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Abstract. Bouguer anomalies for the lunar impact craters Copernicus, Theo-
philus, and Ptolemaeus have been computed. Copernicus and Theophilus
have Bouguer gravity minima. Gravity models assume a zone of ruptured
rocks below the craters.

Ptolemaeus has a strong Bouguer maximum. An isostatic upwelling of
the mantle and instrusions of mantle material have been assumed in the
gravity model. Ptolemaeus may be regarded as an intermediate structure
between isostatically undercompensated craters and mascon-maria.

Key vords: Lunar impact craters — Bouguer gravity — Gravity models.

1. Introduction

Many meteoric impact craters are known on the Earth. Their main structural
properties are a basin, a ring wall, and a zone of breccia and ruptured rocks
below the crater floors (Fig. 1a). This ruptured zone causes the negative Bouguer
gravity of most of the terrestrial impact craters (Innes, 1961; Angenheister
and Pohl, 1969; Jung et al.,, 1969). Low altitude Doppler gravity data with
a resolution of 20-50 km, which permit model calculations, exist for only a
few lunar impact craters. Sjogren et al. (1974c) modelled the negative gravity
anomaly of the crater Copernicus. They replaced the topographic mass deficit
and the rim by surface disks. However, they needed for their model a density
of 3.57 g/cm® which is far too high in contrast to 2.6 g/cm® of the uppermost
crust. In order to reduce the density value, the authors suggested a less dense
debris layer below the crater.

Many of the maria represent another type of characteristic impact structures
on the Moon (Fig. 1¢). The formation of these structures can be described
as follows: High-energetic large meteorites had excavated large, mostly circular
basins. The resulting mass deficiency was partly compensated by an isostatic
or dynamic upwelling of the mantle. Intrusions of mantle material penetrated
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m anorthositic light plains material l:] intruded mantle
crust (basin ejecta or endo- material
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hositic lav
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Fig. 1a—c. Lunar impact structures. a isostatically undercompensated crater, b endogenically modified
crater or basin, ¢ mascon-mare (isostatically overcompensated model)

the thinned, fractured crust and filled the basins to overcompensation with
basaltic lavas. The mass surplusses, which cause the enormous free air gravity
anomalies of some 100 mgal, are called ‘“mascons” (Wise and Yates, 1970;
Phillips et al., 1974). Kunze (1974) suggested a model in which the mass sur-
plusses are compensated isostatically by mass deficits at depth. The mascon
possessing maria are also called *“mascon-maria”.

So far only free air gravity models have been calculated without accurately
considering the topographic effects. In this paper, Bouguer anomalies for the
craters Copernicus, Theophilus, and Ptolemaeus will be presented and models
of the depth structures will be computed (Fig. 2).

2. Calculation of the Bouguer Anomalies

The gravity data used in this paper are from Kunze (1975). Kunze converted
the line-of-sight accelerations to vertical gravity values which were normalized
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to 30 km altitude above mean lunar radius.

Only the data of the southern

part of Copernicus are unconverted ; they correspond to a flight height of about
30 km according to Sjogren et al. (1974a). Nevertheless, the effects of amplitude
decrease and angular shift for these data are small because Copernicus lies
near the subearth point. The gravity values were enhanced by 30% in order
to compensate for the effect of the least squares filter of the orbit determination

program. This program derives the Doppler
(Gottlieb, 1970; Sjogren et al., 1972).

residuals from the tracking data
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The Doppler gravity can be interpreted as free air gravity referred to a
reference plane of 30 km altitude in this case.

Figure 3 shows the elements for the calculation of the Bouguer gravity and
the gravity models. All altidude and depth values in the figures and in the
text are referred to a normal datum of 1738 km mean lunar radius. The altitude
data of the profiles and for the terrain correction are from Lunar Aeronautic
Charts (LAC, 1962). The terrain correction removes the gravity effects of to-
pographic masses above and below the plane of reduction which is the mean
level of the crater floor. It was calculated up to a distance of 100 km using
the formula for a cylindrical slice with a Bouguer density of 2.6 g/cm?.

Kunze (1975) does not discuss the accuracy of his gravity maps. But errors
of 10 mgal seem to be reasonable. A density variation of 0.1 g/cm?® causes
a variation of 6 mgal for a terrain correction of 150 mgal. An accuracy of
100 m for relative heights is given on the LAC charts. A maximum error of
300 m is assumed for height determinations of the terrain correction causing
an error of 10 mgal. The resulting mean error is + 15 mgal for the Bouguer
gravity.

Figures 4-6 present the free air gravity, terrain correction, and Bouguer
gravity for the three craters investigated.

3. Model Calculations

Copernicus (Fig. 4) and Theophilus (Fig. 5) have Bouguer gravity minima.
Therefore the free air minima cannot be modelled simply by replacing the
topographic mass deficit and the rim by surface disks as it was done in previous
works (Sjogren et al., 1974c). As mentioned in the introduction the deficit density
for these previous models is far too high. This suggests to compare the depth
structures of lunar impact craters with their terrestrial analogues.

