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Abstract. A finite-difference scheme is proposed for studying the propagation
of waves in vertically inhomogeneous media. The scheme can be applied to
either continuous or discontinuous inhomogeneity of the media. When the
inhomogeneity is continuous, the scheme approximates the elastic wave
equation for vertically inhomogeneous media. The scheme cannot be obtained
directly from the elastic wave equation for vertically inhomogeneous media
since it contains additional terms of second order in the increments which are
deduced from the boundary conditions but not from the wave equation. When
the inhomogeneity is discontinuous, the contribution of these additional
terms becomes significant, thus ensuring that the boundary conditions on
discontinuities are satisfied.
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1. Introduction

The solution, by finite-difference methods, of problems of elastic wave propagation
in horizontally homogeneous layered media has received a great deal of attention
in recent years (Alterman and Karal, 1968), but much less has been devoted to
problems of wave propagation in inhomogeneous media. A finite-difference
scheme which approximates the elastic wave equation for vertically inhomo-
geneous media has been given by Kelly et al. (1976). However, their scheme
cannot be applied to horizontally layered media for which the vertical inhomo-
geneity is discontinuous.

In the present work we propose a finite-difference scheme Equations (2.10),

which approximates simultaneously the elastic wave equation for vertically in-
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homogeneous media and the elastic wave equation with the corresponding
boundary conditions for horizontally layered media. Thus the proposed finite-
difference scheme can be applied to vertically inhomogeneous media with either
continuous or discontinuous inhomogeneity.

The response of a vertically inhomogeneous medium can be simulated by a
model which consists of many thin homogeneous layers. Theoretical seismograms
can then be obtained by the generalized ray theory. Chapman (1974) has reform-
ulated the generalized ray theory to avoid approximating the inhomogeneous
model by homogeneous layers. The generalized ray theory of Chapman for
inhomogeneous media involves letting the thickness of each layer approach zero
and the number of layers approach infinity. Hence in Chapman’s theory the
vertically inhomogeneous medium is not approximated by reflecting interfaces.
However, the theory is still in terms of reflections from the velocity and density
gradients.

The considerable success of this theory in the interpretation of seismograms
justifies the simulation of an inhomogeneous medium by considering it as the
limiting case of a layered medium when the thickness of each layer approaches
zero. This limiting process regards every point of a vertically inhomogeneous
medium as an interface point of two homogeneous layers.

Adopting the layered approximation principle, according to which every
point of a vertically inhomogeneous medium behaves like an interface point
between two homogeneous layers, we construct a finite-difference scheme to
approximate elastic wave propagation in vertically inhomogeneous media. It is
then found that the finite-difference scheme resulting from the layered approxima-
tion principle approximates the elastic wave equation for vertically inhomogeneous
media.

The proposed finite-difference scheme for vertically inhomogeneous media
contains additional terms which can be ignored for continuous vertical in-
homogeneity, but whose contribution is considerable when the vertical inhomo-
geneity is discontinuous. Thus, the additional terms ensure that the boundary
conditions are satisfied at discontinuities in the vertical inhomogeneity.

2. Finite-Difference Scheme for Vertically Inhomogeneous Media
with either Continuous or Discontinuous Homogeneity

In order to construct a finite-difference scheme for the motion of elastic waves in
vertically inhomogeneous media, a grid is imposed on the xz-plane and every
grid point regarded as an interface point between two horizontal layers. Hence
such a finite-difference scheme must approximate, for every grid point, the equation
of motion in homogeneous media and the boundary conditions as well. It will be
shown that the scheme, which approximates the elastic wave equation and the
boundary conditions in horizontally homogeneous layered media, approximates
the elastic wave equation in vertically inhomogeneous media.
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Z = 2AZ
n-th layer U,w . A7
. y . =n
Fig. 1. Geometry of the elastic layered medium. On U
interfaces. =-derivatives of the displacement vector
(U. W) are not continuous and hence a distinction

is made between (U. W) and (U, W) z

Since all the grid points are regarded as interface points, the equations of
motion (2.1) and the boundary conditions (2.2) must be satisfied at each point
of the grid. For the case where the components of the displacement vector referred
to cartesian coordinates (x, z) are (U, I¥), the equations of motion in homogeneous
and isotropic solids are:

