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Abstract. The treatment of electromagnetic induction in three-dimensional
structures is simplified by converting Maxwell’s equations to a linear inhomo-
geneous vector integral equation over the domain where the electrical conduc-
tivity deviates from a horizontally layered structure. An algorithm for the cal-
culation of the (tensor) kernel is given. The integral equation is solved either by
an iterative method or by matrix inversion. In an application the complete
electromagnetic surface field of a simple conductivity anomaly and induction
arrow maps are given. The gradual transition from three to two dimensions is
investigated for a particular model.

Key words: Electromagnetic Induction — Electrical Conductivity — Conduc-
tivity Anomalies.

1. Introduction

Numerical solutions of the three-dimensional modelling problem of
electromagnetic induction are only scarcely encountered in the current
literature (e.g. Jones and Pascoe, 1972; Lines and Jones, 1973). This is
not due to mathematical difficulties, but results from the fact that the usual
reduction of Maxwell’s equations to finite differences, including into the
domain under consideration the air half-space, requires large computer
storage and is time consuming as well.

A reduction of computer time and storage is achieved by applying
surface and volume integral techniques based on Green’s tensor. Consider
for example an anomalous three-dimensional conductivity structure of
finite extent embedded in a normal conductivity structure consisting of a
horizontally stratified half-space. Then given an external source field,
Maxwell’s equations have to be solved under the condition of vanishing
anomalous field at infinity. At least three approaches to a numerical solution
of this problem are possible. Approach A is to choose a basic domain
(including the air layer) as large as possible and to solve within this domain
Maxwell’s equations by finite differences, subject either to the now only
approximate boundary condition of zero anomalous field or to a more
refined impedance boundary condition (Fig. 1, top). This is the approach
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Fig. 1. The three different choices of a basic domain (boundary hatched) for
model calculations

of Jones and co-workers. A first reduction of the basic domain is achieved
by considering only the anomalous slab which contains the conductivity
anomaly (Fig. 1, centre). Within this slab, Maxwell’s equations are
solved by finite differences as before, but now all field values outside the
anomalous slab are expressed by a surface integral in terms of the
tangential component of the anomalous eclectric field at the horizontal
boundaries of the slab. At the vertical boundaries of the anomalous slab
approximate boundary conditions analogous to those of approach A are
applied. This is approach B. A modified version of it for two dimensions
is used by Schmucker (1971). In approach C the basic domain is reduced
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still further by deriving from Maxwell’s equations by a Green’s tensor an
integral equation for the electric field involving volume integrals only over
the anomalous field vector within the anomalous domain (Fig. 1, bottom).
The boundary conditions are incorporated in the kernel of the integral
equation, and hence are satisfied automatically by the solution. This method
has been applied in two dimensions by Hohmann (1972) and has been fot-
mulated in three dimensions by Raiche (1974).

From approach A to C the gradual reduction of the basic domain must
be paid by increasing expenses for calculating the required kernels. Approach
C is of particular advantage if the anomalous domain is small. If the domain
extends appreciably in horizontal direction (e.g. different conductivities
at the left and the right of the anomalous slab), approach B is appropriate.
Approach A can be avoided in any case.

This paper presents a short outline of approach B and a detailed de-
scription of approach C, thereby reformulating the method of Raiche (1974)
in a slightly different way. The basic equations are stated in Sec. 2, general
formulae for Green’s tensor for an earth with an arbitrary number of layers
are given in Sec. 3, and a few numerical problems encountered in applying
approach C are treated in Sec. 4. The final Sec. 5 presents some results.

2. Green’s Tensor Approaches to the Modelling Problem
2.1. Definitions, Basic Equations

r denotes the position vector and x, y, z (z positive downwards) are
cartesian coordinates, which for the sake of convenience are sometimes
also denoted by xi, x92, x3. Let the conductor with conductivity o(r)
occupy the half-space z > 0. Neglecting the displacement current, assuming
vacuum permeability and a harmonic time factor ¢?®* throughout, the com-
plex amplitudes E and H of the electric and magnetic field vector are related
by

cutl H@r) = o(r) E(r) + jo(r), @.1)
curl E(r) = — iwouoH(r), 2.2)

or combined
curl 2B(r) + £2(r) B(r) = — iopo jo(r), 23)

SI units being used. jo(r) is the current density of the external source field,
curl?2 =curl curl, and

R2(r) = iwugo(r). (2.4)
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Split ¢(r) into a normal and anomalous part, the former consisting
of a set of horizontal uniform layers. (For simplicity, within the earth all
layer conductivities are assumed to be non-zero.) Hence,
0 = 0n + Oa, K% = kn + ka, E = En + Eq, 2.5)
E,, being defined as the solution of

curl 2E,(r) + A2(r) En(r) = — iopo jo(r), (2.6)

vanishing for z -oco. Methods for the computation of Ej, are well-known
(e.g. Schmucker, 1970; Weaver, 1970).

