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Abstract. The design of azimuth independent optimum velocity filters for arbitrary
two-dimensional arrays is simplified with zero-order Bessel functions. Similarities with
optimum velocity filters for one-dimensional arrays are discussed. An adequate choice of
the array origin is recommended as it results in minimum length filter components. Simplifi-
cations for the computation and analysis of optimum velocity filters are provided for centre-
symmetric array patterns. Computational experiments are performed on filters to charac-
terize their performance on a large class of likely input signals. Features which can be related
to the twodimensional wavenumber response of the array are described. The filters permit
a control of the signal-to-noise ratio in the filtered output. It is shown that an increase in
this ratio is only obtained at the expense of basically two types of signal distortion.

Key words: Optimum Multichannel Wiener Filters — Optimum Velocity Filters —
Array Geometry — Frequency-Wavenumbers Domain — Filter Characteristics.

1. Introduction

The particular type of velocity filters investigated in this work is based on the
theory of optimum multichannel Wiener filters. Such a theory exists for continuous
(Wiener, 1949; Robinson, 1962) and discrete filters (Robinson, 1967; Treitel, 1970).
Velocity filters designed for two-dimensional arrays with the use of the continuous
multichannel Wiener theory were first described by Burg (1964). Suboptimum velo-
city filters for one-dimensional arrays are discussed by Foster, Sengbush and Watson
(1964). Optimum velocity filters for one-dimensional arrays are treated by Sengbush
and Foster (1968), who compare their superior characteristics with various other
velocity filters as suboptimum doublet filters (Foster ef /., 1964) and pie-slice filters
(Embree, Burg and Backus, 1963). A critical analysis of optimum velocity filters with
regard to their successful application to two-dimensional marine reflection data is
given by Cassano and Rocca (1974). Superior characteristics of optimum velocity
filters and the possibility to control the signal-to-noise ratio of the filtered output
are the main reasons which led to the design of three-dimensional optimum velocity
filters (Hubral, 1972). In the three-dimensional case various velocity filter designs
are possible. It is the azimuth independent type which is shortly reviewed and sub-
sequently characterized here. Examples are given to describe transfer characteristics
and resolution of computed filters. An approximate relationship between the wave-
number response (Krey and Toth, 1973) of an array and the threedimensional Fourier
transform of velocity filters for the same atray is established. The control which
can be exercised on the signal-to-noise ratio of the filtered output is investigated with
the help of computational experiments. Some general rules for the use of the filters
are established, which should be considered in their application.
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Fig. 1. Array pattern in (x,¥) plane and recorded traces indicating the movcout plane
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2. Theory

‘The following stochastic model for actual seismic traces recorded at /V arbitrary
detector locations (X3, Yy), ((=1,...,N) is assumed to be the input for the desired
filter:

w(t) =5t — o) + et —a) +m(2); G =1,...,IN¥) 0

=T Xy + 7y Yi; % =T X +5Y;

5(#) is the common signal in each trace, ¢(#) the coherent noise and #;(#), (i =1,...,IN)
some uncorrelated noise, which may vary from trace to trace. The values oy, (=1,
..., N) are the relative moveouts of a desired plane wave with signal waveform
$(#). The values &;, (=1,...,INV) are respectively the moveouts of an undesired
coherent noise plane wave with signal ¢(#). Rather than designing a filter #;(#),
(#=1,...,NN), (Fig. 1) for just one stochastic input model of form (1) it is assumed
that an ensemble of input traces is to be optimally filtered into the signal «(z). To
achieve this, each ensemble member is allowed to differ only in the values 74, 7y
(Fig. 1) and 7, 7, in such a way that all permitted plane waves from all azimuths fall
into two apparent velocity ranges. The ensemble of signal plane waves is expected
to fall into a velocity range refered to as the pass region, the ensemble of coherent
noise waves into a range refered to as the reject region. The filter 4;(2), (i =1,...,IN)
which is obtained with the assumption that all signals are broad band and all waves
within pass and reject region may arrive at the array with equal likelihood is spe-
cified by the following normal equations (Hubral, 1972):