Many terrestrial impact craters have Bouguer minima which are caused
by ruptured zones below the craters (Innes, 1961). Considering the stress tensor,
the following formula can be derived for the depth parameter of the ruptured
zone (Beals et al., 1963):

R=4 Sshear/(8 Scomp) D

D =crater diameter,

R =depth of the reptured zone relative to the undisturbed topography,
S.hear =tensile strength to cause rupture,

S.comp =compressive strength to cause rupture.

For granitic gneiss Beals et al. calculated R=1/3 D with S_,,,=1.6x 10% and
Sqhear=0.16 x 103 kg/em?. Jaeger (1969) gives for gabbro S.,,=1.8x 10> kg/
cm?; Chung (1972) found that the elastic properties of lunar samples are about
the same as those of similar terrestrial rocks. Considering that lunar anorthosite
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Table 1. Crater and model parameters (compare with Fig. 3), all lengths in km, 4p in gfcm?

Diameter  Depth Altitude of the Model peak

D h plane of reduction anomalies (mgal)
Copernicus 93 3.3 —0.1 - 30
Theophilus 100 4.4 1.9 —116
Ptolemaeus 153 1.0-1.5 1.1 + 92
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comes petrologically close to gabbro and assuming a 50% variation of the
ratio Sgpear/Scomp — that means a variation of the factor 0.33 from 0.28 to 0.37—
the formula R=1/3 D can be used as a first approximation also for lunar
impact craters.

Another parameter for the model calculation is the density difference between
the ruptured zone and the surrounding crust. For terrestrial craters it ranges
between—0.1 g/cm® (e.g. Meteor Crater, Arizona (Regan and Hinze, 1975))
and—0.4 g/cm?® (e.g. Deep Bay Crater, Canada (Innes, 1961)). For the lunar
models the density difference was assumed to decrease slightly with increasing
depth (see Copernicus and Theophilus, Table 1).

The form of the depth structure of the craters was modelled by several
cylindrical disks (Fig. 3). Formulas for the gravity attraction of cylinders are
from Telford et al. (1976). The crater and model parameters for the three craters
investigated are summarized in Table 1.

The crater models of Figures 4-6 show absolute density values which are
based upon publications of Solomon (1974) and Copper et al. (1974).

4. Description of the Craters

The three craters investigated are situated in transition zones between highlands
and maria. The regional Bouguer anomalies are strongly negative. There is
a general trend towards more negative values with increasing terrain elevations
(Copernicus: —40 mgal—2000 m; Theophilus: —200 mgal—4000 m; Ptole-
maeus: — 160 mgal—2500 m and — 180 mgal—4000 m; the plane of reduction
for these examples is at 1.1 km altitude which is also the plane of reduction
of Ptolemaeus).

These values indicate in general an isostatic behaviour of the lunar crust
outside the craters.

Copernicus (Fig. 4) has a Bouguer gravity minimum and a model gravity
of —30 mgal. The ruptured zone of the model reaches a depth of 29 km which
is in agreement with the 1/3 relation. A moderate density difference of —0.15 g/
cm? is assumed for the first cylinder and —0.1 g/cm?® for the next two cylinders.
No attempt has been made to model the gravity high south of Copernicus
because there is no correlation between this high and the topography.

Theophilus (Fig. 5) shows a strong Bouguer minimum shifted 20 km to the
east of the crater center. The pronounced free air and Bouguer gravity low
west of the crater cannot be correlated with topographic features. The map
of Kunze (1975) shows a local extent of this free air low. In this case it is
diffecult to estimate the local anomaly for the model fit. The proposed model
has a deficit density of —0.45 g/cm? for the first and —0.4 g/cm? for the second
cylinder. These density differences are at the upper limit of corresponding terres-
trial impact structures. The depth of the ruptured rocks should be 33 km accord-
ing to the 1/3 relation; however, the model thickness of this zone is 43 km.

Local melting and intrusions of heavy mantle material in the western part
of the crater could explain the shift of the gravity minimum. Possibly these
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intrusions also cause the local relative high gravity values in the region of
the western rim.

These considerations would reduce the high negative crater anomaly and
the associated high deficit density and great depth of the ruptured zone for
the model gravity data to the east and to the south of the crater.

Ptolemaeus (Fig. 6) shows a strong Bouguer maximum shifted to the east
of the crater. The model gravity amounts to 92 mgal. This result is in contradic-
tion to model computations of Sjogren et al. (1974b). They explained the free
air gravity low of Ptolemaeus by means of a topographic mass deficit and
in addition to this a low density crater filling material ; but they did not compute
the gravity effect of the irregular topography in this region. According to Sjogren
et al. (1972), Sjogren and Wollenhaupt (1973), and Sjogren et al. (1974b) the
Apollo laser altimetry yields the effective crater depth of Ptolemaeus to be
500 m less than LAC chart 77 (effective depth is measured from the undisturbed
topography to the crater floor). Recalculations of the terrain corrections for
this higher crater floor show no qualitative change of the relative Bouguer
high.

