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Extension of Matrix Methods to Structures
with Slightly Irregular Stratification*

A. Cisternas and G. Jobert

Laboratoire d’étude géophysique de structures profondes, associé au C.N.R.S.,
Institut de Physique du Globe, Université P. et M. Curie, F-75230 Paris Cedex 05, France

Abstract. A perturbation matrix method is proposed for stratifications differ-
ing but slightly from the classical ones (parallel planes; coaxial circular
cylinders, concentric spheres). It implies the simultaneous evaluation of the
effects of a dislocation field and of a body forces field.

The theory is applied to the case of Love waves travelling in a medium
consisting of a layer over a half space, the layer having a localized per-
turbation. The response to an isolated incident surface wave mode depends
on the shape of the perturbed region, and can be obtained analytically in the
frequency domain to the first order in the perturbation. Inversion to the time
domain is done numerically. The perturbed phase velocity depends on the
shape of the perturbed region, and can be obtained analytically in the
frequency domain to the first order in the perturbation. Inversion to the time
domain is done numerically. The perturbed phase velocity depends on the
position of the observer, and on the sense of the incident field.

Key words: Matrix methods — Irregular stratification.

1. Introduction

Since the early determinations of local phase velocity by the method of tripartite
stations, different authors have found that the measurements over tectonic
regions show anomalous oscillations. In fact, it is reasonable to expect that the
presence of continental margins, ridges, basins, and other geological features
may produce important deviations from the case where the heterogeneity of the
medium is only vertical. Alexander (1963), in a very careful study of the crust in
California showed examples of this effect. Moreover, the development of global
tectonics has reinforced the need to study lateral heterogeneities in order to
understand the physics of plate motion and the changes in the deep structures
due to the convection process. .

*  Contribution IPGP n°® 223
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Several theoretical works produced lately are reported by Woodhouse (1974).
They consist in the application of either the representation theorems or per-
turbation methods or the variational techniques to specific problems, and they
require the boundary conditions of the perturbed problem to be satisfied
approximately. The work done by Jobert (1975, 1976a,b) on the application
of the Thomson-Hakell (later T.H.) method to a generally stratified medium,
allows us to use the perturbation method in a very general context. Moreover,
the procedure leads to the automatic evaluation of a system of secondary
sources that replaces the geometrical perturbation.

In this paper we present rapidly the fundamentals of the method, and we
illustrate the theory with an application to the case of a Love wave field
travelling against a perturbed region.

2. Notation

Summation over repeated literal indices is used unless they are present in both
sides of an equation. Latin indices run from 1-3, greek indices from 1-2.

5;=col(8} 67 67)
are the unit vectors,

I1={6,}={6}={067} is the unit matrix.
AT is transposed from A.

ais Iis |i

are respectively the partial, covariant, contravariant derivatives with respect to y

V=col(d, d,05)
A=Vz-65+6,-Vz"
G ={G,;} is the covariant metric tensor, with contravariant components G“
F"Jc =% G [al ij + aiji - am(;ij]
are Christoffel’s symbols

u displacement vector with contravariant components u*
T={T"} stress contravariant tensor

7 is the stress vector acting on a y*=const. surface, t/= T3/,
o angular frequency

p density, 4, 4 Lamé’s parameters functions of y* only.
Kk=A(A+2p) K'=p/A+2yn) e=rx+«

V,=V(+2w/p Vs=1/;% P, S wave velocities

¢(w) phase velocity

¢,(w) phase velocity of the n™ mode.
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k=w/c wave number, kps=w/Vp
V=yk*—ki S=yk*—k?

C, primary source

C, secondary source

3. Extension of the T.H. Method to Quasi-Plane Stratifications

The method which we shall use here has been already presented in two previous
papers (Jobert, 1975, 1976b). We shall follow the derivation made in the first of
them.