N
3 AN Pasi(f) + 1Pei(f) + ¥ Prini ()] = Pasi(/); (=1, N) @

2m rotarg/2
Dy, (f) = (12 Arg) | [ exp (—2mifr(g; cos (a— &) — gj cos {a—&))) doedr

0 rog—arg/2
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2n To+ATy/2
Boie(f) = (22 Arg) [ [ exp (—2aifi(os cos (a— &) — o5 cos (x— &) dadr
0 To~—dTy 12

2m rgtarg/2
Bosi(f) = (121 Are) | [ exp (2aifr oj cos (a—&))dodr

0 ro—ary/2

djﬂ(ﬂj(,f) =1

Fig. 2. Time domain cone featuring the limits of normal vectors of permitted moveout
plancs

Alf), ¢G=1,...,N) are the Fourier transforms of the wanted components #;(#),
(f=1,...,NN) of the velocity filter. g;, & are polar coordinates of the detector loca-
tion i in respect to some as yet unknown coordinate origin within or outside the
array. ro and Arg are the moveout limits of the pass region. They are explained with
the help of Fig. 2. Both values describe two inverted cones between which all normal
vectors V = (tg, Ty, 1) of the permitted input signal plane waves fall. » in Fig. 2
corresponding reject region for the coherent noise. Both, reject and pass region
should not overlap with cach other. % and » in (2) arc arbitrary weighting factors
influencing the signal-to-noise ratio of the filtered output. Noise weighting factors
have been used in the context of various filter designs (Deregowski, 1971) with very
good success. Their presence in optimum filter designs is justified by the fact that
large noise weights cause increased rejection of the respective noise (Sengbush and
Foster, 1968). Some negative side effects due to increasing » and » however exist and
will be discussed later on. The solution of Eq. (2) is simplified with the help of zero-
order Bessel functions as shown in the Appendix.
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The (f, £z, £y) transform is an ideal means of analysis (Burg,1964) to characterize
a computed filter with regard to its performance on expected plane waves. It is used
in this work to show the influence of various design parameters, as for instance the
noise weighting factors and the recording patterns, on the filtered output. The
(f, k2, ky) domain of a computed filter is established as follows. The IV atbitrarily
placed filter components #;(¢), (=1,...,IN) at locations Xj;, Y3, ((=1,...,N) are
used to define the following threedimensional operator:

N
a(t, x%,y) = 2 ai(#) 6(x — Xi) 8(y — Y4)

=1

Its Fourier transform is (Hubral, 1972)

N
A, £z ky) =1§1Ai(f ) exp [—27i(ky Xi + &y Yi)] ©)

This three-dimensional transform is periodic in £, and 4y if detector locations
fall onto a rectangular grid. The frequency response of any d-plane wave with the
moveouts

=1 Xi+19 Y1, (=1,...,N; — 00 <7g,7y < + )

can be expressed as:

N
R(f) =i§1Ai(f )exp [—2aif(zz Xi + vy Yi)] *)

This function is obtained from (3) along the line £, =7.f, &y =74f. If no filters
are applied to the detector locations, the array acts only as a wavenumber filter
(Krey and Toth, 1973). The function which is obtained by substituting 4;(f) =1,
(#=1,...,N) into (3) is commonly refered to as the wavenumber response of the
array. It is shown with the help of an example that the wavenumber response, which
is only determined by the array configuration, can strongly effect the characteristics
one wants to force upon the array by designing a specific optimum velocity filter for
it.