1 _/1+2,u _Atp

—U,—U.. U, W,..=0
ﬁz Urr U.- ,l'-[ xXx ‘U. XE
: . (2.1)
M At
— W, —-W,, - - -=0
e A2 i+2qu‘
and the boundary conditions for horizontal interfaces z=const. are:
#n( ;+ 7x):,un+l(l—1:+LVx)
()“n+2lu'n) i/Vz-"_)“n (jx:(;"n-!—l +2”n+])LV: +)‘n+1gx
- (2.2)
U=U
W=Ww

In Equation (2.1), 2 and pu are the elastic parameters «?=(i4+2u)/p and
B?=u/p where p is the mass density. In Equation (2.2), U, W and U, W are the
displacements corresponding to the two different layers whose common boundary
18 z=const.=nAdz and whose elastic parameters are A,,u, and 4, ;, f,,, le-
spectively (Fig. 1).

The functions U and W are continuous and continuously differentiable with
respect to x and t. The functions U and W cannot, however, be differentiated with
respect to z on the interfaces z=const. Since every grid point is regarded as an
interface point, derivatives with respect to z must be eliminated. The elimination
of the z-derivatives from the equations of motion (2.1) is achieved by employing
the boundary conditions (2.2).

For the grid imposed on the xz-plane, we let x=mdx, z=ndz and t=pAt,
where 4 x and Az are the mesh sizes, taken to be equal, and A4t is the increment in
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time. The functions U and W and their x-derivatives U,, U,,, W, and W, are
well defined on the grid points. The derivatives U,, U,,, U,,, W,, W,, and W, are
well defined in the layers between the interfaces, but they are not defined on the
interfaces or, equivalently, on the grid points.

For the derivative U, of U with respect to z in the interior of a layer, let U, and
U, be the different limits of U, on an interface, approaching it from above and
from below (Fig. 1). Also, let a similar notation be used for the other z-derivatives
of U and W. Since U,+U, and W,+ W, on the interfaces, U, and W, cannot be
defined on the grid points although U,, U,, W, and W, are well defined there.

In previous works (e.g. Alterman and Karal, 1968; Kelly et al.,, 1976), the
derivatives U,, U,, W, and W, were approximated by one-sided finite differences
which are of first order in the increments, and hence, plane interfaces introduced
an error into the schemes. Outside the interfaces the scheme was of second order
in the increments since two-sided finite differences were utilized. In the present
work, however, we do not use one-sided differences; the derivatives UZ,QZ, W,
and W, which cannot be approximated by two-sided differences, are eliminated
before the introduction of the finite differences.

From the equations of motion (2.1) and the boundary conditions (2.2) we
shall now derive a system of equations from which the z-derivatives of U and W can
be eliminated to obtain a reduced system which can be approximated by two-
sided finite differences.

_ The equations of motion (2.1) must be satisfied on the interfaces for both
U,, W, and U,, W,. Hence

~zy 1z

NI | At 2p
U,+2 0w =— U, -2 20y
e FOBETY
sz—kl"*-—l-!-pﬂwxz: 21 (]”_/1"+1 +2#n+1 Uxx
Hn 41 ﬁn+1 Hn+1
(7 ;l'n+iun T 1 HUn (23)
W, U,=— W,—
ZZ+An+2“n Xz aﬁ tt l"+2#n xXx
j'n+l +ﬂn+1 - 1 _ U 41
= Hn+l+2:un+1 — 0(7%4-1 " ln+1 +2:un+1 i
The first two boundary conditions in Equations (2.2) yield
Uy ljz_un+l gz_:’ _(:u'n_iun-i—l) I/Vx
24

()'n+2.u'n) I/‘72_(2'n+1 +2/'ln+1)—V-I-/z= _(ln_inﬁ-l) Ux'

Equations (5.4) can be differentiated with respect to x (but not with respect to z),
to obtain the equations