2.2. The Volume Integral Method (Approach C)
From (2.3), (2.5), and (2.6) follows

cutl 2B, (r) + k5(r) Eq(r) = — ka(r)E(®). (2.7)

Let Gi(rolr), i=1,2,3, be the solution of
cutl 2Gy(rolr) + An(r) Gi(ro|r) = #; S(r—ro), (2.8)
vanishing at infinity. In (2.8) and in the sequel, "denotes a unit vector.
Multiply (2.8) by E,(r) and (2.7) by Gy(ro|r) and integrate the difference
with respect to 7 over the whole space. Green’s vector theorem (e.g.

Morse and Feshbach, 1953, p. 1768)

{{U - curl 2V—V - curl 2U}dr
= §{A xV) - curl U— (@i x U) - curl V}dA, (2.9)

where dr is a volume element, 44 a surface element, and 7 the outward
normal vector, yields

Egi(ro) = — [ k5 Gy(rolr) - E)dz, =123, (2.10)

since E, and G; vanish at infinity. After combining all three components
and introducing E instead of E,, the vector integral equation

E(ro) = Ey(ro) — [ ka(r) G(rolr) - E(r)dx @2.11)
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is obtained. Here @ is the Green’s tensor (using dyadic notation)
3 3
(ﬁ(’rol’l‘) = z ét Gi(ro[r) = Z Gij(’rol’l‘) iifi :éj. (212)
=1 1, j=1

The tensor elements Gy admit a simple physical interpretation:
Gij(rolr) is the j-th electric field component of an oscillating electric dipole
of unit moment pointing in x;-direction, placed in the normal conductivity
structure at 7o; the point of observation is r. Note that the first index and
argument refer to the source, the second index and argument to the ob-
servet. Because of the fundamental reciprocity in electromagnetism,
observer and source parameters are interchangeable, i.e.

Gﬁ(’l‘o"l‘) = Gﬂ(’l‘lro) . (213)

For a proof replace in (2.8) r by 7', write an analogous equation for
Gy(r|r"), multiply cross-wise by G and Gy, integrate the difference with
respect to 7’ over the whole space, and obtain (2.13) on using (2.9). Due to
(2.13), (2.11) is alternatively written

E(ro) = En(ro) — [ k() E() - G(r|ro)ds. (2.14)

Eq. (2.11) or (2.14) is a vector Fredholm integral equation of the
second kind for the electric field E. The kernel ® and inhomogeneous
term E, depend only on the normal conductivity structure. The domain
of integration is the anomalous domain. To determine the kernel & replace
first the conductivity within the anomalous domain by its normal values.
Then place at each point of the domain two mutually perpendicular hori-
zontal dipoles and one vertical dipole and calculate the resulting vector
fields at each point of this domain. At a first glance the work involved
appeatrs to be prohibitive, but it is sharply reduced by the reciprocity (2.13)
and the isotropy of the normal conductor in hotizontal direction. In partic-
ular, only one horizontal dipole is required. Since the kernels are inde-
pendent of ¢, and Ej, the same kernels apply if the conductivity within
the anomalous domain is changed and/or the external field is altered (e.g.
different polarization).

In the simplest, though physically not very interesting case of a uniform
whole space with conductivity o the tensor elements are simply

K3Guy(rolr) = (k30— 92/dx; 3xj)ekoR|(4xR) 2.15)
= {(1 +#+ 40y — 3+ 3u+u2) (xi—x10) (35— 70)| R2}e~%| (47 R3)
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(e.g. Morse and Feshbach, 1953, p. 1781). Here, R = |r—ro|, k%:iw,uoao,
#=+FkoR, and dy is the Kronecker symbol. For a uniform half-space the
elements are given in the appendix. A method for calculating the elements
for an arbitrary number of layers is presented in Sec. 3.

The integral equation (2.11) or (2.14) is decomposed into a set of
linear equations, which are solved either by iterative techniques or by
matrix inversion. Suggestions for the use of cither of these techniques
are given in Sec. 4. When the electric field within the anomaly is known,
a second set of kernels is required, which transform the field via (2.11) or
(2.14) into the surface field. The kernels for the magnetic field are obtained
by considering the curl of (2.11) or (2.14) with respect to 7.

2.3. The Sutrface Integral Method (Approach B)

Let the anomalous slab be confined to the depth range z3 <z < zs.
Approach B is to solve within the anomalous slab the inhomogeneous
equation

curl 2E, () + £2(r) Eq(r) = — ka(r) En(r) (2.16)

(from (2.3), (2.5), and (2.6)) subject to two homogeneous boundary condi-
tions at 2 =23 and z =2y, which involve g, for 2 <<z; and z>z3 respec-
tively, and account for the vanishing anomalous field for z > + co. When
(2.16) is solved by finite differences, the discretization involves also the
field values one grid point width above and below the anomalous slab.
The surface integral method is simply to express these values by a surface
integral in terms of the tangential component of E, at z; and =z, respec-
tively.