3. Array Geometry

For any array and a specific pass and reject region the (x,) origin for the filter
design can be chosen in such a way that the resulting filter length is small. This is
of practical importance as it reduces the amount of computations for the design as
well as the actual filtering process. The real input traces need then only approximate
stationarity over a shorter time interval. Particular array symmetries can in addition
reduce the size of the normal equations, speed up the filter computations and cause
a zero-phase response for any plane wave arriving at the array. As many of the subse-
quent observations apply to most other velocity filters they are only briefly reviewed.
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3.1. Choice of Origin

For a given array an infinite number of velocity filters can be computed for one
and the same pass and reject region. This is achieved by just changing the (x,v)
origin in the filter design. Only one filter is optimum optimorum. Its origin should
be selected in such a way that the largest of all resulting detector distances g;, (=1,
.. .,IN)is atits minimum. This results in the shortest overall moveoutwidth of the pass
and reject region within the array. It is easily seen in Fig. 1 that moving the (x,y)
origin to a place within the detectors reduces the moveouts oy (=1,...,V). Filters
should be as long as the largest moveout difference in the input. This has been shown
by Galbraith and Wiggins (1968) for optimum stacking filters. These filters are in
fact closely related to optimum velocity filters as shown by Hubral (1974). The choice
of origin recommended here leads in the case of two-dimensional optimum velocity
filters to the so-called ‘centre-trace estimate’ filter (Sengbush e# 4/., 1968). The maxi-
mum moveout difference for velocity filters in this work is #pr =27max 0max, "max =
Max (rg -+ Arg(2, 7o + Aro[2). rmax is the maximum moveout value and gmax the
maximum detector distance of g;(=1,. . .,IV) from the origin. The choice of origin
also affects the phase response of filters. This is shown in the next subsection.

3.2. Phase Response

The velocity filter transfer function for a specific broad band plane wave is given
in expression (4). For an arbitrary array configuration and plane wave this is generally
a complex function, thus indicating that both the amplitude of a plane wave signal
and its phase is modified by the filter. As every increase in the phase of a signal
affects a delay, plane waves arriving from various azimuths with even the same
velocity may pass with different delays. This is generally undesired and can often be
avoided by ensuring a zerophase response of the array for all possible plane waves.
The velocity filter is then entirely characterized by the modulus of A(f, £, &y) as
the phase of this transform is zero everywhere. This particular advantage is offered
by centre-symmetric arrays. It is easily verified that the function (4) is real for any
array configuration where for each detector location (Xj;, Y;) another location (—Xj,
—Y;) exists and both have the same symmetric filter component applied to it. That
all filter components obtained from (2) are symmetric and the same for centre-
symmetric paits is verified by substitution.

3.3. Array Symmetry and Normal Equations

Centre-symmetric arrays not only provide simple phase relations, they also reduce
the number of normal Eq. (2) and thus speed up the computation of filters consider-
ably. For any centre-symmetric pair of detectors, the number of normal equations
can be reduced by one. This can again be verified by substitution. Consequently
those arrays may easily be computed where many detector positions fall centre-
symmetrically on few concentric circles. In this case the number of normal equations
corresponds then only to the number of circles.
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Fig. 3. Array pattern

4. Computational Experiments

Although filters are designed to possess azimuth independent transfer character-
istics, the actual filter properties for certain array patterns are nevertheless often
azimuth dependent. One example is subsequently discussed, where desired character-
istics are well approximated. Another example is presented to point out a generally
existing relationship between velocity filter characteristics and the wavenumber
response of the array. The expected least square error as a function of the filter
length (Treitel, 1970) is shown to be also useful in providing some indication
about how well desired velocity filter characteristics are approximated by the actual
filter. An investigation of the noise weighting factors % and v is done on some re-
presentative examples. Increasing the weighting factors reveals that increased atte-
nuation of the noise has to be paid for with a deterioration of signal transfer character-
istics. Increasing v depresses the high frequency content of the filtered signals.
Increasing # causes a ‘pushing effect’ in the characteristics of the (f, £, £y) domain,
which is explained below.