Following considerations have been made for the model computations.

The 1/3 relation yields a depth of 51 km for the ruptured zone. Pike (1967)
derived a depth (/)/diameter (D) relation for large highland craters (Fig. 3):

h=0.880 D°-3>.

The resulting original depth of Ptolemaeus after the impact should be 5.1 km.

The topographic mass deficit and the ruptured crust caused an isostatic
upwelling of the mantle which reduced the original crater depth. Considering
an original crater depth of 5.1 km a density of 2.6 g/cm® for the uppermost
crust, and a density difference of 0.3 g/cm?® between the mantle and the lower
crust, an upwelling of 4.5 km of the mantle is necessary for isostatic compensa-
tion. A 4 km upwelling has been assumed in the model calculations (cylinder
3 in Table 1) which, however, causes only about 1/8 of the Bouguer maximum.
Intrusions of heavy mantle material have therefore been assumed to fit the
rest of the maximum (cylinders 1, 2, 4, 5, 6 in Table 1). In the eastern part
of the crater these intrusions come close to the surface. The rest of the original
ruptured zone was less intruded by mantle material. This process equalized
the density contrast to the surroundings. This model is consistent with the
reduced present crater depth of about 1-1.5 km.

Other large craters like Humboldt and Posidonius have rilles on their crater
floors which indicate an isostatic uplift and/or endogenic intrusional activity
(Baldwin, 1971; Brennan, 1975). Such rilles are not visible on the crater floor
of Ptolemaeus. They may either not exist or be covered by the crater filling
classified as Cayley material. This material belongs to the light plains which
can be found in more or less large patches over the entire surface of the Moon.

The discussion of the origin of the Cayley formation is controversial. Two
possibilities have been proposed:

1. It is composed of basin ejecta from Imbrium or Orientale (Eggleton
and Schaber, 1972; Chao et al., 1975).

2. It has been formed by other, perhaps endogenic, processes (Soderblom
and Boyce, 1972; Neukum et al., 1975).
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Chao et al. (1975) conclude a highly feldspathic composition of the Cayley
material from investigations of samples. Geochemical remote sensing measure-
ments (Adler et al., 1973) show no significant change in the chemical composition
between the crater filling of Ptolemaeus and the neighbouring highland areas.
These results exclude a high density crater filling by mantle or mare material.
This statement favours the ejecta hypothesis.

Chao et al. (1975) assume a 2-3 km thick filling of Ptolemaeus with ejecta
from the Orientale basin excavation. The density of this material may be equal
or less than the surrounding density. A 2 km thick layer with a deficit density
of —0.1 g/cm? contributes only — 5 mgal to the gravity. Thus gravity calculations
do not exclude a disk of basin ejecta.

According to relative age determinations of Soderblom and Boyce (1972),
the Cayley formation cannot be part of basin ejecta blankets. Neukum et al.
(1975) show that the cumulative crater frequency of the crater floor of Ptole-
maeus lies between the Orientale and Imbrium frequency curves. These results
favour an endogenic origin of some light plains.

Regarding the crater history of Ptolemaeus as proposed in this paper, one
may assume that the intruded mantle material partly melted the original ruptured
anorthositic zone. Some parts of the anorthositic lavas ascended to the crater
floor forming a 2 km thick layer with no density contrast to the surrounding
anorthositic crust. Therefore an endogenic origin of the crater filling is not
in contradiction to the model proposed here.

The Vredefort Ring in South Africa may be a terrestrial analogue to Ptole-
maeus. Its diameter of 100 km requires a ruptured zone of 33 km depth which
is about crustal thickness. Dietz (1963) suggested an isostatic upwelling of the
mantle for this structure which is in agreement with a positive residual gravity
of 20-30 mgal (Uys and Enslin, 1970).

5. Conclusions

The Bouguer anomalies of the 3 investigated craters show that the neglect
of the detailed topographic gravity effects leads to wrong interpretations of
local free air gravity anomalies.

Copernicus and Theophilus have Bouguer gravity minima caused by a zone
of ruptured rocks and breccia similar to terrestrial impact structures. No isostatic
compensation of the mass deficit occurred. Both craters are of the type shown
in Figure 1a.

Ptolemaeus has a strong Bouguer maximum. Isostatic uplift of the mantle
associated with endogenic intrusional activity of mantle material has been
assumed for model calculations and crater history. A near surface mascon
as found in mascon-maria has not been considered because there are no indica-
tions for near surface mantle or mare materials. Neither an ejecta origin nor
an endogenous origin of the crater filling Cayley material can be excluded.

The proposed model shows that this large crater is an intermediate structure
between isostatically undercompensated craters and mascon-maria. This type
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of craters may be termed “endogenically modified craters or basins”. Figure 1b
shows the structural properties of this type.

Acknowledgement. 1 thank Dr. A. Behle for reading the manuscript and helpful discussions.
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