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Computation of Reflection Coefficients
for Layered Media*

R. Kind

Geophysikalisches Institut, Universitit Karlsruhe. Hertzstr. 16, Bau 42, D-7500 Karlsruhe 21.
Federal Republic of Germany

Abstract. A fast computer program of the Thomson-Haskell matrix formalism
is presented for the computation of the P—SV reflection coefficients R, ,,
R, Ry and R;, for layered solid media. A matrix formalism and a computer
program are also derived for the computation of P reflection coefficients for
layered liquid media and of SH reflection coefficients for layered solid media.

Key words: Theoretical seismograms — Thomson-Haskell matrix formalism —
Reflection coefficients.

Introduction

The reflectivity method of computing theoretical seismograms (Fuchs and
Miiller, 1971) is now a more often used tool for the interpretation of data in
explosion seismology as well as in earthquake seismology. Although this method
has great advantages, it suffers from rather long computer times. This is especially
cumbersome if complete seismograms for the whole earth are computed (Miiller
and Kind, 1976). Therefore increasing the speed of the computations is still a
desirable aim. The central part of the reflectivity method is the calculation of
plane body waves in a layered medium. This problem is similar to the problem
of computing dispersion of surface waves in such a medium. Efficient computer
programs for the latter have been published by Schwab and Knopoff (1972).
In the present paper a fast program is presented of the Thomson-Haskell matrix
formalism for the computation of P—SV reflection coefficients. A computer
program for sound wave reflection coefficients for a layered liquid is also presented.
Because of the equivalence of sound waves in a liquid and of SH waves in a solid,
which was established by Sato (1954), this program can also be used for SH
reflection coefficients.

* Contribution No. 136, Geophysical Institute, University of Karlsruhe



192 R. Kind
Computation of P— SV Reflection Coefficients

We consider monochromatic plane waves propagating in a medium consisting
of a number of parallel, solid, homogeneous, isotropic and ideal elastic layers
between two halfspaces. A potential vector is defined (see e.g. Dunkin (1965)) for
each of the n different media

D=(p; Y05 ¥), i=Ln (1)

where ¢, ¢ and Y, Y are the P wave and SV wave potentials, respectively,
corresponding to waves travelling in positive or negative z direction. The appli-
cation of the boundary conditions yields a relation between the potential vectors
of the lower and upper halfspace:

=M, 2

where M is the Haskell matrix. It is the product of the matrix of the lower half-
space T,, the n—2 layer matrices G;, and the matrix of the upper halfspace T; :

M=T,-G, ,...G,-T,. 3)

The elements of all these matrices are given by Fuchs (1968). Equation (2), how-
ever, cannot be used directly for numerical computations due to an intrinsic
loss-of-precision problem. The delta matrix extension and the reduced delta
matrix extension (Pestel and Leckie, 1963; Dunkin, 1965; Watson, 1970) were
developed to overcome this problem. The 6 x 6 delta matrix of the 4 x4 Haskell
matrix is obtained by computing all possible 2 x 2 subdeterminants of the 4 x 4
matrix. The reduced delta matrix extension allows to work with 5 x5 matrices
instead of the original 6 x 6 matrices, due to symmetry in the elements.

Cerveny (1974) has calculated the reflection coefficients from (2) in terms of
the elements ]\7!,.!- of the delta matrix M of the Haskell matrix M:

Rpp:M14/M11, Rpsz_MIZ/Mll

L L 4)
Rssz_Mu/MUa Rsp:MIS/Mll'

There exists a very important multiplication rule in delta matrix theory: the
delta matrix of a product matrix is equal to the product of the delta matrices
of the individual factor matrices. Therefore the MU« can be computed by multi-
plication of the delta matrices T,, G; and T; of T,, G, and T, (see Eq.(3)). This
solves the loss-of-precision problem. Only the first row M, ;(i=1,5) of M is
needed to compute (4). To obtain this row, one has to perform a matrix multi-
plication of the symbolic form

