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Abstract. A reverberation method of measuring the Q-value of a rock sample
of arbitrary size and shape is investigated theoretically on the basis of randomly
travelling shear and compressional waves. Formulae are derived for the mean
attenuation of these waves, their energy ratios and the energy conversion rates of
the two types into each other. The evaluation for a spherical sample with an iso-
tropic and a sine distribution of the wave intensity incident on the sample surface
gives energy ratios Ep/Es between 0.35 and 0.60 depending on the wave veloci-
ties. The influence of size and shape of the sample is found to be rather weak gener-
ally for typical laboratory samples with dimensions from about 2 to 20 cm.

Key words: Elastic Waves-Attenuation — Q-value — Reverberation — Energy-
Statistics — Wave Conversion — Wave Mixture.

1. Introduction

One of the most striking results of the first seismic experiments on the
moon was the discovery that elastic waves have an extremely small atten-
uation compared with the values obtained for the solid earth. Therefore
much work has been done in the last few years in order to find out the re-
asons. Most of the investigations were laboratory measurements of elastic
wave absorption in rock under various lunar environmental conditions.

In this paper we want to point out some interesting theoretical aspects
of the absorption measurements of Herminghaus and Berckhemer (1974).
They applied the reverberation techniques well known in architectural
acoustics using a rock sample as the reverberation chamber. Applications to
ultrasonic absorption measurements in liquids are described by Kurtze
and Tamm (1953), Bergmann (1954) and Ohsawa and Wada (1967). Revet-
beration is the persistence of sound in an enclosute as the result of con-
tinuous reflections at the walls after the sound source has been turned off.
The sample surface which is usually irregular and other inhomogeneities
serve as reflective sources and cause the sound energy distribution to
become uniform. The reverberation time at a specific frequency is a reci-
procal measure for the absorption and proportional to the Q-value of the
sample.
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There are two important features which distinguish the reverberation
method applied to solid samples from its analogue in architectural acoustics.
First, in addition to compressional waves also shear waves have to be con-
sidered and second, the measured attenuation is taken to be a characteristic
material property and should be independent of the shape and the size of
the sample. The difference between the present method and the conven-
tional methods of elastic wave absorption measurements (Truell ef /.,
1969) is, that in the latter scattering by inhomogeneities and reflections by
surface irregularities must be prevented with the aid of adequately chosen
samples and high precision mechanical surface preparation. In the present
method the samples are not mechanically prepared. Apart from the practical
advantage of this, the method simulates another important discovery in
lunar seismograms: the strong multiple scattering and randomness of
reflections of seismic waves. The results of our investigations might be
applied in principle to other large scale multiple scattering and random
reflection phenomena in seismology.

2. Physical Model

The problem is to describe the mean time behaviour of the elastic wave
energy in a solid after a single pulse has been transmitted from a point
source on the surface of the sample. The solution presented below is a statis-
tical approach based on the following assumptions:

(1) The elastic wave energy is described by randomly travelling shear
and compressional waves (S and P waves).

(2) The mean energy Epg of S waves generated per unit time by P
waves incident on the surface and on inhomogeneities is proportional to
the total P wave energy Ep. The same is assumed for the mean energy Egp
of P waves generated by S waves. We write

Epy = A-Ep, )

Egp = B-Eg, 2

where the factors 4 and B are independent of time.

The quantities Eps and Egp will be called “P[S and S|P energy conver-
sion rates” respectively, and the factors .4 and B “relative energy conversion
rates”. The latter account for the material and the geometrical properties
of the sample.

