, — 0.930 v, J -
oy =v_,sin2¢ 4+ v_,sinbgp +v_3sinl0¢p +v_,sinld¢ 104
= 0.482v_, 4 0.998v_, 4 0.588v_; — 0.368v_, } (109
Then
7
. . 1
S N etmie = Nertie { Z(cos‘z @ +cos6 @ + cos 10 @ + cos 14 ¢)
" 1 sin IG(p (103)
+0‘2—"ia_2 ""'92614””{ g Slnztp + o, — ia_2}
on replacing ¢ by 2 ¢ in (100). Also
. o sin 2 @
1 + 2 cos qu) p— —5—16—‘p """ (106)
in virtue of 25 ¢ =x. Hence
Ve—iv -————9? 08‘081!128(;)[1 + — 24 (1—e‘2’°)+ e‘“c
—{—Eie’” sin g (e sinc + cosc) 3‘2” szqJ (o, —1 )]
3 sin8 * %t + sinl6g " Hpm b 0—2 (107)
1 9 48 sin ¢
=3 %Ce‘csm 8(p[1 -+ =3 z ¢ sm8 (et; sin¢ + o cosc)
8 _sin2¢
— p—2ic _ 2 o
T3 T anitg ™ “"‘-)]

Thus when, as will usually be the case, the terms involving o, ot_;, &g, ot_y, can be
neglected, this reduces to

Vemiv =4NCe’sin?8¢. . . . . . . . .. (108)
so that
- 1 sin? 8 ¢ . q
Hz = -(;—I%C Sty = 0.20684NC . - . - .. (109)
W = — 0 ==C . ..o (110)

by (95). In this case, therefcre, if the transit times are nearly uniformly distributed
throughout the group of lunar days considered, the elimination of P~ from the data
removes just over one-fifth of p,, without change of phase. The remaining fraction
of p; is 0.79816, and the reciprocal of this is 1.2608.

Thus, if L sin (2 6 + 1) is the semidiurnal component of the sequence of lunar
sums, corrected only for the non-cyclic variation, and if

Lsin (20 +10)—1II"sin 204+ )=L sin 26 +10) . . . (111)
the corresponding determination of C, ¢ will be
C=12008L'/N, ¢=1 . ... ... ... (112)
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23. The preceding method of eliminating a large part of p, from p in the
determination of p,is to some extent arbitrary as regards the choice of the interval
of 8 hours in the definition of p~; it is of interest to consider whether any other
interval whould be more suitable for the purpose in view.

It seems desirable to take the solar day as the basis of definition of p~ in the
determination of p,, because (a) p~ is thereby rendered less dependent on p,
itself, and also (b) the systematic elimination of p~ is most conveniently made in
close relation to the tables of original data, which are arranged according to solar
time. Hence the interval on which p~ is based must be a submultiple of the solar
day; the solar day itself would not suffice — it would practically only eliminate the
noncyclic variation during the lunar day, which is part of the existing practice.
The smaller submultiples of the solar day, i. .., 2B, 8B, 4b are too small; the
corresponding p~ would contain far too large a proportion of p,. Thus the only
intervals which really need consideration are 12k, 82 and 6"; the choice of the
first would have the advantage that p~ would contain an extremely small fraction
of p,, while the p~ corresponding to 6% would contain a fraction of p, considerably
more than the one-fifth corresponding to 8. On the other hand the residual part
(pg) of p, ist greatest for the 122 interval, and least for that of 6"; the mean
numerical value of p{ is likely to vary as the square of the length of the interval,
1. e., as 144: 64: 86. The best choice is not clear, but that of 82, here made, is
probably better than that of 12, because the fraction of p, removed with p~ is
small, while the residual p¢ will be less than half that corresponding to the interval
of 12" for p7; the choice of 6® would reduce pj still further, but at the cost of
removing too large a fraction of p, itself.

24. It is of interest to consider how far the determination of the lunar atmo-
spheric tide is affected by the use of an interval of M’ solar hours (where M’
is an integer, here taken as 25) to represent the lunar day, which is actually of
variable duration, but of average length M solar hours, where M = 24.83 (24b 50™),

First consider the case when hour-to-hour differences form the basis of the
lunar tabulations, as in §§ 6—20. For the days of transit time nt, A, refers (§ 8)
to a time r —n -+ 1 solar hours after transit, if r >n—1, or to n —r — 1 sclar
hours before transit, if r << n—1; in the latter case, since p, is pericdic in the time
M hours, the time is equivalent to M 4 r—mn + 1 solar hours after transit.