(1x5), - (5% 5), 4 -+ - (5x5),-(6x5), 4

where (1 x 5), stands for the first row of the reduced delta matrix T, the (5 x 5),
represent the reduced delta matrices G, and (6 x5), represents the required
elements of the delta matrix T, (which is not reduced). The elements of the delta
matrices have been given by Fuchs (1968) and Kind and Miiller (1975). They
will be given in the following, some in a rearranged form, more suitable for
computers.
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The reduced delta matrix extension (Watson, 1970) uses the equality of the
following elements:

(T,.)13=(Tn)147 (Gi)13=(Gi)147 (Gi)zs—_-(éi)lm (Gi)ssz(Gi)M,
(Gi)63 = (Gi)64’ (Gi)31 = (Gi)41 > (Gi)sz = (Gi)42 » (Gi)z.s = (G.’)45 ’
(Gi)36 = (Gi)46 , and (Gi)44 = (Gi)34 =(Gi)43 = (61)33 -1

From this follows that in the product of the first row of T, and G, the element
(T)14 may be omitted if (T}),; is multiplied by 2 and if the 4th row and column
of G, is omitted and 0.5 is subtracted from (G))s5- The element (G)), is already
replaced by (G )33—0.5 in (7). The 3rd element of the (1 x 5) matrix in (5) must
be multiplied by 2 in each multiplication step. In the delta matrix T; only the
first, 3rd and 4th columns have equal elements in their 3rd and 4th row, which
allows the application of the reduced delta matrix extension only for these
columns.
We have in the i-th medium:

o; = P velocity w=angular frequency
B:=S velocity ¢ =horizontal phase velocity
=density k=w/c wave number
d;=layer thickness J=Iimaginary unit
(not defined in the two halfspaces) ;= f7 p;
li=2k*— 2/[32
{]/(’_2/&7_—7 = {]/(*2/B2 c= B
V=
JY1=c?ja?,  c<g JY1=c?B2,  c<B:.
The elements of T, are:
4
T =D Pn @k, )
2w?
(T)l 2=J/2v,
-~ Jjbx

( n)13= 2(,0 (l +2‘n‘n)
(T)IS__j/zv

1 ’
( ,,)16=-—§7(v,,v,,+k2)

For the elements of the layer delta matrix G, the following abbreviations are
introduced:

7 =—2/3~2/cz, W, =sin B/v,, e, =cosP-cosQ;, n=cwp,,
=kv,d,, Y,=sinQ,/v;, e,=1—e, ry=1/n,
Q,:kv,.d,-, X;=sinPv,, e;=W,Y, r=r;
2=t 1, Z;=sinQ;v;, es=X,Z,, Fa=F 7y,
es=WcosQ;, fi=e;+e;,

=Y, cosh, L=t (6)
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Then, the elements of G, are:
(Gie=—n(fa+(exteq)ry)
g13=—13(G)i6+/>
(Gi3=7g13=(G)se
fi=vifites
Ja=r3gi3+/3
g31="r3 fatfans
(Gi)3l =J8s =(Gi)63
(G =e1=f2=(Ges
(Gi)33:f4+0'5
(Gi)61 =183~

The required elements of T; are:

(T)1, = —Kk>—v, v
(TDar=—jp v ©°
(T))31=—j iy k(I, +2v, v})
(T)s1=Jjpy v @

(T)er = — H2 (I} +4K> v vy)
(T)12=2kv,, (7,
(Ax)zzz(ﬁ)sz—o» (T
(T)s2=jdm kv, (T
(TD)az=J2m b vy, (T;
(Te2=4ui Lk vy, (
(Ta=k>—vivi=—=(T)is
(T)2a=—(T})

(71)34= —Jjk
(ﬁ)54=(7})51,
(71)64=#12([12_4k2 v V)=

ralesry+f373)

Dis=2kv}

)2s

)as=Jj2m Iy v
Jas=j4u kv
T)es =4 Iy kv

(Gi)is=—rles+Z;cosP)=(G ),
g23=—n3(G)s+es

(Gr3=7823=(G)ss

(Gar=—r3823—13¢5=(Ges

(G)12=rs(es+X;c0sQ)=(Gse
832 _”3(Gi)1z"6’6

(G)32=7232=(Gs3

(G)s1=—13832+736=(Gos

(G)22=e1=(G)ss

(Gi)25=ZiW

(G)s2 =X, Y.