Let 171 and 17 be the half-spaces z<<z; and z>zj, respectively,
and let Sy, 7 =1,2, be the planes z =zp. Let Gy(M(ro|r), 19 € Vi, 1 € ViU
Sm, be a solution of

cutl 2G{7 (wo|r) + £R)GL™ (rolr) = d:10(r—1v) (2.17)
(7=1,2,3; m=1,2) satisfying for r €5, the boundary condition
£ X G{™ (rolr) = 0. (2.18)
In 77 and 13, E,4 is a solution of

cutl 2E,(r) + £3(r) E,(r) = 0. (2.19)
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Multiply (2.19) by G{™, (2.17) by E,, integrate the difference with
respect to 1 over [/, and obtain on using (2.9), (2.18) and E,; -0 forr - oo

Eai(ro) = (—1)™ [ {£ X Eq(r)} - cutl G{™ (rolr) dA, (2.20)
S

m

ro € IV, or in tensor notation

Eq(lo) = (—1)m [ curl Gm@olr) {4 x Eo(r)} dA,
Sm
where curl G = S #; curl Gi™ .
i

This is the required mapping, which admits the representation of the
field values outside the anomalous layer in terms of the boundary values
of the (continuous) tangential component of E,.

A physical interpretation of Green’s vector Gi('")('ro]r) subject to (2.18)
is as follows : Reflect the normal conductivity structure for 2 < z1 and 2 > 23
at the planes z=2; and z =2y respectively, place a unit dipole in x;-
direction at 79 €, and an image dipole at ro=r¢+2 (2m—=20)%, the
moment being the opposite for the two horizontal dipoles and the same
for the vertical dipole. Then the tangential component of Gf™ vanishes
at 2 =2p.

Hence, if 17 is a uniform half-space, G{™ is constructed from the
whole space formula (2.15). Eq. (2.20) then reads

Eaolro) = |20—2m| | F(R)Eaa(r)dA, (2.21a)
‘Sm
Egy(ro) = Izo—zm|sf F(R)E4y(r)dA, (2.21b)

Euyro) = (_1)msf F(R){(x—x0) Eaz(r) + (y—0) Eay(r)}dA4, (2.21c)

2 .
whete R = |r—|, ko =iwuooo, and

__ Y 4 erp) —koR 3
F(B) = — 5 o (08| R) = (14 koR)r*oR|(2RY).

Egs. (2.21a—c) contain as important subcase the condition at the air-
earth interface (21 =0, &9 =0).

Because of the limited range of the kernels, in applications of the
surface integral only a small portion of Sy, is considered. For E,; and Egy
the contribution of the region nearest to 7y is most important. Assuming
Equz and Egy to be constant within a small disc of radius g centered perpen-
dicularly over 7y, the weight from (2.21a,b) is simply

e—koA (1/1/112 + p2)ekoVAZ+e?




92 P. Weidelt

whete A =|2,— 20| is the vertical grid point width. Under the same con-
ditions the disc does not contribute to Ej,.

At the vertical boundaries of the anomalous layer the condition E, =0
might be a very crude approximation, in particular for a small grid. Here,
an impedance boundary condition for the tangential component E4; of
the anomalous electric field,

/éEat = 'fl X curl Ea,,

fi=outward normal, A£2(r)=iwpeo(r), petforms substantially better
(Jones, 1964, p. 325).

3. Computation of Green’s Tensor

Consider a normal conductivity structure consisting of a non-con-
ducting air half-space (index 0) and M uniform conducting layers with
conductivities 6., 2 =1,2, ..., M, all different from zero. Let the inter-
faces be placed at the depths 57 =0, hg, ..., hy. To calculate Green’s
tensor for approach C, two mutually perpendicular horizontal electric
dipoles and one vertical electric dipole of unit moment have to be placed
at each point, which will be occupied by the anomalous domain, and the
three components of each resulting field have to be determined for each
interior point of the domain. Because of the hotizontal isotropy, in practice
one horizontal dipole is sufficient.

The calculation of dipole source fields within a layered structure is a
classical problem (e.g. Sommetfeld, 1935; Wait, 1970). In the applications
(e.g. electromagnetic sounding, antenna theory), however, only the posi-
tion of a dipole above and on the structure is of interest. Largely referring
to the above studies, only the modifications due to the position of the
dipole within the structure are stated.

Let the dipole with moment in x;-direction be placed in the u-th layer
at 7o, and let G7"(ro|r) be the resulting field in the 7-th layer at point 7.
The continuity of the tangential components of the electric and magnetic
field at interfaces leads to the conditions

EX(GI ' —GT =0, x curl (G '—GT) =0,

3.1)
2=bp,m=1,... .M.
G, is represented with the aid of a Hertz vector m;:
G (ro|r) = ki 2" (r) — grad div a}(¥), (3.2)

2 . .
whete kpy = iwpoon and m; satisfies

A () = ky w(r) — & Sr—70) k. (3.3)
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For the sequel a cylindrical co-ordinate system (7,4, 2) is adopted and

the dipole is placed at »=0, z=2. The vertical and horizontal dipole
require different treatment.