4.1. Example
The atray pattern is the rectangular NV x IV grid (N=35) of Fig. 3. As the 25

detectors can be considered to fall onto six concentric circles, the normal Eqs. (2)
can be reduced to the sixth order. Additional design parameters are chosen as:
ro=0.5, Aryg=1.0, »=0.08 and % =0. The time sampling period of the computed
digital filter is 4 #=1. The first quadrant of the three-dimensional (f, £z, £y) diagram
is shown in Fig. 4 at different levels of frequencies: =0, f=fn/4, f=fn[2, f=3/n[4
and f=fn. fw=1/2 At is the Nyquist frequency. The three-dimensional transform
is periodic with the periods &, =1/Ax, £,=1/4y and f=1/A¢ Fig. 4 (lower right
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Fig. 4, Contours of the function 20 log|A(f, £z, £y)/Amax(f, £z, £y)| in the first quadrant
(0 kg <1/2A42, 0 < ky <1/24y,0< f<1/24¢) at different frequency levels

corner) shows the first quadrant in the plane £, =0. The limit of the circular conc is
indicated as a straight dotted line. The area inside the cone represents the desired pass
region in the (f, £z, £y) domain in which all function values are expected to approx-
imate A(f, &£z, £y) = 1. Outside the cone is the reject region which should hopefully
approach A(f, &g, &) =0.

The desired characteristics of this example are reasonably well approximated
apart from frequencies near f=0. This is typical for optimum velocity filters and has
alrcady been observed on one-dimensional arrays (Sengbush ¢f a/., 1968). The desired
circular shape of the characteristics is reasonably well maintained. If for instance the
width between the —3d B and —12d B contours is defined as the resolution of the



272 P. Hubral

Blky)

0 dB1

-3dB

-10 dB 1
-12 dB

6
_20 dB 1 ] \[UZAX)#
Ky

Fig. 5. Graphs of B(kz)=20 log |A(fn/2, &z, 0)/Amax| for velocity filters (full lines) and
straightforward stacks (dashed lines) as a function of the array size NV

filter, one can state that this resolution is very much independent of frequencies and
azimuths. To give some indication on how the resolution of the filter changes as a
function of NV, the values A(fn/2, £z, 0) are displayed in Fig. 5 as a function of £,
for N=4, N=06and N =8. Fig. 5 also includes the corresponding function A(fn/2,
kg, 0) for the straight-forward stack. It can be seen that for the same IV the resolu-
tion of the filter is of the same order as for the straight stack. To verify this one only
has to shift the respective curves for the same value of V in Fig. 5 parallel to the
k4-axis to have their downward sloping part overlapped with each other.

4.2. Reluctance Tendancy

Certain arrays show a larger or smaller degree of reluctance towards approximat-
ing desired velocity filter characteristics. Some relationship can however be establish-
ed between actually observed characteristics in the (f, £, £,) domain and the wave
number response of the array. As seen by their wavenumber responses L-shaped
and cross shaped arrays favour very much the directions of the array legs, while
triangular or circular arrays reveal far less azimuth dependent characteristics. A
summary of the characteristics of basic array patterns is given by Harjes and Henger
(1973). As various computational experiments have shown, it is not possible to design
azimuth independent optimum velocity filters for L-shaped or cross-shaped arrays
as their wavenumber responses only favour specific directions. The following
example elucidates this point. A velocity filter was designed for the cross array of
Fig. 6 with all other design parameters being equal to the previous example. The first
quadrant of A(f, &z, &y) of the computed filter is shown in Fig. 7 for the frequencies
f=0, f=fn|4, f=fn[2 and f=3fxn/4. Rather than the desired circular conic pass-
region of the previous example, it is this time an inverted pyramidic pass region
which is approximated by the actual filter of this example.