(T1)55=0

(T)s3=jvi i QK> = 1y)
~2v )= —(F,

(ﬁ)53=j"1 ﬂ1(2k2_[1)
~(Tes-

R. Kind

t)

The time consuming innermost loop in the computer program contains essentially
the construction of the layer matrix G, from (7) and the matrix multiplication (5).
Setting up the elements of G, according to (7) requires about three times less
operations than in the version of Fuchs (1968). In general the matrix T, is complex.
The elements of G, are either real or imaginary. In (5) we have to multiply a (1 x 5)
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complex matrix with a (5 x 5) real or imaginary matrix, if we do the multiplication
from the left to the right. This means 50 multiplications with each step, if the
complex multiplication is separated into real and imaginary part. Fuchs (1968)
multiplied the (6 x 6) matrices G; first, which means 216 multiplications with
each step. The so far probably fastest program for the layered media problem
is due to Schwab and Knopoff (1972). They have in their innermost loop about
half as many operations as in the comparable part of the present version. How-
ever, their program is real, which is sufficient for Rayleigh wave dispersion
computations. For theoretical seismograms, however, the complex version is
required. The FORTRAN program for the computation of P—SV reflection
coefficients is shown in Appendix 1. A normalization process is contained in the
innermost loop of the program in order to avoid overflow problems (see Schwab
and Knopoff (1972)). The normalization is not always required in every layer.
In some cases a few percent of computer time may be saved by omitting the
normalization.

Computation of Reflection Coefficients of Sound Waves in a Liquid
and of SH Waves in a Solid

Satd (1954) has established the equivalence of SH waves and sound waves in a
liquid. The reflection coefficients in both problems are identical if the following
correspondence is used:

V, (=S velocity in the solid) < V, (= velocity in the liquid)
and
V.2 ps (ps=density in the solid) < 1/p, (p,=density in the liquid).

Therefore, after a density transformation, the same computer program can be
used for both problems.

In the following a matrix formalism for a layered liquid medium will be
derived, following lecture notes by Gerhard Miiller. The potential in the i-th
medium is

O, =exp[jlwt—kx)]-[4;exp(—jkvi(z—z;))+ B, exp(jkvi(z—z;)]

with the same denotations as in the previous section and the depth of the i-th
boundary z,.
At the boundaries z=z; we have

CP;,, 09 o, o,
—_=—- and p, =5 =pi 57
cz CczZ ct ct

From this follows

(57 = ()
=mi
Bi+1 Bi
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where

m.=

1

( lipivi+licypi (‘”lipi+1+li+1pi)eXp(2j[idi)> 9)
—lipig+liapi (=Lpioi+1i 0 p)exp2)lidy)

and d;=z; ., —z;, d;=0 and [;=kv;. The exponential term containing x and ¢
and a factor exp(—jl;d;)/(21; ., p;,1) common to all elements of m;, have been
omitted. Repeated application of the same formalism yields

()= e ()= () ()
B,) vt T AR \M,, M,,) \B

From this follows the reflection coefficient (B, =0):

_B,_ My,
PP T M,, (10)
We only need to perform a matrix multiplication of the symbolic form
(Ix2), 1-2%2),_5...(2x2), (11)

in order to obtain M,, and M,,. This is similar to (5), but a difference is, that
in (5) we have one matrix for each medium, whereas we have in (11) one matrix
for each boundary. Computer time is saved, if the matrix multiplication is written
in the following form

iy =il
m"n:exp(Zjlidi)(e‘i —eiz)

i i+1

i i+1 i+1
ep=e  (myp +myy)

i __ i+ i+1 i+1
ey =ey  (myy —myy)

i+1 __
e =l p;i

ei2+l=]ipi+1 (12)

for i=n—1...1 and m}, =0, m},=1. Successive application yields: M,, =m},
M,,=mb,. A list of the corresponding FORTRAN program is shown in Ap-
pendix 2. It should be mentioned, that the two computer programs for a solid
medium and for a liquid medium have identical output for R,, for more than
five digits, if 0.001 km/s is chosen for the shear velocity in the solid medium.
This shows that a mixed model can be approximated with good accuracy if for
the liquid layers a small shear velocity such as 0.001 km/s is taken.