The physical properties of the medium are supposed constant on each
member S of a family of surfaces. These surfaces differ but slightly from parallel
planes defining a Cartesian system of coordinates (x%). The x> axis is normal to
the stratification. A system of curvilinear coordinates (see Fig. 1) ()") is chosen
such that y3 is constant on each S and

yr=x'  y?=x* y +ez(y)=x> (1)

Here e=0(1), z=0(y%) and is subjected to other conditions discussed later.
The metric tensor covariant components are deduced from

ds?=dx'dx'=dy*dy*+(dy® +edz)?.

It is easy to see that we may write then

Gy=0;+¢eA,; &)
with
A={4,}=Vz-85+8,-¥zT. 3)

The contravariant components are
Gi=§"—¢gAY

where, to terms in ¢?, we may replace 47 by A4,;.
From these expressions it is possible to show that the only non zero
Christoffel’s symbols are given by

I}=¢0,;z. 4

3.1. Equation of Motion

The elastic force e is derived from the stress tensor T by taking its divergence
el=T"|,=0,T+ I}, T™ + I}, T™™

Using (4) we may write

i =0,T" +£[(03,2) T™ +64(0,,,2) T™]. (5)
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Fig. 1. Quasi-plane layered structure. The properties of
the medium are constant on each surface S. The
coordinates (x', x?, x*) refer to the unperturbed, plane
layered, medium, and (', y2 y%) are the local
coordinates on the surfaces §

We shall sort out the components of the stress vector t from the other elements
T**, we may write (5) as:

=01+ 0, T +¢b"

3 3, A 3 (©)
=037+, +eb,
with
b =(0342) T+ (D552) T o

b2 =3(0,,2) T+ 2(0,32) T +(,p2) T .

After a Fourier transformation with respect to time, the equation of motion may
be written (keeping the same notation for the variables and their transform)

e+fi=—paw?u (8)

where f7 are the body force components.

3.2. Hooke’s Law

The other equations are given by Hooke’s law
TY=1divu GY + p(u'} +u'|').

Using Christoffel’s symbols we obtain

T4 =2 GU(@u* + Bk u™) + p[ G (3,00 + LI + G™ (3, + I} uP)]

mp
=AT+emY 9)
with
AY(u)=28Y0,u* + u(0u + 0 u') (10)
M'i(u)= 2[6"(u" - 2,V z) — AY G "]
+ulu’(@,Fz-85+0,Fz-85)—A"8,u — A™3,u'] (11)

(not tensorial expressions).
We may write in particular

AP =405 +2p 0,0t =(A+2p) G u* —2p b0
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so that
AP =16 [A> +2p 0w (A +2p) + u(0,u8 + 0,u")
=k 6P A>3+ 20k 6% 0,u" + p(0,u° + 0,u%). 12

To eliminate T* from (6.1) it is possible to apply the differentiation 0p since K
and u do not depend on y’. We may also write

=A% 4 IT%. (13)

3.3. Primary and Secondary Fields

We shall decompose the total field into a primary field (valid for ¢=0) and a
secondary field due to the perturbation of the stratification:

u=u,+eu
(14
T=T,+¢€T,.
Equation (13) becomes
t{,+sr;'=A3f(up—.|-sus) +e T3 (up)
or . T
=4%(u,) (15)
ti=A% )+ 11 (u,). (16)

Similarly the system (6) (8) becomes 03(t] +&17)+dp(ch+e18)+ebl+f3 =
—pw’(ul+eul)

03(15+e1)+05(A (w, +su) + e I (u,) +e b3 +1*= — p 0 (u3 + e )
or

4Oy = —p 0
0315+ 054 () +f*= —pw® U}

032+ 0,1+ b3 =—pw?u} 18
0372+ 0, A (u) + 0,1 (u,)) + b3 = —po®ul (18)

The system (15) (17) corresponds to the non-perturbed problem. Introducing the
T.H. vector X=col(ut) we obtain the first order differential equation

0,X,=MX_,—C, (19)
where

-G

M, Mj]
M, = —(8,05+0567)0, — (6,05 +6,03)0,
M, =pu"'diag (1 1 k) (20)
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My=—pu[~8,07(ki+4ed;,+0,,)— 0,07 (k+4ed,,+0,,)
+6505kZ+(2k+1)(6,6%+6,67)0,,]
C,=Col(0001f213). (21)

The system (16) (18) corresponds to the secondary field induced by the in-
teraction of the primary field with the perturbation of the stratification.
We may write it as

0;X,=MX;—C; ' (22)
where C; is given by
pCs=Col(IT*3(u,), I1**(w,), ' IT**(u,), u(b* +0, IT**), u(b* + 3, %), 1 b%). (23)

The first 3 components correspond to a dislocation field, the 3 others to a body
force field.