For illustration we use a simple ray model for a homogeneous sample.
Consider a single ray from a compressional pulse emitted from the source
at the time #=0. At the first reflection from the surface it splits up into a P
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Fig. 1. Cut of the sample in the plane of incidence of an elastic wave. The azimuth
@ is the angle between the cut and any reference plane containing the normal
vector #

and an S ray. Each of them splits up again at the second and all subsequent
reflections. After # reflections there are 2% P and S rays. At a given time #
we have

n 7 £ 3)
where / is the mean free path and 7 the mean velocity of the rays. For samples
with a diameter of about 10 cm the mean number of reflections /7 suffered
per second by a ray lies between 104 and 105. The number of rays increases
very rapidly with time causing a corresponding fine spatial distribution of
energy and an equilibrium mixture of P and § waves.

3. P[S and S|P Energy Conversion Rates

In order to calculate the energy conversion rates we use the simple model
of the last section. We define local angular distribution functions /p (&, ¢, ¥)
and fs (&, ¢, w, 7) of mean P and S wave energy flux as follows: Consider
the energy dep of P waves travelling in the direction #, ¢ towards the sur-
face element 42 7 at the point # (Fig. 1). It is contained in a thin prism of
length / (&, ¢, #). The time it takes P waves with velocity vp to pass the
prism is the ratio / (&, ¢, #) [ vp. Denoting the mean intensity of P waves
by /p (#, ¢, 7) and the solid angle by 4% =sin #49dp, we have

(3, ¢, %)

’p

dep = Ip (9, ¢, 7) cos #4274 02 . (4
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For S waves the analogous expression is
/ -
des = Is 0, 0y, 7) "0 T) o5 pa27d0dy | )
vs

where the angle y describes the polarization such that =0 for SV waves
and y =n/2 for SH waves. The total P and S wave energies Ep and Es
in the sample are obtained by integration:

Ep = S b@,97) &P o snri0 6)
vp

and

Es = S[s ®, 9, v, 7) M cos $d27dQdy . )

The local angular distribution functions of the energy flux towards the
surface can then be defined by

fpw,w*)EEiPw, >“’9"””) s ®

and

L@, 97) o
Vs

S 1 .
fS (ﬂ) ‘P: w’ 7) = FS ]S (19, ‘P, wa 7) (9)

They ate normalized to 1 according to Eqgs. (6) and (7). Expressing the
P/S and S/P energy conversion rates in terms of these functions we have

Eps = [ Aps (3, ¢) Ip (8, @, 7) cos $d27dQ

= Eprp S Aps (9, ¢) % d27dQ = Ep A (10)

and

Esp = Esﬂs S Asp (’19, ®s ’lp) fSl('Z;?;"/;’)") dzfd.lep = EsB 5 (11)
> ?’)

where Apg (¥, ¢) and Agp (3, ¢, p) are the ratios of the S wave energy
generated at a surface element to the energy of P waves incident in the
direction #, ¢ and vice versa.
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In the case of incident S waves only the component in the plane of
incidence is converted. We can therefore write

Asp @, ¢, p) = Asp (3, ¢) - cos 2y, (12)

where Agp (3, @) refers to incident S waves without regard to polarization.

According to their general form the expressions (10) and (11) are sup-
posed to be valid also for models of scattering and diffraction including
wave theory instead of simple rays. We note by inspection of the integrals
that the energy conversion rates generally depend on size and shape of the
sample.

The practical calculation of the relative energy conversion rates A4 and
B from the formulas (10) and (11) requires special assumptions about the
angular distribution functions. In the two following examples the sample
has been chosen to be a sphere with radius R. In model I we assume the
elastic wave intensity to be homogeneous and isotropic:

, 1
fe @, 9, 7) = m , 0
fOpn = g
In model II a cosine distribution is assumed:
fe (B, 9, 7) = Z%ﬁcom‘},
(14

1
fs(ﬁ,%w,f):——COSﬂ-
4

The S wave intensity is independent of polarisation in both models.
The energy ratios Aps and Agsp are given in plane wave theory by the
expressions (Gutenberg, 1944):

_ 4L3
Aps (9) = ity (15)
and
2
Asp () = 5 (16)

@i 4re’
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where
o\ 2 2
’ ([—I) — 2sin?
2 U
Lp — - (17)
2gnﬁgn2ﬁ| Cﬁ) ~ sin? 9
-7 =y
and
. pp\2 cot 279 cos 29
1s=1|- (18)
Vs

2 sind

/ Vs 2 o
) —sin2 g
'p

They are plotted in Fig. 2 for different ratios of the wave velocities. The
relative energy conversion rates have been listed in Table 1. We observe
that the values are strongly effected by the angular distribution functions of
the incident energy. They are greater for model I than for model IT because
the mean distance between two reflections is longer in model II. The in-
fluence of the velocity ratio is comparably weak.