Acknowledgements. This research was supported by a grant of the Deutsche Forschungsgemeinschaft.
The development of the computer program was done at the computing center of the University of
Karlsruhe. I wish to thank Gerhard Miiller for discussions and for reading the manuscript and
Karl Fuchs for reading the manuscript. The manuscript was typed by Ingrid Hornchen.
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Appendix 1. Computer program for the computation of P— SV reflection coeffi-
cients for a layered solid. No provision is made in this program and in the program
of Appendix 2 for zero frequency and for phase velocities exactly equal to layer
velocities. These cases can easily be avoided.

1% SUBROUTINE RECOPS(N¢ArB,RHOsD»U»FREQ?RPP*RPS?RSSIRSP)
2% C

3% ¢ COMPUTATION OF P-SV REFLECTION COEFFICIENTS

4* C

S* C  N= NUMBER OF DIFFERENT MEDIAr STARTING ON TOP
6% C  A(I)eB(I)/RHO(I)» (IZ1sN)= P=VELOCITYs» S=VELOCITY AND DENSITY
7+ € D(I)»(IS29/N=1)= LAYER THICKNESS

8+ C U= PHASE SLOWNESSs FREQ= FREGUENCY

9% C  RPP/RPS/RSS#RSP= COMPLEX PP/PS»SSeSP=REFLFCTION COEFFICIENTS
10% DIMENSION A(N)+BAN) rRHO(N) ¢+D(N)

11% COMPLEX T1¢T2¢T3+T4sTSrRPP/RPSIRSSIRSPPNETPCNICNS T539T763
12% ArT110T210T31rTOLrTOL1rT12¢T15¢T32,TU5»TU2rT35¢T62¢T65¢T137T232T33
13% PIZ3.14159265

14 OMEG=2 . xPI*FREQ

15% C=1./U

16% RK=OMEG*U

17% N1=N-1

18% COM=C*OMEG

19%

20%*
21%
z22% OM2=OMEG*OMEG
234 C  SET MATRIX ELEMENTS OF EQUATION (6)
2ux S=B(N)
25% P=A(N)

26% RRO=RHO (N)

27% S235%S

28% P2zP*P

29% ARGP=1.=C2/P2

0% ARGS=1.=C2/S2

1% IF (ARGP.GE+0+) CNZCMPLX(0++=RK*SQRT (ARGP))
32% IF(ARGP.LT.0+) CN=CMPLX(RK*SGRT(=ARGP)+0+)
33% IF (ARGS.LT+0+) CNSZCMPLX (RK*SQRT(=ARGS) 104)
4% IF (ARGS.GE+0+) CNSSCMPLX (04 r=RK*SQRT(ARGS) )
35% RL=2.*RK2=0M2/52

6% RPP=CN*CNS

37% T1=CMPLX (=S2%*S2%RRO/ (OM2+0M2) 104 ) % (CMPLX (4 + ¥*RK2# 0+ ) ¥RPP+
38% ACMPLX (RL*RL¢0.))

39% T2=CMPLX (Usr0+5) *CN

40%* T3ZCMPLX (00 »=S2%U/ (24 %OMEG) ) * (CMPLX (RL 20+ ) +RPP+RPP)
41% T4=CMPLX (0o ¢ =0+5) *CNS

42 TSZCMPLX (=147 (2. %RRO*OM2) r 04 ) * (RPP+CMPLX (RK2¢0+) )
43% TR1=REAL(T1)

Gux TI1=AIMAG(T1)

45% TR2=REAL (T2)

46% TI2=AIMAG(T2)

47 «*REAL(T3)

46% «*AIMAG(TS)

49* EAL(T4)

S0* IMAG(TY)

S1% EAL(TS)

2% TIS=AIMAG(TS)

53% IF(N.LT.3) GOTO 2000

S4k C  SET MATRIX ELEMENTS (7)

55% C DO MATRIX MULTIPLICATION (5) FROM LEFT TO RIGHT
S56% C U0 NORMALIZATION

57* DO 1000 J=2»N1

S I=N=J+1

59% S=B(I)