Un [sz —Hnt1 sz= —(,ll,,—/L,,+1) I/Vxx
(ln+21un) I/sz_(xn+1 +2:un+1) I/V.vcz= _(ln_ln+1) [Ixx‘

(2.5)
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Some expansions are now required. U, can be expanded in the variable z in
the n-th layer while U, can be expanded in the (n+ 1)-th layer, and similarly for
the other z-derivatives. Here U, is a function of x,z and t and similarly for the
other z-derivatives, whose expansions are given below. For the first and second
derivatives with respect to z we have from Taylor expansions

—AzU,+3 422U, =U(x,z—Az,1)—U(x, z, 1) + 0(4 %)
AzU,+3 422U, =U(x,z+4z,1)—U(x, z,1)+0(42%)
—AzZW,+342* W, ,=W(x,z— Az, 1)— W(x, z, 1) +0(423)
AzW,+3A22 W, =W (x,z+ Az, t)— W(x, z, 1) +0(423)

2.6)

while for the mixed derivatives with respect to x and z we have

—24x4zU,,=U(x+4x,z—Az,t)—U(x—Ax,z—Az,1)—U(x+4x, z, )

+U(x~A4x,2,t)+0(4x42?) 2.7)
-

—2Ax4z W, ,=W(x+A4x,z—Az,1)—W(x—A4x,z—Az,t)— W(x+4x, z, 1)
+W(x—4x,z,t)+0(4xA4z?)

and
24x4zU,,=U(x+4x,z+ Az, t)—U(x—A4Ax,z+4z,1)—U(x+4x, z, 1)
+U(x—4x,z,1)+0(Udx4z%) _ @7,
24x Az W, ,=W(x+A4x,z+ A4z, t)—W(x—A4x,z+ 4z, t)—W(x+4x, z, 1)
+W(x—4x,2z,1)+0(4xAz?).

Equations (2.7); and (2.7), are alternatives and a combination of them will be
taken into account for a reason which will be given later.

The equations (2.3)-(2.6) and either (2.7), or (2.7), provide a system of 14
equations for the 14 unknowns U,, U,, W,, W,, U,,, U,,, W.,, W.., U, U,,,
Weys We,, U(x, 2, t+ At) and W(x, z, t + A1).

The last two unknowns appear in Equations (2.3) in the centered finite-
difference approximation of U, and W,,.

After cumbersome but straightforward manipulation, one arrives at the 2
Equations (2.8) for the 2 unknowns U(x, z, t + 4t) and W(x, z, t + At):

Az(ﬂn+l'_:un) VV,"F'%AZz {(pn+pn+1) qt—[}'n+1+ln+2(ﬂn+:un+l)] Uxx_Gk}
=HUn+1 U(X, Z+AZ, t)"'“n U(X, Z—AZ, t)_(#n+ﬂn+1) U(X, Z, t)+0(A23)
AZ(An+l_;Ln) Ux+—ilfAZZ {(pn+pn+l) I/Vtt—(.un-l':un+1) I/V;cx_Hk} (28)
=(/ln+1+2ﬂn+l) W(X, Z+AZ, [)+(’1n+2ﬂn) W(X, Z—AZ, [)

= [Ant Ay + 2+ o )] Wi, 2,0)+0(42°).
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Here the index k stands for either 1 or 2. G, and H, are the following expressions,
obtained from the system of the 14 Equations (2.3)<(2.6) and (2.7),:

(;Ln+.un) (’In+1+2.un+1)
Ant2
—Wx—Ax,z+A4z,1)— W(x+4x,z, 1)+ W(x—4x, z, 1)]
()’n+1un) (}'n +1 _;Ln)
Ant2

1
Gl:TxAz [An+1+#n+l+ ][W(x+Ax,z+AZJ)

U,+0(4z2)

_ (o1t 1) (G218
2AXAZ in+1+2#n+1

—W(x—A4x,z,t)—W(x+A4x,z—Az, 1)+ W(x—Ax,z—Az,1)]
(}’n+1+:un+1) (An_ln+1)

+ U,.+0(z)
)‘n+1+2#n+1

G,

[A,.+un+ ] [W(x+4x,2,0)