4. The Passage of Love Waves through a Region of Irregular Layering

We are going to show an application of the above theory. For the sake of
simplicity we consider a Love wave travelling against a localized irregularity
(Fig. 2). The unperturbed medium consists of a layer of thickness H over a half
space. The index 1 refers to the layer, the index 2 to the half space. The shape of
the irregularity is given by a function z=2z(x!, x3). We select as primary field an
SH field with particle motion along the x? axis, and propagating along the x?
axis in the positive sense. We have, thus, a plane problem, and we may see that
only the second and fifth terms in (23) are different from zero. We keep these
terms and write (23) in the form:

(8
where

%= —pd,, 0,1 (from (1)),

0T = —1d,(A,,0,u%) (from (11)),

br=(0332) 1> +(0342) T**

(0332)T° +(0342) (from (7)),
=ul0332- 034> +05,2-0,u°]

Ay3=205z; A;,=0,z. (from (3)).

If, moreover, the perturbation is only a function of x!, we have b*=0, 4;;=0,
and then (24) takes the form:

0,z-0,u*
)), 25)

Cs=- (61(612- T23
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incident field: LOVE mode n
Lo

R s
Fig. 2. Geometry of the example: Love wave
propagation in a medium consisting of a layer
over a half-space. The perturbation z=z(x!, x?)
is located near the origin of coordinates. The
figure shows the case of variation with respect
to x! only x3

¥ perturbation
Z:Z{X']

that represents a continuous distribution of sources, generated by the primary
field u®, T*3, over the region where the values of 4,z and @, , z are different from
ZETO.

From here on we drop the indices in u?, T?3, since they are the only
components that are being used.

4.1. The Primary SH Field

We have chosen as primary field an incident Love wave (mode n) travelling in
the positive sense along the x! axis. Then the field at the surface, in the
frequency domain, is written as:

X(0)= (;) _ (S(w)(e)iknx') Bt

where S(w) is the spectrum of the displacement at x' =0, and k, =k, (w) is the
wave number. A frequency dependence of the form exp(—iwt) is assumed.

At depth x? the field is given by the well known formulae (see for instance,
Woodhouse (1974), though the notation is somewhat different):

. coshv§, x3 .
X(X3): (un) elk"x :S(CU) ( ) ‘vln-)z 3) elk,,x : (x3 gH}
L [y Vi, sinh vy, x
{ (27)
=S(w) ( s )Cosh Vi, H - efln=! Vi1 (03> )
—HaVay
where vi,=1/k2—kZ, i=1, 2.
The wave number k,(w) satisfies the period equation:
Ha vh,-coshvy, H+p, vy, sinhvj, H=0. (28)

4.2. The Fourier Transform of the Secondary Field

We Fourier-transform the problem with respect to x'. The transform of the
secondary source (25) is

_ o . B ke
C=— [ et (;;g f};))dxi=(k—k,,)z(k—kn)(k";’j*) (29)
— 1 1 n
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where we have used the fact that the spectrum of the primary field (27) is
proportional to §(k—k,). In fact:

0,20, u=[ikz(k)][ik,u]

.—_%[ikz‘(k)] *[ik,2mu,d(k—k,)]= —(k—k,) Z(k—k,) k,u,.

The star indicates convolution.

4.3. The Secondary SH Field

We assume that the field produced by the secondary sources at the surface is:

x,0 = (%) (30)
where i is to be determined.