00* S2=5*S

ol* P=A(I)

2% P2=p*P

63% THK=RK*D (1)

ou* ARGP=1.-C2/P2

5% IF(ARGP.GE+0.) GOTO 190

6% RAZSQRT (=ARGP)

o7 P=THK*RA

68* SP=SIN(P)

69% CP=COS(P)

70% X=RA*SP

71% 180  ARGS=1.-C2/S2

Tex IF(ARGS.GE«0+) GOTO 200

73% RB=SQRT (=ARGS)

Tux Q=THK*RB

75% SQ=SIN(Q)

To% €Q=C0s(q)

17 Z=SQ*RB

78% 60TO 210

79% 190  RA=-SQRT(ARGP)

80# «S*EXP (THK*RA)

8l% «25/EP

82% SP=EP~EM
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83%
B4 *
85%
86%
87%
B8*
89%
90%
91
92%
93%
Y4
95%
Jo*
97%
98*
99*
100%
101%
102%*
103%
104%
105%
106%*
107*
108%
109%
110%
111%*
112%
113%
114%
115%
lle%
117%
118%
119%
120%
121%
122%
123%
124%
125%
126%
127*
1z28*
129%
150%
131%
132%
133%
134%
135%
136%*
137%
138%
139%
140%
141%
142%
143%*
144%*
145%
l4e%
147%
lug*
149%
150%
151«
152%
153%
154%
155%
156%
197%
158#%
159%
160%
lo1%
le2%
163*
lou*
1o5%
lob*
lo7*
lo8*
169#%
170%
171%
172%
173%

200

210

CPZEP+EM

X==SP*RA

6070 180
RB==SQRT(ARGS)
«S*EXP(THK*RB)
«25/EP

E1=CPxCq
E2=1.=E1
E3=w*Y

R4=R1*G2
F1=E2+E3

=R2* (F2+ (E2+E4) *R2)

=R3*Gl6+F2

F3=GL*F1+E3

FUZR3*%G13+F3

G31=RI*¥FU4+F3I*RY

Gl1ZEl-F4

G33TFu+045

G61==R3%G31-RU4* (E3*RU4+F3*R3)

G15=~R2* (ES+Z*CP)

623==R3*G15+t5

G21==RI*G23-KU*ED

G12=R2* (L6+X*CQ)

632==R3*Gl2-t6

651==R3*G32+RU*EL

G22=E1

G25=Z*w

GH2=X*Y
TR11=TR1*G11+TR2*G21~TI3*631+TR4*GH1+TR5*Go1
TI11=TI1*G1l1+TI2*G21+TR3*G31+T14%GH1+TIS5*Go1
TR22=TR1*G12+TR2%622~T13*632+TRU*G52+TR5*G51
TI22=TI11%612+T12%G22+TR3*G32+TI4*G52+4TI5%6S51
TR33==TI1*G13=T12*%G23+TRI*G33-TI4x632=-TI5*G31
T13 R1*¥G13+TR2*G23+TI3*G33+TRU*G32+TR5*G31
TR44=TR1I*¥G15+TR2*G25-T13*G23+TRU*G22+TR5*G21
TI4U=TI1*G15+T12%6G25+TR3I*G23+TI4*G22+TI5%621
TROZTR1%616+TR2*G1o=-TI3%G13+TR4*G12+TRS5*G11
TISSTI1*Glo+TIZ2*015+TRI*G13+TI4*G12+TI5*G11
TR1=TR11

TI1=TI1l1

TR2=TR22

Tie=TI22

TR3=2.*TR33

T13=2.%T133

TR4=TRY4

TI4=TI44

RMAX=ABS (TRS)