o) Vertical Dipole

@ has a vertical component only,
7, (r) = g (r)é, (3.4)
where npy satisfies
Amiy(r) = komm(r) — 6(r—1ro)/ k. (3.5)
Eq. (3.1) implies the boundary conditions

- 0 _
O'm—lﬂ;z - O'mﬂgz =0, —a—z‘ (75% - 752";) =0,z =bhn. (3.6)

The general solution of circular symmetry of the homogeneous version
of (3.5) can be built up from terms of the form

Fi(2) Jo(sr), whete fr, =etam@tm) ap =2+ kb, m=0,...,M (3.7a-c)

with b9 =0; s is the constant of separation and /o the zero order Bessel
function of the first kind. The plus and minus sign denote upward and
downward travelling waves, respectively. The solution of (3.5) for a uni-
form whole-space with o =0y is

©

e~kuR B 1 ~ s e—aﬂlz—20|] (sr)ds, R = I’l"~'r ' (3-8)

47k’R  4nk’ ) R N |
0

Now let for 0 <m < M

jyoAﬁfﬁu z2<2o

. 3.9
\paeBs fo 220" O

o0
73 = [ (Pm+ Pm) Jo ds, where Pg, =
0

Az BE, yo and yyr are also functions of s; y¢ and y s being so adjusted
that .A¢§ = By =1. The absence of downgoing waves for 2<{0 and up-
going waves for 2>z, if z¢ is in the M-th layer, yields 4o =B} =0.
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Starting with 4§ =1, 45 =0, the boundary conditions imply for

1<<m < u the recurrence relations

A = (m + 4"—) 5oy Ay
m " (3.10)
o277 — — —
e ( m-1 F xm 1—) Em—1 Am-1,
Om Um
where
& = % exan(msr=hm) g —0,..., M—1. (3.11)

Similarly starting with By =0, By =1, Eq. (3.6) yields for M—1>m

> p the backward recurrence relations

B — (gﬁtl + M) i B;+1 + (Um+1 - 0¢m+1)g1$n Bpi1. 3.12)
Om [ 477% Om O

In the case u =M no recurrence is required for Bp. Having computed
A and B via (3.10) and (3.12), yo and yy ate determined from
- —\ = + +\ o+ —5
(70 Au — M B,u)fu (Zo) = (’}/M B,u—yo Au)f,u (Z()) = _4 . (313)
ok,

The first equality results from (3.9) for z =z, the second from the fact
that the difference in the upgoing (downgoing) waves for 2 >z¢ and z <<z¢
is due to the primary excitation, given by (3.8). Hence,

s Bifu+Bufu

b

YO dm k2T A(A,B) 614
= Ay fu+ A fu
dna k? A(A,B)
where ff = ff (=0) and
(3.15)

A(A,B) = A} B, — A, B}.

When nz, is determined, the tensor elements Gy, Gy, Gy are cal-
culated via (3.4) from (3.2). The field in 2<C0 is simply

G? = — grad (] yo e% Josds) (3.16)
0

7z =



Electromagnetic Induction in Three-Dimensional Structures 95

B) Horizontal Dipole
Let the dipole be directed along the x-axis. The Hertz vector has two
components Now:
7 (1) = mgn(r) & + gy (1) 2. (3.17)
From (3.3) follow the differential equations

Ay = k2 nimy — S(r—ro) ke, Amm = kynmy. (3.18a,b)

Eq. (3.1) yields four boundary conditions at z=/p,:
Om—1 g L — O iy =0, = (om1 At — o) =0, (3.19a,b)

o1t — g™ =0, div(azzz_1 —a7y) =0. (3.19¢,d)

Condition (3.19d) couples nz; and 7y, — Particular solutions of the
homogeneous versions of (3.18a,b) are

fm(2) Jalsr) cos np and fi(2) Julsr) siang ,
where /, is the n-th order Bessel function and f7, is given by (3.7b). Since
the excitation is expressed by (3.8), /o is appropriate for m;,. Condition
(3.19d) then shows that /; cos¢ is the correct choice for 7, (¢ reckoned
positive from the x-axis in direction to the y-axis). Let for 0 <m <M

[%Cifiuzézo

. . (3.20
|02 D fm» 2> 20 (3-20)

ke 73y = [ (Om + Om)]ods, where O, =
0

Then the determination of Ci, Di, 8o, and 87 is quite similar to that
of A%, Bi, yo, and yp, tespectively. Thus the boundary conditions
(3.19a,b) yield for 1< m < u starting with Ct=1, Cg =0:

ct = (1 L "‘"“1) o1 Chit + (1 T “"‘“1) gn1 Croa, (321)

Xm %Am

and starting with Di;=0, Dyy=1for M—1>m >u:

D% = (1 + .f’""_“) Zh D1 + (1 F ﬁ”.il_) 25 D1, (3.22)

Am %Xm
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Again, there is no recurrence required for u = M. The unknowns &g
and dy are determined similarly to (3.13) and (3.14):