We may continue the field at depth x® by the use of propagators (Gilbert
and Backus, 1966):

Xy (x%) =P(x*, 0)X5(0)— [ P(x* ) Cs(O)de 31)
0

where the propagator for the case of Love waves is (Woodhouse, 1974)

coshg  sinhg/uv*

P2t = (,u v'sinhg  coshg

) a=r-t) (32)

and permits the passage from X(,) to X({,).
The radiation condition in the half-space implies that the coefficient of
exp(v§ x*) must vanish. We must then have (Appendix I):

ug-Ap(k)—(k—k,) Z(k—k,) S(w)

Loy STHBL ST +pyviley € =By CT)/py vy

+2p,coshvi, H-/vi]=0 (33)
where

A (k)=coshvi H+sinh v H-(u, vi/u, v3)
is the Love determinant;

oy =k, +k(vi,/V);  Bi=k,—k(i/v) (=12

S* =(sinh v}, H +sinh v§ H)/(v$,+v})

C* =(cosh v}, H—cosh v§ H)/(v$,+v3)

+ __ S S
Vy =Vt Vi
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We obtain, thus, the displacement at the surface for the secondary field in the
form:

ug=S(w)(k—k,) z(k—k,) F(k,k,)/4 (k)
where

F(kk)=0a;S™+B, ST +uvi(e; C~ =B, C)/uyvs
+2p,coshvy, H/vy. (34)

4.4. Evaluation by Residues

Inversion to the spatial coordinates is done by the Fourier integral:

S(w)

u(x! Ow)———j(k k,)z(k— k)F(k’k)

a,m o 33

The integrand has poles at the zeros of 4, (k), and branch points at k; , kg,. If no
additional singularities are introduced by the function Z(k), it is possible to
evaluate ug by the residue theorem. If x' >0, it is necessary to close the contour
on the half-plane Im k>0 to obtain the transmitted field:

uf (x1,0;0)=iS(w) Y. (k,—k,)z(k,,—k )F(k"" Ka) it
m¥n L(km)
+Body waves. (36)

In the case x* <0, the contour is closed on the lower half k-plane to evaluate the
reflected field:

u (x"0;w>=iS(w)Z(kw&.)ﬁ(k#kﬁ%e"k .

+Body waves. (37)

4.5. Numerical Results

The first order perturbation may be evaluated exactly in the frequency domain
by means of expressions (36), (37). The part corresponding to body waves is
obtained in the form of branch line integrals. To test the method, we select a
long period incident Love fundamental mode, in such a way that the coupling
with body waves would be negligible.

In Figure 3 we show the amplitude of the incident field: lS(w)I, the funda-
mental mode, and the amplitude of the response function: (k, —k,)z(k,,—k,)
-F(k,,k,)/4;.(k,), for each higher mode, up to m=35, for the case of a bell-shaped
perturbation of exponential type. We have chosen a layer thickness H=30km,
and a perturbation width of the order of 30 km. The velocity of shear waves in
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T £ ] T T T T
I, a2 i
60 2 _ ga%]
50—
incident field
| fundamental ,_,-"
mode 27
p
\
= /
.l‘
7
K4
ol
¥
w /
o o/
L s
> 7
E [ higher
= modes il
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2 s function \ N
% i
L \ i ol
!
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!
|
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|
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30 20 10 5 a 3

PERIOD (sec)

Fig. 3. Case of an exponential perturbation: z=exp(—a(x')?). The dashed line shows the amplitude
spectrum S(w) of the incident fundamental Love mode, peak amplitude is about 10s. The solid lines
show the product |(k, —kg) Z(k,—kg) Fik,,ko)/Ay(k,) for m=1 to 5. The parameters are: H
=30km, a=0.003, ¥;, =3464 km/s, Vi,/ Vs, =1.297, u,/p, =2.159, z, ., =1km

the layer is V,, =3.464km/s; Vi,/Vs =1.297; u,/u,=2.159; the maximum de-

viation {rom plane layer geometry is z,,,, =1 km. From the figure, it is clear that

the product of the incident field and the response function will be significative
only for the first higher mode. The contribution of the other higher modes (and
of body waves) will become very small due to the weak coupling with the chosen
incident tield.

