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Harmonic Temperature Waves
in a Horizontally Layered Medium
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Abstract. A recurrence formula is given for determining the attenuation and
phase change of a harmonic temperature wave in a horizontally layered medium.
Some diagrams illustrate the results in the case of a two-layer medium. They can
be used for geothermal mapping of an aquifer.
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Introduction

In the investigation of the penetration of temperature variations into
the earth, it is of interest to know the dependency of the attenuation and
phase change of harmonic temperature waves in a horizontally layered
medium as a function of depth, frequency, the thermal constants, and the
depths of the layer boundaries. One example of this type of problem is
that of detecting flat, water-bearing layers using geothermic methods
(Cartwright, 1968). The solution of the general problem is given here to-
gether with the results of certain cases in diagrammatic form.

Theory

In every layer j (j=1,2,...,n) of the n-fold stratified medium with
thermal conductivity 1; and thermal diffusivity @; = ;/0; ¢; (0j = density,
¢; =specific heat), the temperature 77, a function of time # and depth z
must satisfy the equation of heat conduction:
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where z; (j=1,2,...,n— 1) represents the boundaries of the layers. For
every internal layer boundary the internal boundary conditions
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by = Xjs1 - *aj'" for z =2;(j=1,2,...,n—1) (3
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must be satisfied, and for the last layer
Tn -0 as z > o0 4)

where a constant additive temperature and a linear gradient have been
omitted.
At the earth’s surface =0 the boundary condition is
0Ty .

a = 4+ B Tr =1y cos(wt—e) =7y - Re {exp(i(wt—¢))} (5)
where «, f, y are given real constants . w =2 s/t is the angular frequency
(v =period), ¢ is the initial phase shift of the temperature wave in the at-
mosphere, Re denotes the real part of the relevant function, and 7 is the
imaginary unit. Condition (5), which describes the heat transfer between
the earth’s surface and the atmosphere (2 <0), includes the particular con-
dition for a given harmonic temperature with amplitude T

T1=7T7¢-cos(wt—¢e) forz=0 (5a)
(=0, =1, y=T)), and also the case of a given heat flow density
q=—/11%£=,Q-cos(wt—e) for =0 (5b)
2z

(a=—11, f=0,y=0)
The general solution of the equation of heat conduction can be found
by separation of variables:

Tj(z,7) = Re{C - [; - exp (=ps2z) + Bj - exp (ps2)] - exp ({(wf —¢))} (6)

where p; = ({w/a;)!/2, Re{p;} > 0.

C, Aj, Bj are complex constants which must be determined from condi-
tions (2)—(5). From conditions (2) and (3) the following relationships can
be derived from the general solution (6) by solving the resulting equations
with respect to ~; and Bj:

Aj - pi+ Aje1pier
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From (4), B, must be zero. Setting A, arbitrarily equal to 1, then (7)
is a system of recurrence formulae which yield A4, B;. From condition (5),
one can then obtain the normalizing constant

C= Y —, ®)
B(A1+ B1) — api(Ar— By)

thereby completely solving the problem.
If one designates, for the special case of the boundary condition

Ty = cos (w# — &) = Re {exp (i(wt—¢))} for 2 =0 (5¢)
i.e. =0, f =y =1, the normalizing constant as

then it can be seen that for a given sequence of layers with given thermal
constants, it is sufficient to solve the special case of the boundaty condition
(5¢). The solution for the general boundary condition (5) is then obtained
by multiplying the former solution by a factor

C y(A1+ Bi)

V= _"= .
c*  B(Ar+ Br)— api(A1— By)

)

In other words: the attenuation and phase change of the wave within
the medium is independent of the boundary condition at the surface of the
medium. The boundary condition (5) simply introduces an additional
constant reduction in amplitude and an additional phase shift at the surface
of the medium.

Numerical Results

In order to reduce the number of variables for a numerical solution
it is advisable to introduce dimensionless variables. That depth of pene-
tration

d = Q2afw)V/? = (ay - 7[m) /2 = 2112]| p1 ] (10)

of a harmonic wave in an unlayered medium with thermal diffusivity «;
for which the amplitude has decayed to the e-th part, can serve as a reference
value. The variables p; and 2 are transformed as follows:

by >Pi=p;-d x> 3% =2d (11)
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Fig. 1b
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Fig. 1¢

g, la—c. Amplitude A of a harmonic temperature wave as a function o :

Fig. 1a Amplitude A of a 'l temperat function of the

relative depth z/d and the relative depth of the boundary z,/d (at intervals of 0.2)
for three different two-laver cases

Figs. | and 2 show the amplitude relationship and the phase change
as a function of the relative depth z/d and the relative depth of the boundary
laver z1/d for the two-laver case for three combinations of the ratio of ther-
mal diffusivities (#/a; =0.33,1, and 0.33), and of the ratio of thermal
conductivities (£2/7) =0.33, 0.33 and 0.5).

In case of Figs. lc and 2¢ (wafay = 0.33, Z2/27 =0.5), it was possible
to make a direct comparison with results which Kappelmeyer and Hinel
(1974) obtained using a method of finite differences. Their results, however,
are given in comparison with a temperature distribution in an homogencous
half-space with thermal ditfusivity a;. For that case the amplitude relation-
ship and phase change are given by

AR =exp( z/d), ¢ = (180fa) - z/d. (12)

A particular application is the geothermal mapping of a water-bearing
laver beneath a relativelyv dryv overburden (aquifer), as carried out by Cart-
wright (1968). It depends on measuring the temperature difference between
a two-laver case (aquifer present) and a one-laver case (no aquifer) as a
function of the measuring depth and the scason of the vear, where the
vearly temperature variarions are used in the investigation.
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Fig. 2¢

Fig. 2a—c. Phase shift ¢ of a harmonic temperature wave. Otherwise as Fig. 1
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