1.0ﬂ 4/. }}1 ’/ ::Z}R\ ___‘>\"\\ |
Y. & /4 \V
2 A/ |
< 0.6 1 :
> K L«?‘ | | |
s // _ | e ! 4
o | —— v <165
w 0.4 ?/ T v‘
i /r 4 | || — vi =V3 \
0.2 '//// ¥ 1 iy LD
] p |11
I
30 60 90

Angle of incidence

Fig. 2. Energy ratios of reflected P waves to incident S waves and vice versa as a
function of the angle of incidence for various velocity ratios vp/rs. (after Guten-
berg)
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Table 1. Relative energy conversion rates .4
and B for various ratios vp/vs

R R
model vp [ vs A-— B-—
vp vs
1 1.65 2.04 1.68
1I 0.72 0.50
I V3 1.78 1.69
11 0.83 0.50
I 1.80 1.57 1.69
1I 0.79 0.50

4. Damping of P and § Wave Mixtures

We shall now calculate the time dependence of elastic wave energy.
The change of P wave energy in time is given by the energy increase Esp
per unit time by S/P conversion, the decreases — Epg by P/S conversion
and — Dp by attenuation

dE»

— =FEgp— Eps— Dp. 19
7 Sp PS P (19)
For S waves we have
dE;
?S“=—ESP+EPS—DS' (20)

The enetgy losses Dp and Dg per unit time can be expressed in terms of
the energy damping constants « and #

DP = d'EP 5 (21)
Ds = b-Ejs . (22)

The damping constants are closely related to the well known Q-value
of elastic waves defined by

==, (23)

where A E|E is the relative energy loss per cycle. Division of the absolute
enetrgy loss per cycle, 4 E, by the period T gives
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p= A8 _ 27 ik, (24)
T ~ 0T

Ds =25 _ 27 oo yp. (25)
T~ OsT

Inserting the expressions for Dp, Ds, Eps and Egsp into Egs. (19) and
(20) we obtain two coupled linear differential equations of first order in
time:

di" = Ep(— A —a) + EsB, (26)
%:EPA+ES(—B—17). 27)

They ate solved by letting

Ep = Epp - 7, (28)
Es = Egp - e, (29)

where the constant ¢ is given by

2
_ A+Bath ]/(A+Bj“+b) — Ab—aB — ab. (30)

2

The solution shows that the decreases of the total P and S wave energies
within the solid are the same, giving a constant ratio Ep/Es.

By inserting the solutions (28) and (29) into the differential Eqs. (26)
and (27) we obtain

EP EP() B . L‘—I—B—I—b
Es Eso - c+A+ta o A )

(1)

If the damping of P and S waves is sufficiently small the energy ratio
only depends on the relative energy conversion rates:

L _ 3B (32)
Es A

Some numerical values of Ep/Ejg for the two models in the last section
are given in Table 2. We note that the energy of S waves is greater than the
P wave energy approximately by a factor of 2.
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Table 2. Ratio of P wave to S wave energy
for vanishing absorption for various ratios