Since M’ solar hours are taken to represent the lunar day, r ranges from 0 to
M’—1. We suppose that n ranges from 1 to M’, as in the tabulations described in
§§ 6—20 (the conclusion arrived at is not affected if » is taken to range, like r,
from 0 to M’—1). In forming the lunar sums the daily rows of A’s are, in effect,
divided into two parts, of which the first is transposed so as to follow the second;
the result is that the values of A4, from days of different transit time n", and for
which, for a particular integral value of m (where 0 < m < M’ — 1),

r=m4n—1(mod M) . . . ... .... (118)
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are all grouped together and added. Since 0 < r<(M"—1, it is clear that according
to (118) r will equal m + n — 1 on the days for which n lies in the range 1 to M’ — m;;
in all these cases, M’ — m in number, the true interval after transit, corresponding
to 4,, is exactly m solar hours. When » lies in the range M’ — m + 1 to M’,
r will equal m 4+ n—1— M’; in these cases, m in number, the true time to which
A, corresponds is m — M’ solar hours before transit, which is equivalent, so far as
concerns p,, to the time m — M’ + M solar hours after transit. Since M’ &= M,
the entries A, thus combined together do not all refer to precisely the same lunar
epoch, except when m = 0; they correspond either to m or m 4+ M — M’ solar
hours after transit, and they are treated, in the subsequent harmonic analysis,
as if they referred to an epoch after lunar transit equal to a fraction m/M’ of a
lunar day, that is, an epoch of m M /M’ solar hours after transit. This time is inter-
mediate between the two actual epochs of the A4,’s.

The mean epoch, in solar hours after lunar transit, corresponding to the term
L, in the sequence of lunar sums, is clearly

M —m M’
m 2 M1—1+(m+M"'M’) 2 Mz—ll"_:'gty
n=1 n=M-—-m+1 J

which is intermediate between m and m + M — M’. If the values of N,,_, are the
same for each value of n, and therefore equal to /M’, the expression reduces to

1 , ,
F(m(M —m) + (m + M — M")ym)

or m M/M’, which is the epoch assumed for L,, in the harmonic analysis. If the
values of N,,_, are nearly all alike, this result will be nearly but not quite exact.

The differences between m M/M’ and m or m + M — M’ (the two values
corresponding to the A,’s combined in L,) are

—m——-———MM,M and ~(M'——m)-—MM, M;
these vary with m, being most unequal when m is 1 or 24, and most nearly equal
when m 1s 12 or 18. The fact that the 4,’s do not exactly correspond to the epoch
assumed for L,, in the harmonic analysis renders the deduced amplitude of p,
slightly too small, but by a quite negligible amount if M’ is 25 or even 24. A
further slight reduction arises from the spread of the transit times, taken to occur
at the exact hour m, over the interval » — 1» to'n + }b.

25. When M’ is taken, as above, to be 25, the midnight values of the pressure
are always used twice over, that is, as O" on one day and 24" on the preceding day.
There is no valid physical reason why they should thus have double weight, as
compared with the values at other hours, in determining p, and the fact that they
do have double weight is a slight blemish on the method of using 25 values.
It is probably of no real disadvantage, however, and some theoretical objection
seems likely to arise in connection with any method of deriving p, from data
referring to solar hours. For example, though each solar hourly value is used once

27*
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only if M’ is taken as 24 instead of 25, there is the new difficulty that on certain
days none of the 24 hourly values will be within half an hour of lunar transit
(the nearest transits occur before the first value, i. e., on the preceding day,
and after the last value on the next day); according to the previous plan we should
omit these days altogether, which would be as objectionable, theoretically, as
giving the midnight values double weight when M’ = 25. Actually it would be
appropriate to treat half these days as days of transit time 1%, and the others as
days of transit time 24", though this would not be quite correct. It would add
slightly to the errors in the times of the A,’s which contribute to L,, ; these times,
when M’ = 24, will in any case diverge rather more from m M/M’ than when
M’ = 25. The errors will, however, only very slightly affect the determination of p,,
and the use of M’ = 24 certainly has some advantages; (a) it reduces the tabulations
and summations by z- ", or 4 per cent.; (b) it simplifies the removal of p, (since
only D, E, F, and not also G — cf. §§ 9, 18 — would be required to represent p,
on each day): and, finally, the harmonic analysis is simpler for sequences of 24
values than for those of 25.

26. When hour-to-hour differences are taken as the basis of tabulation, the
difference between M and M’ affects the formula (24), where it is assumed that the
interval between the hours over which the difference is taken is 3= ™ of a lunar
day, i. e., M/M' solar hour, whereas actually it is one solar hour. If M’ = 25,
the actual interval is too long in the ratio M/M’, so that sin ¢ in the formula (24)
should be sin (M'@/M). This renders the resulting determination of p, by this
method, too great in the ratio

sin (5o 14.4°) / sin 14.49
which is 1.0068. The correction necessary on this account is therefore about
— 0.7 per cent., which is in itself scarcely worth making, in view of the accidental
errors attaching to the determination of p,

27. In conclusion, it may be remarked that, owing to the recent extension in
the capacity of the cards used in the Hollerith automatic punching, sorting and
adding machines, from 45 to 80 columns, the Hollerith system of calculation can
now conveniently be applied to the determination of lunar periods in geophysical
phenomena. Systematic plans are being devised for the application of the Hollerith
machines to this purpose; the details of the work of removal of pg and p, from the
data are altered in many respects, though the principles and essentials of the
preceding analysis remain valid.