K} o+ —
So— > (D D
0 47zocﬂA(C,D)( wSut Dufu)>
(3.23)

+

where fff =f f(zo), and the A-symbol is defined in (3.15). The computation
of zy, is slightly more complicated. Let

o]
ke gy = [ (Riy + Rm) J1 cosé ds,
0

Where ot _ [€0Em+380 Fi) i 2 <20 (3.24)
(emGm + SuHm) fm» 2= 20

Since at each interface four new coefficients are introduced, whereas
there are only the two boundary conditions (3.19c¢,d), two additional
conditions are imposed by equating at each interface the coefficients of ¢
and &g (or ep and 8p7) separately, thus obtaining four pairs of decoupled
recurrence relations (using (3.21 and (3.22) to remove Cp—1 and Di):

B =( ﬁ“‘l)g?;,-l Eha+ (1 = 5"“1)g;,-1 En, (325)
B B

i = (1 . f’;‘*l)gm L Fhoa + ( *";‘l)g;z_l Fa

(3.26)

L (1- om ) (Ch + C),s
zam Om—1

Gh — (1 " ﬂg‘“) & G + (1 B ﬂ;‘“) &G, (327)

m m

11[jE = (1 + -ZH)E ++1 + ( 'BZH) gﬁ; Hn1
m m

(3.28)

o -
L5 (1— m )gfn (D1 + D),

xm Om+1

whete i = am/om.
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To determine g9 and ey, Eq. (3.24) is considered at 2 =2(. Since 74,
has no singularity, upward and downward travelling waves agree. Hence,

o By + 00 Fy = em G, + om Hy,

or
e0 = {A(F, G) 8o + A(G, H) by} | A(G, E), (3.292)
em = {A(F, E) 60 + A(E, H) 6p} | A(G, E). (3.29b)

So far, the starting values for the recurrence (3.25)—(3.28) have not been
specified. Since in the last layer there is no upward travelling wave
below the source,

Gu=1, Gyu=Hiy=Hy=0 (3.302)

is a correct choice of the initial values of (3.27) and (3.28). For the air layer,
a corresponding choice of Eg =1, Eyg = Fg = F{ =0 would be appro-
priate, if the air had non-zero conductivity. In the case of ¢9=0, (3.25)
and (3.26) break down. As a remede recurrence has to start at # =2 and
the coefficients for 7z =1 must be specified. Assume for the moment that
the air half-space is slightly conducting, i.e. £5= 0. Whereas s, is only an
auxiliary function, the quantities &gmg and divay, entering in (3.2), have
a physical meaning and must be finite for 2 <<0. Let

0
kS 70y, = | &o €52 J1 cos ¢ ds.
0

Then div 0 is finite if (50—60)/ég is finite for g9 0. Hence, &y = do.
Satisfying the boundary condition (3.19¢) at 2=0 by equating the coef-
ficients of g9 and 8¢ separately, yields Ei+Ef=0, F1+ Ff=1. Speci-
fying go as the amplitude of the upward propagating wave in the first
layer, the final starting values

Ei=—1,E{=1,Fi=1F =0 (3.30b)

are obtained. This completes the treatment of the horizontal dipole.
Now, on using (3.2), (3.9), (3.20), and (3.24) all tensor elements can be
given explicitly. Let

U= S {Om + O} Jods + Z%S {s(Om + Om) — em(Bm— Rm)} J1 ds,
0 0

Us= — o g (O + On) — an(Rir — Bm)} Ju s ds,
0



98 P. Weidelt

o]
Us = — [ {Ph + Pm} Jos2ds,
0

o0
Uy=— [ {Pp — P} J1 amsds,
0

where Uy =Uj(20, 2, 1), i=1, ..., 4. Then
Gay=U1+Us cos2¢, Gy = Gy ="Us sing cosd, Gyy=U; + Uy sin2p
Gz =Uy cosd, Goy =Uy sing, Gy = Us.

The missing elements Gy, Gy can also be expressed by Q and R
terms, or simpler on using the reciprocity (2.13), as

Gre =—U(z, 20, 7) cosd, Gy =—"Uy(z, 20, r) sing.

The sign is reversed, since the interchange of source and receiver changes
& by z. The nine elements of & can be expressed in terms of the four auxil-
iary functions U to Uy. For /=1, 2, 3 reciprocity requires Uj(zo, 2, r) =
Ui(z, 2o, r). Hence, these functions have to be determined for 2<Czp only.