IF (RMAX.LT.ABS(TI5)) RMAX=TIb

IF (RMAX.LT<ABS(TI4)) RMAX=TI4

IF (RMAX.LT<ABS(TI3)) RMAX=TI3

IF (RMAX.LT.ABS(TI2)) RMAX=TI2

IF (RMAX+LT.ABS(TI1)) RMAX=TI1
IF(RMAX.LT<ABS(TR4)) RMAX=TRY4

IF (RMAX.LT<ABS(TR3)) RMAX=TR3
IF(RMAX.LT.ABS(TR2)) RMAX=TR2

IF (RMAX.LT<ABS(TR1)) RMAX=TR1

RMAX=1+/RMAX

TR1=TR1*RMAX

TR2=TR2*RMAX

TR3=TR3*RMAX

TR4=TRY*RMAX

TRS=TR5*RMAX

TI1=TI1*RMAX

TI2=TI2%RMAX

TI3=TI3*RMAX

TI4=TI4*RMAX

TIS=TIS*RMAX

1000 CONTINUE
2000 CONTINUE

C

SET MATRIX ELEMENTS (8)

P=A(1)

p2=pxp

S=B(1)

S235%S

RKO=RHO (1)
ARGSZ1.-C2/S2
ARGP=1.=C2/P2

R. Kind
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174% IF (ARGP+GE+0+) CNZCMPLX (0« r=RK*SQRT (ARGP))
175% IF(ARGP.LT+0+) CN=CMPLX(RK*SQR1 (~ARGP)+0«)
176% IF(ARGS.LT+0+) CNS=CMPLX(RK*SQRT(-ARGS) s0.4)
177% IF(ARGS+GE«0+) CNS=CMPLX (04 +=RK*SQRT(ARGS))
178% RM=RRO*S2

179% RL=RK2+RK2-0M2/52

180% RPP=CN*CNS

181% RM2=RM*RM

182% RL2=RL*RL

183% T11=CMPLX(=RK2204)

164% T13=T11+4RPP

185% T11=T11=-RPP

186%* T21=CMPLX (0« sRRO*OM2)

167% TS1=T21%CN

188% T21==T21*CNS

169% T31=CMPLX (U« »=RM*RK*RL)

190% RSSZCMPLX (U« # 24 *RM*RK ) *RPP

191% T33=T31+RSS

192% T31=T31-RSS

193% T61=CMPLX (=RM2*RL2¢0+)

194% RSS=CMPLX (4 « xRK2*RM2¢ 0 « ) *RPP

195% T63=T61+RSS

196% T61=T61=RSS

197% T23=CMPLX (04 rRM* (24 %*RK2=RL) )

198% T53=T23*CN

199% T23=T23*%CNS

200% T12=CMPLX (RK+RK+U )

201% T15=T12#CNS

202% T12=T12%CN

203% T32=CMPLX (0«4« xRM¥RK2)

204% T45=T32*CNS

205% T32=T32*CN

206% T42=CMPLX (U« r2+*xRM*RL)

207% T35=T42*CNS

208% Tu2=T42*CN

209% To2=CMPLX (4 « X RM2%RL*RK # 0+ )

210% T65=T62*CNS

211%* T62=T62*CN

212% T1=CMPLX(TR1¢T11)

213% T2=CMPLX(TR2¢T12)

214% T3=CMPLX(TR3+TI3)

215% T4=CMPLX (TR4» T14)

216% TS=CMPLX (TRS¢TIS)

217% C DO LAST PART OF MATRIX MULTIPLICATION (5)
218% C COMPUTE REFLECTION COEFFICIENTS (4)

219% DETST1*T11+T2%T21+4T3%T31+T4xT51+4T5%T61
220% DET=CMPLX(1.90.)/DET

221% RSSST1#T13+T24T23+T3*T33+TU*TS3+T5*T63
222% RSS==RSS*DET

223% RPP==T1#T13-T2*T21-T3*T33+T4*T51-T5%T63
224% RPP=RPP*DET

225% T3=T3*%CMPLX(0.5¢04)

226% RPSTT14T12+T3*T324T3%TU2+T5%T62

227% RPS==RPS*DET

228% RSP=T1*T15+T3*T35+T3*Tu5+T75%T65

229* RSP=RSP*DET

230% RETURN

231% END
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Appendix 2. Computer program for the computation of reflection coefficients

for a layered liquid and for SH reflection coefficients for a layered solid.