2.9)

lﬂ+ n. n
I_Il ln+1+ﬂn+1+(_—'u)#—+1]

" 24x4z [ TR
—U(x—A4x,z4+4z,1)—U(x+4x,z,t)+ U(x—4x, z, 1)]
Ant

[Ux+4x,z+A4z,1)

+ (ﬂn+1_l‘l’n) I/Vxx"L_O(AZ)

n

1 (An+1 +/‘n+1) “n]
=g | e+ L

[Ux+4x,z,t)—U(x—4x,z,t)—U(x+A4x,z— A4z, 1)+ U(x —A4x,z—Az,1)]
+ 'ln+1+#n+1 (

:un+1

un_un+1) V[/;cx+0(AZ)

For G, and H, in Equations (2.8), the values 1 and 2 of k are alternatives and
actually, any combination

pGi+(1-p)G,, 0=p=l
gH+(1—-q)H,, 0=¢g=l1

can replace G, and H, in (2.8).

The scheme (2.8) with either k=1 or k=2, is not consistent with a scheme for
homogeneous media. However, it can be shown that if G, and H, in Equations
(2.8) are replaced by (G,+ G,)/2 and (H;+ H,)/2 respectively, Equations (2.10),
then the finite-difference scheme, (2.10), for vertically inhomogeneous media is
consistent with the scheme for horizontally homogeneous layered media.

Upon approximating the derivatives in Equations (2.8) by centered finite-
differences we obtain the following formulation, (2.10), for grid points (m, n),
which is accurate to the second order in the increments. In the following formu-
lation, U and W at the point x=mAdx, z=nAdz and t=p At are denoted by U? ,
and W, and G, H, of Equations (2.8) are replaced by (G, + G,)/2 and (H, + H,)/2,
respectively.
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1 [4r\?
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1 (AN [
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14 P 14 P
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i1 _— , 1 (4r?
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n
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Pn \Ax " Hn Hni1
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1 A4r?
2p,4x Az [(;L'H'l—A")(Ur£+l,n-Urg—1,n)
(A )
+()»n+1 + Uny1 +4+1) (Ur5+1,n+1—Ump_1,,.+1—U,£+1,,,+ Unl:—l,n)
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where
an(ln+’1n+1)/2

ﬁn=(.u'n+.un+1)/2
and

f),,=(p,,+p,,+1)/2.

When the elastic parameters 4, u and p are continuous functions of the depth z,
ie. 0(42), 0(4u), 0(4p)=0(4z) the finite-difference scheme (2.10) approximates
the elastic wave equation for vertically inhomogeneous media. When the elastic
parameters are piecewise constant, than (2.10) approximates the elastic wave equa-
tion for horizontally homogeneous layered media. Actually, the finite-difference
scheme (2.10) approximates the elastic wave equation for vertically inhomogeneous
media in which the inhomogeneity may be either continuous or discontinuous.
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Hence the scheme (2.10) for vertically inhomogeneous elastic media is superior
to the scheme which can be obtained directly from the elastic wave equation
given by Kelly et al. (1976).

The scheme (2.10) cannot be used for the free surface (Fig. 1). A second order
approximation scheme for a free surface point has already been given by Ilan et al.
(1975), and will not be repeated here.

3. Synthetic Seismograms

Synthetic seismograms computed by the finite-difference scheme (2.10) for
horizontally layered media are the same as those given by Ilan et al. (1975). Their
scheme for layered media and the present one (2.10), when applied to layered
media, differ by terms which are of second order and can be ignored. Thus for
horizontally layered media, the synthetic seismograms which can be obtained
by using the scheme (2.10) are those already reported by Ilan et al. (1975). The
scheme (2.10) is more accurate than the previously known schemes for vertically
inhomogeneous media since in (2.10) derivatives are approximated by centered
differences, in contrast to what was done in previous works (e.g. Alterman and
Karal, 1968; Kelly et al., 1976) where one-sided differences were also employed.

In a forthcoming work, synthetic seismograms will be presented for vertically
inhomogeneous media with either continuous or discontinuous inhomogeneity,
an investigation which should contribute to the understanding and interpretation
of wave patterns observed on field seismograms.
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