Since the exponential function decays very sharply for large x', the per-
turbation is very concentrated in space. To see the effect of a larger spreading,
we have chosen an algebraic function z(x')=a?*/(a®+(x")?). The results are
shown in Figure 4 for the higher modes m=1,2. The elastic properties and the
geometry of the above example are employed. It may be seen that the coupling
becomes stronger, since the response amplitudes are larger than in the previous
case.

Figure 5 shows the inversion of the displacement to time for the incident
field, and for the first higher mode at x' =0. The inversion has been performed
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100—
higher

modes
response

@
o
I

incident field.”
p

fundament,,”

AMPLITUDE

PERIO D (sec)

Fig. 4. Case of an algebraic perturbation: z=a?/(a* +(x"')?). The parameters are the same as in
Figure 3, except a=15. A stronger coupling may be observed in relation to Figure 3

numerically by means of the Fast Fourier Transform, for the displacements of
the transmitted field (36). The maximum amplitude ratio is of the order of 5%
for the first mode, and it becomes several orders of magnitude smaller for the
other modes.

The knowledge of the analytic form of the perturbation in the frequency
domain allows us to compute the perturbation to the phase velocity analytically
without going to the time domain. In fact, if we take only one of the terms in
(36), the one which corresponds to mode m, we may write the local displacement
in the form:

ir=A, exp(i(@, +k,x") + B, exp(i(¢,, + k,, x")) (38)
where the amplitude B,, is much smaller than A4,, the amplitude of the incident
field; @, and ¢@,, are the phases of the incident and secondary fields at x' =0,

respectively. The perturbed phase velocity may be shown to be equal to
(Appendix II):

C(XI,CO)%C(CU)/[I +(X(Cﬂ/Cm—1)COSAqD] (39]

where «=B, /A, Ap=0¢,,—¢,+(k,—k,) x" and ¢(x',w) depends upon the po-
sition of the observer.
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Fig. 5. Theoretical seismogram to show the relative importance of the secondary to the incident field
for the case of Figure 4. The maximum amplitude of the first mode is about 5%, of the maximum
amplitude of the exciting field. The amplitude of other higher modes and of body waves is orders of
magnitude smaller

3.8/ I ) [ A | 3.8 T 7 T T
~ . o .
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£ | ¥ ] £ 1 ‘4
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. |- - |
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3l et 4 s Y -

'.'-'-..I "'==.-
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6 PERIOD (sec.) 7 PERIOD (sec)

Fig. 6. Phase velocity as observed over a basin with the shape indicated in Figure 4. The observation
point is 50 km away from the axis x =0, and on the side of the transmitted field. The perturbation
disappears at the cut-off frequency

Fig. 7. Same as in Figure 6, but the perturbation is now due to a ridge of the same dimensions
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A calculation of the perturbation has been made for the case of a basin (Fig.
6), and for a ridge (Fig. 7). In both cases it is possible to observe the phase
velocity oscillation that has been reported by several authors (see for example
S. Alexander). It is clear that the mode interference is the cause for such
oscillations in much the same way that has been indicated by Thatcher and
Brune (1969), and by Boore (1969), for other mode interference phenomena. The
perturbation to the normal phase velocity curves disappears at the cut-off
frequency of the first higher mode, about 11s in this case. When x! is very large,
that is to say, at great distance from the perturbed region, the wave trains
separate in the seismogram due to the fact that the velocities are different for
different modes, and the phase velocity returns to the normal values.

Another related question refers to the fact that phase velocity measurements
at a point close to an irregularity give different values when we change the sense
of propagation of the incident field. In one case we measure transmitted waves
and we should employ formula (36), in the other case a reflected field is
measured and formula (37) should be taken into account. Since the transmitted
field doesn’t contain a perturbation for the incident mode, m=n, and the
reflected field does contain such a perturbation, different results should be
expected. Our results disagree with those of Herrera (1964) and we believe this
due to his incomplete consideration of the effect of the perturbed boundaries.

5. Conclusions

The Thomson-Haskell matrix method may be generalized to media with a
stratification that differs slightly from the plane parallel case. The effect of the
slope and curvature of the surfaces on the incident field may be represented as a
continuous distribution of secondary sources located at the region where the
plane parallel geometry is perturbed. The perturbation field is then obtained by
the application of the same operator that generates the solution of the unper-
turbed problem. In other words, the secondary field is expressed as a super-
position of eigenvectors of the unperturbed problem.