The tensor elements which transform the electric field within the
anomalous domain into the surface field, become particularly simple. Eqs.
(3.19d) and (3.20) yield

[ce]
3 div g = [ {2 a1 e0 — (o1 +5)d0} €52 J1 cosp ds . (3.31)
0
Hence, defining
o0 fee]
1
Vi= S 60]0 ds + -,—éz; S {(.r—l—oq) 60— 2 o1 80}]1 ds,
1
0 0
1
V2= —_— z S {(.r-—l—oq) 50—20(180}]25!1!,
1
0

=) 0
Vs——:——fy()]o.fzdf, V4=fy0]1$2df,
0 0

©

1
(Sojld.f -+ ?g {(.r—{—ocl) 0 —2 a1 60}]1&1{5,
1
0

Vs=

o—g

where V= Vy(zo, ), Eq. (3.2) yields as tensor elements for z=—0:
Gl = V1 + Vi cos?d, Goy= Vasingcos, Gu= Vs cosd
G = GYy, Goy = V1 + Vasin2g, Gy, = Vssing
G = V4 cosd, Goy = Vysing, G = Vs.
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In 2<C0, the electric field of a dipole in x-direction (say),
0
G = [ 80(® Jo + 2 J1 cos¢) es? ds — grad div 7o, (3.32)
0

where divag is given by (3.31), can be split uniquely into a toroidal part
T (purely tangential) and a poloidal part S,

9=T+S, T =curl (¢ yr), S = grad ys . (3.33)

The poloidal part is due to surface charges at 2 =0. Since the z-com-
ponent of the first term of (3.32) is poloidal per definition, ps and g are
given by

[ee] [ee]
ps = [ 6051 ] cos¢ ez ds — div g, wr = f 60571 J1sing eszds. (3.34)
0 0

The electric field of a vertical dipole is purely poloidal in 2<{0 (cf.
(3.16)). When the kernels for the toroidal part are calculated by (3.33) and
(3.34), the electric sutface field obtained by (2.14) is easily decomposed into
its poloidal and toroidal part. For an elongated anomaly and a toroidal
external electric field, the resulting anomalous field is either almost toroidal
or poloidal, according whether the external field is parallel or perpendicular
to the strike.

In 2<C0 only the toroidal part of the surface electric field gives rise to
a magnetic field. Let F{(rg |r), i=1, 2, be the magnetic field at r due to a
horizontal dipole in x;-direction at 7g. Then from (2.2)

iwuo F{ro|r) = — curtl GY(ro|r), i = 1,2.
Defining
[o0] [eo]
1
iw,uo Wl = S 50 (;]1—-]0) .fd.s‘, iw/to Wz = S 60]2.\'d4‘,
0 0
iopo W3 = —S doJ154ds,

the magnetic field kernels are

Foy=— Wysing cos¢, Fay = Wi + Wy cos2d, Fa, = W3 sing,

Fpy=—W1—Ws sin2p, Foy = Wysing cosd, Fyg, = — W3 cosd.
Hence, the determination of the electric and magnetic surface field

requires the tabulation of eight additional functions (1’7 to 1”5 and W

to W), all functions of z¢ and 7. The range of r depends on the surface
domain, where the anomalous field is to be evaluated.
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4. Numerical Considerations

The integral equation (2.11) or (2.14) is solved by the simple approx-
imate approach of Hohmann (1971). It consists in decomposing the
anomalous domain into a set of equal rectangular cells, assuming a constant
electric field within each cell. For IV cells results a linear system of 3 IV
equations and unknowns. The coefficients are essentially the tensor kernels
integrated with respect to source coordinates (Eq. (2.14)) or observer
coordinates (Eq. (2.11)) over a cell. Care must be exercised in evaluating
the contribution of the singular cell and of its neighbourhood. In general,
the most important contribution arises from the primary excitation in
direction of its moment. Let the dimensions of a cell be 15, 4y, 4, and let

G2, = (k% — 92/9x?) e~*E|(4n £2R)

be the excitation in x-ditection. For an approximate evaluation, the singular
cell Cg is replaced in the first term by a sphere of the same volume and in
the second term by a circular cylinder with axis in x-direction, length A,
and cross-section Ay - A,. It results

k2 [ G, dv = ¢*R1 — (R1|Rg) ¢*R2 — (1 4+ kR3) B3 | 1,
Cs

where Ry= 142, R3=22[4+ dyAsm, RS =3 MzyA)(4 7).

For symmetry reasons, there is no contribution from Ggy and GZ,.
The integrals over the adjacent cells can be effected in a similar way. In the
numerical evaluation of the kernels given in Sec. 3, the integration with
respect to z is easily included by adding in the integrand the factor

2 sinh (ay 2/2)[ oy

by which exp (4 ou2,) is multiplied when integrated over the thickness
of the cell centered at z,,.

The system of equations is solved either iteratively (e.g. by means of the
Gauf3-Seidel method) or by matrix inversion. Because of the large storage
required, the latter method is attractive only for small anomalous domains.
It is of great advantage to exploit all symmetries. For structures with two
vertical symmetry planes, the number of unknowns is reduced to almost
259%,, and hence, the storage for matrix inversion is only 1/16 of the original
storage. For iterative methods, both the computer time for one iteration
and the number of iterations is reduced.