1% c SUBROUTINE RECOPP{N»A*RHO»UsUrFREGIRPP)
2%
3% C  COMPUTATION OF REFLECTION COEFFICIENTS FOn & LAYEREN LIQUID
4x C
5% C N NUMBER OF DIFFERENT MEDIA+ STARTING NN Top
6% C  A(I)sRHO(I) » (IZ1eN)= VELOCITY AND DENSITY
7% C  D(1)e(I=2)N=1)= LAYEK THICKNESS
8% C Uz PHASE SLOWNESS: FKFEQ= FREQIENCY
9% C  RPP= COMPLEX REFLECTION COEFFICIENT
pYIES C
114+ ¢ FoR COMPUTATION OF SH REFLECTION COFrFICICNTS REPLACE A BY
lex C  SHEAR VELOCITY B AND RHO HY 1./ (B*B*KHO)
13 C
lux DIMENSION A(N)sRHO(N) rn(N)
15% COMPLEX RPPeNI¢NIPPROIPROIPIM2LoMI21EP rr sk
lo* D(1)=0.
17x PIZ3.14159265
los OMEGA=2 . *P I *FREQ
19% OM2=0OMEGA*UMEGA
20% XK=OMEGA*U
21% XK2ZXK*XK
z2* M22=CMPLX(1er0W)

23% M21=CMPLX(0e?04)
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2hx C  Dn MATRIX MULTIPLICATION (11) FROM LEFT Tn RIGHT
25% C USING (12) AND DO NORMALIZATION

6% DO 170 JU=1rN

27% I=N=J+1

2u%* ARGZOM2/ (ALTI)*A(]))=-XK2

29x IF (ARG+GT.0e) NIZCMPLX(SQRT(ARG) r04)
30% IF(ARGeLE«0«) NIZCMPLX(04r=SORT (=ARG))
31% ROIZCMPLX (KHO(I) v Q)

dzx% IF(I.EQ.N) GOTU 171

33x* E1=NIP*ROI

Sux* E2=NI*ROIP

35* E=CEXP (NI*CMPLX(Usr2+%D(1)))

So* E1=E1*(M21+M22)

37% Ee=E2* (M21-M22)

38x M21ZE1+E2

39% M22=f*(El-t2)

40% RMAX=CABS (M22)

41% RM=CABS (M21)

2% IF (RMeGT «RMAX) RMAX=RM

43% E1=CMPLX(1+/RMAX?04)

4y M22=M22*E1

45x M21=mM21*E1

Yo* 171 NIP=i1

47x* ROIP=ROI

byx 170 CONTINUE

49x RPP=-M21/M22

50%* RETURN

S1* END

References

Cerveny, V.: Reflection and transmission coefficients for transition layers. Studia geophys. geodaet. 18,
59-68, 1974

Dunkin, J. W.: Computation of modal solutions in layered media at high frequencies. Bull. Seism. Soc.
Am. 55 (2), 335-358, 1965

Fuchs, K.: Das Reflexions- und Transmissionsvermogen eines geschichteten Mediums mit beliebiger
Tiefenverteilung der elastischen Moduln und der Dichte fiir schrigen Einfall ebener Wellen.
Z. Geophys. 34, 389-413, 1968

Fuchs, K., Miiller, G.: Computation of synthetic seismograms with the reflectivity method and
comparison with observations. Geophys. J.R.A.S. 23,417-433, 1971

Kind, R., Miiller, G.: Computation of SV waves in realistic earth models. J. Geophys. 41, 149-172, 1975

Miiller. G.. Kind, R.: Observed and computed seismogram sections for the whole earth. Geophys.
J.RIAS. 44, 699-716, 1976

Pestel. E., Leckie, F. A.: Matrix methods in elastomechanics. New York: McGraw Hill 1963

Saté, Y.: 2. Study on surface waves X. Equivalency of SH-waves and sound waves in a liquid. Bull.
Earthquake Res. Inst. 32, 7-16, 1954

Schwab, F.A., Knopoff, L.: Fast surface wave and free mode computations. Methods in computational
physics, Vol. 11, B.A. Bolt, ed. New York: Academic Press 1972

Watson, T. H.: Fast computation of Rayleigh wave dispersion in a layered halfspace. Bull. Seism. Soc.
Am. 60, 161-166, 1970

Received May 28, 1976