This shows that obviously a strong dependence of the characteristics exists on
the directions of the cross-legs. A good understanding of wavenumber responses of



Optimum Velocity Filters 273

3
-6
N

f=0:0 Kxz0-SAX f=fn/4 Ky=0-5A%
Ky=0-5AY K, =0:5AY

__/—\__/'l\

Dt N

)

_1\
= Ky=0:5 . -0
f=tn/2 098X fz3fn/4  MCOSAX
Fig. 7. Contours of 20 log |A(f, &z, £y)/ Amax (f, &z, ky)| at different frequency levels




274 P. Hubral

arrays can therefore be used to predict already to some extent the actually resulting
but certainly more complex velocity filter characteristics. It is consequently not only
the array size and the number of detectors, but also an inherent reluctance towards
certain directions as already indicated by the wavenumber response which prevent
actual characteristics of computed velocity filters from approximating desired ones.
The (£, kx, ky) transform is a useful means of analysis of a velocity filter as one can
obtain from ic the array response for all possible plane waves. It can however still
not provide any information with regard to the filter performance on uncorrelated
noise nor can it be used to describe the signal-to-uncorrelated noise ratio of the
filteved output. Other functions are equally useful to characterize velocity filters in
this respect. This is shown in the next subsection.

4.3. Expected Errors

The expected error zan provide some general qualitative indications about the
petformance of a computed filter. The basic operation which leads to the design
of a filter, where the IV traces (1) are to be optimally filtered into the signal trace
5(#), is the minimization of the following least-square expression (Robinson, 1962):

N

T
2
=7

i=1

Substituting the computed filter together with the assumed model traces (1)
into this expression provides the expected error (Treitel, 1972). The smaller this
etrot, the better is the performance of the computed filter on the model traces.

The expected error can thus be investigated as a function of any filter design
parameter (i.e. (x,y) origin, detector locations, noise weighting factors, etc.). To
demonstrate the usefulness of an expected error analysis, the first example of sub-
section 4.1 was again used and the normalized errors E/Emax were plotted as a
function of the filter length and rmax =79 + A70/2. The results are shown in Fig. 8.
They indicate that for all values rmax less than A7 the expected errors approximate
small values when increasing the filter length. From a certain length onwards there
is no further reduction possible of the errors and computed filters perform from then
on equally well on the specified ensemble of plane waves. It is obvious that for
instance an increase of the incoherent noise enlarges the expected error. It is however
not so obvious that increasing rmax to be greater than A# causes a similar effect
(Fig. 8). The explanation for this is easily found as for rmax > 47 the conic pass re-
gion no longer fits into the basic period of the (f, £, #y) domain. Overlapping and
partial cancellation of pass regions due to spatial periodicity of the (f, &z, £y) trans-
form cause then tremendous complexities which are commonly known as frequency
and space aliasing effects. An indication of what can happen to optimum velocity
filters for one-dimensional arrays due to space aliasing is provided by Sengbush
and Foster (1968) and Cassano and Rocca (1974). The complexities they describe
for one-dimensional arrays are larger in the case of two-dimensional arrays, partic-
ulary then, when array locations dont fall onto a rectangular recording grid and
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Fig. 8. Normalized expected errors as a function of the filter length

A(f, kg, &y) is consequently not strictly periodic in £&; and £&y. To avoid problems
of wavenumber or space aliasing in the design, rmay should never be chosen to be
larger than A#if detectors fall onto a grid with the spacing 4. This is in correspond-
ence with the conclusions arrived at by Sengbush and Foster (1968) for one-dimen-
sional arrays.

4.4, The Noise Influence

It is assumed that the following random functions represent the ensemble of
plane waves which arrive at the array locations (X, Y3), (f=1,...,N)

() = s(t— @ X +vy Yi) + m(8) 5 (G =1,...,N)

The values 7, and 7y, satisfy the condition }/7} |75 = . In addition the following
equations are true for the power spectra of s(#) and #(¢), (i=1,...,IV)

Bos(f) = tec (f)s Pugn,(f) = rec (f) by, (ij = 1,..., N)

i [Tl < s
= | 0for [ ] > s

The array locations are given by the array of Fig. 3. The velocity filter applied
to the array is the one computed in subsection 4.1 for NV =6.