The GauB-Seidel iterative scheme converges only for moderate con-
ductivity contrasts. In numerical experiments it was found that a good
convergence can be obtained for conductivity contrasts up to 1:100 only;
E, was used as initial guess for E. If for higher contrasts matrix inversion
is not possible, the best remede might be to apply the powerful method of
shifting the spectrum as described by Hutson ez a/. (1972, 1973).
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Fig, 2, Induction arrow maps for two different configurations of the anomalous

domain (top). Vectorial addition of the arrow of the left structure and of a

similar structure rotated through 900 (bottom). Only arrows longer than one half
of the length of an arrow head are shown

5. Results

The feasibility of the integral equation approach has been tested for
simple cases. Some of the results are presented below. A complete and
concise presentation of the anomalous field vectors for a three-dimensional
model poses a difficult problem. For a quasiuniform external field, 24
displays of a function over a two-dimensional array are required to give a
complete description of the in-phase and out-of-phase part of the electric
and magnetic field vector for the two mutually perpendicular polarizations
of the cxternal ficld. Four of these displays (in-phase and out-of-phase
part of A, for both polarizations) can be combined to yield an induction
arrow map. Examples of such maps are shown in the upper half of Fig. 2
for two different configurations of the anomalous domain, The bodies of
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Y e

Fig. 3. In-phase and out-of-phase part of the anomalous electric field vector for

a uniform external field in x-direction serving as reference field. The associated

normal magnetic field points in y-direction. A rectangular anomalous domain,

50 km x 25 km x 10 km of p =10 m, embedded in a uniform half-space with

0 =100 m just below the surface is chosen. The period of the inducing field is
120 sec

p=1 2m are 10 km thick and are placed immediately below the surface
of a uniform substratum of o =10 £2m. In-phase and out-of-phasc arrows
are marked by black and white heads, respectively. Only arrows longer
than one half of the arrow head are shown. It has been proved by Siebert
(1971) that the induction arrows for a complex structure, consisting of two
elongated, mutually perpendicular anomalies can be obtained approximaiely
by vectorial superposition of the individual arrows. Along this line, the
lower map of Fig. 2 has been obtained by adding to the arrows of the left
map the arrows of the same structure, rotated through 90°. Since mutual
induction is neglected, the induction effect is slightly overestimated.

The complete set of 24 displays for a different high conducting intrusion
is illustrated in Figs. 3—6. The plots arc thought to provide a qualitative
idea of the fields, although quantitative results can be extracted by a some-
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Fig. 4. The anomalous magnetic field of the model described in the caption to
Fig. 3. The normal magnetic field scrves as reference field

what awkward procedure. The disturbing body is decomposed into cubes
with 5 km edges. There are 10, 5, and 2 cubes in x, y, z-direction, respec-
tively. The complete surface field has been evaluated on a 18 X 13 grid.
On a UNIVAC 1108 computer the determination of all kernels took 70 sec,
the solution of the integral equation and the evaluation of the surface ficld
required additional 50 sec for each polarization, the GauB-Seidel iterative
scheme being convergent after 10 iterations.

In all subsequent figures, only the anomalous fields are shown. The
modulus of the corresponding normal field serves as reference. Fig. 3
presents the electric field for a uniform external electric field in x-direction.
The associated normal magnetic field points in y-direction. Within the
good conductor, the Z,-component breaks down. It exhibits a discon-
tinuity at the front and rear surface since the normal component of the
current density is continuous there, The Ej,-component differs appreciably
from zero only near the corners. The signs are easily understood using the
idea of the electric currents being sucked into the good conductor. The
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Fig. 5. In-phase and out-of-phase part of the anomalous electric field vector for
a uniform external field in -y-direction associated with a normal magnetic field
in x-direction. The same anomalous domain and period as in Fig. 3

magnitude of the F,-component is of the order of £, Its origin are
surface charges: negative charges at the front bending the current lines
towards the surface and positive charges at the rear reflecting the lines
from the surface. Fig. 4 shows the corresponding magnetic field. The signs
are understood using the idea of magnetic field lines expelled from the
good conductor.

Figs. 5 and 6 display the electric and magnetic field for an external
magnetic field in x-direction associated with an electric field in -y-direction.
With the present choice of the dimensions of the disturbing body,
this polarization resembles the two-dimensional H-polarization, i.e. the
anomalous magnetic field vanishes if the anomaly is extended to infinity at
both ends. In the same limit the former polarization degenerates into the
E-polarization case.

After decomposing the kernels G2 and Gy according to (3.33) and (3.34),
the poloidal and toroidal part of the electric surface field can be obtained
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Fig. 6. The anomalous magnetic field vector of the model of Fig. 5

separately. For the E, and £, component of Fig. 3 this is done in Figs.
7a and 7b.

Finally, the transition from three to two dimensions has been investigat-
ed for a particular model. Fig. 8 illustrates that on a central profile a two-
dimensional description is adequate if the length of the disturbing body
exceeds three times its width.

6. Conclusion

The integral equation technique based on Green’s tensor turns out to
be a useful tool in treating three-dimensional induction problems.