In the case of Love waves (plane problem), the secondary sources excite
transmitted and reflected surface waves and body waves. The transmitted field
doesn’t modify the incident field to the first order, in the case where the latter
consists of a single surface wave mode. The expressions for the first order
perturbation may be calculated analytically in the frequency domain. The
contribution to each mode depends upon three factors: the spectrum of the
incident field, the spectrum of the horizontal variation of the perturbation, and a
vertical interference function.

The perturbation of the phase velocity may be calculated analytically also.
The known oscillations of the phase velocity are found in this way. The
perturbed phase velocity is associated with the interference of the incident field
and the excited secondary modes. The measured phase velocity will be de-
pendent on the position of the observer, and on the sense of propagation of the
incident field.
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Appendix I: Generation of the SH Secondary Field

The Thomson-Haskell vector at the free surface is assumed to be:

o (i
X(0)= ( 0).
Thence, the Love wave propagator gives at depth H [see (27) and (29)]:

H

X(H)=P(H,0)X(0)— [ P(H, () C5({) dC
0

_[ coshq, sinhq,/u, vi] (125)

|y, v sinhg, coshgq, 0

cosh g% sinh g¥/p, v§ k,coshvi,{
al ()

H
ol .
| ku, vi,sinhvj,

o Ly, visinh g¥ cosh g%
where
q,=viH, qi=vi(H-{), K=-S(w)(k—k,)z(k—k,).
After the integration, we obtain:

coshg, ]+K[ o0, S”+p, S ]_(r)

X(H =
(0= [#1 visinhg, pyviley €™ =B, CY) s

where:
S* =[sinh v}, H +sinhv{ H]/(v{,+v}), k,=a;+p,
C* =[coshv$, H—coshv H]/(v$,£V}), kv,/vi=a,—B;.

At depth x> H we continue the field in the form [see (27) and (29)].
X(x*)=P(* H)X(H j P(x* () Cs(0)dL

_[ coshgq, sinh q,/u, vz] [r]
~ Lu, vy sinhg, coshg, s

3 .

* cosh g% sinh g%/u, v5

+K cosh v, H e | [ kG 92/t 2]
U, V5 sinh g% cosh g%

[ Jew-w.0d

272n

where

4, =v5(x*—H), g5=v5(x*>=0).
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After performing the integration, the coefficient of exp(v$ x*) should be null, to
satisfy the radiation condition. Therefore:

r+s/u, vy Ba/vy
(1/2)[ s]+Kcoshvan[ : ]:
S+ru, vy ! B V5 Ba/vs

where B, =(1/2)(k,—kv5,/v5), vi =v5,+Vv5.
The first and second rows are proportional, hence it is enough to write:

r+s/u, v5+2K f,coshvi, H/vi =0.
Replacing r and s by their expressions we find:

figcosh @, + u, v3 sinh g, /,/v5]
+K[o; S™+B; ST +pyvi(ey C =B, CH)/pyv3]
+2K B,coshvi,H/v; =0

which leads to (33).

Appendix II

The perturbation of the phase velocity of mode n, when another mode m is
present, and interferes, making the separation difficult, may be obtained in the
frequency domain, in a way similar to that given by Thatcher and Brune (1969)
and Boore (1969). Let the total field be:

u=A,exp[i(¢,+k,x")]+ B, exp[i(@,, +k, x")]

as in (38). The observer would try to obtain phase velocity by considering the
spectrum of the total field in the form:

u=Aexp(ip)
and computing the wave number by means of:
k=dop/dx!
Assuming that B,, < 4,, we may write to the first order:
o=0,+k,x'+asind¢

where

0(_—-ﬂm/"‘lm A(p=(pm_q0n+(km_kn)xl

Then
k=do/dx' =k,+a(k,—k,)cos 4¢.
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Hence

c=c,/[1+a(c,/c,,—1)cos A¢].
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