The output power of the signals as a function of r is subscquently refered to as
P(r) and the output power of the uncorrelated noise as Py. The signal-to-uncorrelated
noise ratio P(r){P, as a function of the moveout r for various weighting factors »
of the filter is shown in Fig. 9a. It is seen that the signal-to-uncorrelated noise ratio
of the optimum velocity filter can be improved by as much as a factor of 2 for
» =300. This improvement however decreases with increasing the moveout r. For
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Fig. 9. a Signal-to-uncorrelated noise ratio as a function of moveout r. Dashed line corres-
ponds to straight stack. b Values of 20 log |A(f, £z, &y)/ Amax (f, £z, £y)| along the line
B,—8

small moveouts 7 the signal-to-noise ratio is never as good as in the straightforward
stack, which is known to be the best incoherent noise rejector, The corresponding
function representing a straight-forward addition is the dotted curve in Fig. 9a.
From the graphs one can draw the interesting conclusion that one can obviously not
have an optimum incoherent noise rejector and an optimum velocity filter (i. e. coherent
signal pass- or reject filter) at the same time. A compromise between both extremes
must and can be found by changing ». The optimum value of v depends on the type
of traces to be filtered. The increased rejection of uncorrelated noise has to be paid
for with a loss in the high frequency content of the passed signals. This is shown in
Fig. 9b for the same examples however only for »=0. To complete the investigation
of noise weighting factors, the influence of 5 on the transfer characteristics is demon-
strated with the help of one more example. A significant improvement of the signal-
to-correlated noise ratio for broad band signals was observed by increasing . The



Optimum Velocity Filters 277

Fig. 10. Cross section of 20 log | A(f, £z, £y)/1max (f, &z, ky)| of a pass-reject filter in the
plane £, =0 for 0-< /<< fy and 0 < &, <1/2A4x

improvement can be as much as a factor of 10. For marine reflection data and opti-
mum velocity filters for one-dimensional arrays the optimum value of » was found
to fall between 0.5 and 2.0 (Cassano e# 4/, 1974). The increased rejection is again
achieved at the expense of distorted signal characteristics. In particular it was observ-
ed that actual pass regions in the ( /, &;, £,) domain of a filter are increasingly pushed
away from reject regions by enlarging %. This happens mainly at low frequencies
and only up to a certain value of 3. The low left corner in Fig. 10 gives a demonstra-
tion for this. The specific design parameters of the pass-reject filter are not given as
they are not needed to explain the effect. For small values of 3 and low frequencics
the actual pass region moves towards the left and forlarge values of 4 to the right. This
interesting result which was constantly observed on various computed filters should
by all means be considered, when applying computed filters to actual traces. Pass
and reject signals for low frequencies which fall close to each other at the pass
and reject limits are mostly influenced by the pushing effect and can cause an appreci-
able change of quality of the filtered traces.

Appendix
Expression @g,(f) can be simplified to

2 Tﬂ‘}-_}ro;’2
D5, (f) = (1/2mdr) | [ exp @nifr Rijcos (a — A))dxdr

0 rg—arg/2
with

Riy = of + of —2 pi 0j cos (6 — &)
and

tan A = (n; sin & — pj sin 5])/(97, cos & — p; COS E])
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This in turn can be written as
ro+ary/2

1
Dsis,(f) = E(; S 102z fr Ryj)dr

ro—A4rg/2

Io(r) is the zero-order Bessel function.
Substituting po=2nf Ry(ro—Aro/2) and p1=2nf Ry(ro+ Ary/2) leads to
the further simplified expression:

Dss,(f) = (1/27 Ry; fAro) - [Int (p1) — Int (po)]

The zero-order Bessel function Zo(r) and even its integral are often available as
mathematical subroutines in a computer software library. If this is not the case one
can expand Int(r) into a sufficiently long series of the form

Int(r) = 2"20(“1)”(’/2)2”+ (@7 +1) - ()3

For expressions @c,c,(f) and @ss(f) one correspondingly can obtain the appro-

priate expressions:
Tot+aTo/2

1
djcicj(f) = -ﬁ S lo(anr Rﬁ)dr

Fo—d7o/2
To+4rg/2

1
qjss](f) = 217 ]0(2nfr Qj)dr
To—A47o/2
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