It is suitable for small anomalous domains, and here it is of particular
advantage if the anomalous field is required for a set of different conductiv-
ities within the anomalous domain and/or different external fields, for
the time consuming computation of the pertinent kernels has to be carried
out once only. Work is still necessary to develop cffective iterative methods
if the conductivity contrast is large (>100:1). For large anomalous do-
mains, a finite difference technique combined with a surface integral
boundary condition appears to be the most promising approach.
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Fig. 7a. Toroidal and poloidal part of the Ez-component of Fig. 3

Fig. 7b. Toroidal and anomalous part of the Ey-component of Fig. 3
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Appendix
The Tensor Elements for a Uniform Half-Space
For a uniform half-space with o,(2) =0¢ these elements have already
been given by Raiche (1974) in terms of integrals. However, all integra-

tions can be carried out explicitly. Using soutce cootdinates xq, Vo, 20
and the abbreviations.

RE = (x—x0)2 + (y—0) + (2 + 20)2,
g+ = exp (—koRL)/(4nRy), ax=g_ + g1, ko = iwuooo,

[3 = (a/az){lo(%ko[R+—Z—Zo]) . Ko (%—ko[R.;. —l—z —|—z0])} /(27[),

where 7 and Ky are modified Bessel functions of order zero, first and second
kind, it results for z, 29g>0

ki Gag = (kG — 22/0x2) B + (2%/92?) (ar — )

ki Gy = ki Gy = — (92] x 3y)B,

kS Gy = — (92)0 x 02)s,

k§ Gyy = (k3 — 82/3y?)p + (32/92?) (ar — B),

kb Gyp = — (82/9y02) s,

k§ Gy = — (02/020x) o,

k§ Goy = — (32]020y)a,

ks Gop = (kb — 02/02%) .

The vertical components Gz, Gyz, Gz, vanishing for z >0, tend
for 2 >—0 to the limiting values

kY Gy = — (020 x dz20)y, ko Gyz = — (82/3yd20)y,
/é(z) G = — (aZ/azg)y,

where
y — (3)3z0) {lo (% /eo[Ro~zo]) Ko (% kol Ro +Zo])} 2,

R} = (x—x0)2 + (y—0)® + 0.

Since in applications an integration over the soutce or observer coordi-
nates (Eqgs. (2.14) and (2.11), respectively) is involved, most of the above
differentiations need not to be carried out. (Use 9/9x =—0/0x9, 0/0y =
—0/0yg, and e.g. 0x_[0z =— 0ay 020, Oay|03 =—0a_]0Z0.)



Electromagnetic Induction in Three-Dimensional Structures 109

References

Hohmann,G. W.: Electromagnetic scattering by conductors in the earth near a
line soutce of current, Geophysics 36, 101—131, 1971

Hutson, V.C. L., Kendall,P.C., Malin,S.R.C.: Computation of the solution of
geomagnetic induction problems: a general method, with applications.
Geophys. J. 28, 489—498, 1972

Hutson, V.C. L., Kendall, P.C., Malin, S.R.C.: The modelling of oceans by sphet-
ical caps. Geophys. J. 33, 377—387, 1973

Jones,D.S.: The theory of electromagnetism. Oxford: Pergamon Press 1964

Jones,F.W., Pascoe, L. J.: The perturbation of alternating geomagnetic fields by
three-dimensional conductivity inhomogeneities. Geophys. J. 27, 479—485,
1972

Lines,L.R., Jones,F.W.: The perturbation of alternating geomagnetic fields
by three-dimensional island structures. Geophys. J. 32, 133—154, 1973

Motse, P. M., Feshbach, H.: Methods of theoretical physics. New York: McGraw-
Hill 1953

Raiche, A.P.: An integral equation approach to three-dimensional modelling.
Geophys. J. 36, 363—376, 1974

Schmucker,U.: Anomalies of geomagnetic variations in the south-western Unit-
ed States. Bull. Scripps Inst. Ocean. Univ. Calif. 73, 1970

Schmucker, U.: Neue Rechenmethoden zur Tiefensondierung. In: Protokoll
Kolloquium Erdmagn. Tiefensondierung 14.—16. Sept. 1971, Rothenberge/
Westf., 1971

Siebert,M.: Zur Deutung von Induktionspfeilen bei schmalen langgestreckten
orthogonalen Leitfihigkeitsanomalien. In: Protokoll Kolloquium Erdmagn.
Tiefensondierung 14.—16. Sept. 1971, Rothenberge/Westf., 1971

Sommerfeld, A.: Elektromagnetische Schwingungen. In: Frank- v. Mises: Differen-
tialgleichungen der Physik, vol. 2. Braunschweig: Vieweg 1935

Wait, J.R.: Electromagnetic waves in stratified media, 2nd ed. Oxford: Pergamon
Press 1970

Weaver, J.T.: The general theory of electromagnetic induction in a conducting
half-space. Geophys. J. 22, 83—100, 1970

Dr. P. Weidelt

Institut fiir Geophysik der Universitit
D-3400 Gottingen

Herzberger LandstraBle 180

Federal Republic of Germany