vp[vs
model vp [ s Ep/Es=B|A
1 1.65 0.50
1I 0.42
1 13 0.55
II 0.35
I 1.80 0.60

I 0.35

5. Discussion

The previous considerations yield the theoretical background for the
absorption measurements of Herminghaus and Berckhemer (1974). The
quantity determined by the experiments is the mixed damping constant .
According to equation (30) it can be calculated from the damping constants
a and b of pure P and S waves and the relative energy conversion rates A4
and B. The evaluation for a typical case of the ratio 4/b is shown in Fig. 3,
where the mixed damping constant is plotted against the relative energy
conversion rates. For convenience the dimensionless quantities ¢/z, A/a,
Bla and afb are used. In Fig. 4 we have plotted the curves of constant
mixed damping in the A4/s — BJa plane. Here the straight isolines confirm
the simplicity of the relations. The mixed damping always lies between the
individual damping constants. It approaches the S wave damping if the
relative conversion rate A4 of P into S waves is high in comparison with the
reverse process and vice versa.

As mentioned before the mixed damping is effected in general by the
shape and the size of the sample. Because of the integrals in Eqgs. (10) and
(11) the influence of the shape is not sufficiently transparent for straight-
forward considerations. The effect of the size of the sample, however, can
be easily seen. Let the relative conversion rates of a reference sample be
Ap and By. The free path of the rays be /y (9, ¢, 7). For a body with the
same shape but a different size all lengths are multiplied by a constant §:

1, 9, 7) =061, 7). (33)
The relative conversion rates are
A(0) = % Ay
and 1 (34)

B(®) = Bo-
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Fig. 3. Mixed damping versus the two relative energy conversion rates with the
fixed ratio #/a of the damping constants due to pure S and P waves
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in Table 2

0.65

1 n |
1 2
b/c]:f}.ﬁ A.’

—————
a

Fig. 4. Lines of constant mixed damping for variable relative energy conversion
rates
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C/O

06 Range of values in Table 2

b/ = 0.6 1A,

Fig. 5. Dependence of the mixed damping on the size parameter ¢ of the sample.
The conversion rate of the reference sample is denoted by 1,

For a fixed shape which means a constant ratio B/.-l we get a straight
line with the slope By/-4o through the origin in the ~l/a — Bfa plane in
Figs. 3 and 4. Inserting Eqs. (34) into the formula (30) we obtain the
mixed damping as a function of the size parameter 4. It is plotted in Fig. 5
versus the quantity .4jea = y/ad for bjla =0.6 and various shape parameters
By/Ap. There are two limiting cases. For large bodies (6% A/4) the
conversion rates are low and the mixed damping is near the weaker damping
constant. For small bodies the conversion rates become high and the
mixed damping is independent of size. Obviously this is achieved if

Agfad > 1.5, (35)

In the experiments of Herminghaus and Berckhemer (1974) the samples
had diameters of 4 =5 to 10 em. The measured @-values are in the range
of 100 to 800 for frequencies between 100 and 400 kHz. The P wave
velocities #p are between 2500 and 5000 m/s. Taking the most unfa-
vourable data from the measurements and from Table 1 for a reference
sample (4 =1) we have, using FEq. (24):

Ay BT
R [

€ 27

= 100.

If we assume that # << 5¢ we can be sure that the mixed damping meas-
ured by the reverberation method is independent of the size.

As shown by Fig. 5 the dependence on the shape is also weak, supposed
that the estimates of the models I and II are realistic. This might be the
casc if there are no extreme deviations from a spherical shape like long
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rods for example. Small shape variations are thought to be simulated to a
certain amount by variation of the angular distribution functions.

Finally, we can give a rule for mixing the Q-values of pure P and S
waves. From Egs. (23) to (25) one obtains

1 1 E 1 E;
- == 4 s (36)
O Ov Er+Es Os Ep+ Es
giving for our special models a mixing rule:
1 1 1
—=a—+0 —a) —,a=0.68 £+ 0.06. 37

Q0 Or Os

For bodies larger than laboratory samples like regions of the seismic
wave scattering in the outer layers of the moon fixed numbers of « might
become questionable. However, one should be able to give a range of the
mixed damping reaching from slightly above the smaller component to a
certain considerable amount below the greater one.
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