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On the Propagation of Seismic Pulses
in a Porous Elastic Solid *

F. Mainardi, G. Servizi, and G. Turchetti

Istituto di Fisica, Gruppo Nazionale per la Fisica Matematica CNR, Universita di Bologna,
Via Irnerio 46, 1-40126 Bologna, Italy

Abstract. On the basis of Biot’s theory the one dimensional problem of the
propagation of seismic pulses in a porous elastic half space is studied. Using
the Laplace transform, the solution is obtained in the wave front and long
time approximations. The S pulses are shown to be attenuated as in a
particular visco-elastic solid, while the P pulses, in a quasi-compatibility
condition, exhibit a purely elastic propagation.

Key words: Dynamic poroelasticity — Transient waves — Wavefront and
long time approximations.

1. Introduction

The theory of wave propagation in fluid-saturated porous solids has been
developed by Biot (1956a, b, 1962a, b) in a series of papers. Some geodynamic
applications of Biot’s equations have been considered by several authors, e.g.
Geertsma and Smit (1961), Jones (1961), Deresiewicz (1960, 1961, 1962), Deresie-
wicz and Rice (1962, 1964), and recently by Paul (1976a,b) and Burridge and
Vargas (1976).

In most of the works the geometrical effects, taken into account, have
obscured the actual role of poroelasticity on the propagation of seismic pulses.
In order to single out the effect of poroelasticity, we consider the simple
boundary value problem of plane waves propagating in a half space with input
conditions on the free surface.

We work in the most general framework of Biot’s equations (1962b) which
are discussed in Appendix A. The systems for the rotational and dilatational
waves will be written in non-dimensional variables and treated by the Laplace
transform. The analytic solutions cannot be obtained, and interest is focused on
the wave speeds and on short and long time approximations.

*  Work sponsored by the National Research Council (CNR), Geodynamic Project, under
contract N. 7600.902.89. Publication N°6 authorized by the director of the Geodynamic Project



84 F. Mainardi et al.

We show that the S pulses propagate as in a particular visco-elastic solid and
the P pulses as in a perfectly elastic solid with suitable density and modulus.

As a consequence we suggest that the introduction of geometric effects can
be better achieved starting from these simpler equivalent models.

2. Statement of the Problem

The basic equations for S and P waves derived in Appendix A can be put in a
more convenient form by using nondimensional variables. It is natural to
introduce a characteristic time t,=a?/v where a is the diameter of the pores and
v the kinematic viscosity of the fluid, and two characteristic velocities for the S
and P waves, v,,=(u/p)"/* and v,,=(H/p)'/?, where p is the mass density of the
aggregate and u, H are elastic moduli. Finally, the new spacetime variables read

— x}___{xj/(voS t,) for S waves (=12.3) @-1)

x;/(vopto)  for P waves

p becomes unit density, 4 and H become unit moduli for S and P waves,
respectively.

With this new set of variables and dropping the superscripts the basic
systems read

o
Vo) 1 —Ps or? 2-2)
0 JT|or ~FKO[ |2
o
d%e
1 —aM {Vze}_l o ar” (2-3)
oM =M [ v ey —Tf— & |%¢
ar?
where
K()_Y(s) Ps_ p_f{ - [1 2 I 1/5)] } 24
S Vs Io(/5)

and s is the nondimensional Laplace parameter.

We consider a half space initially at rest, subjected at the free surface x=0 to
a known displacement condition for t>0, and we look for the transient plane
waves. The field variables w, g, e, { are functions of x and ¢t and the field
equations are supplemented by the following initial and boundary conditions:

a a b
o(x,0)= '”(x i e 0)= xg’; ) =0 o9

o(0,1) =wo(t)
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_Oe(x,t) _ _08(x, 1) _
€000 = | TR 0=, =0 (2-6)
e(0,1) =eo(?) (0, 0)=Co(1)

The solutions will also be required to be bounded at infinity.

3. Shear Waves

The Laplace transform equation for the shear waves obtained from (2-2) with
the initial conditions from (2-5), reads in obvious notation

A 1 _pf A
wxx 2 @ -
e PN £ =

I

where & =d(x, s), ¥ =71(x, ).
Imposing the boundary condition from (2-5), the transformed solution bound-
ed at infinity reads

{“’}={ ! }e-x“%o(s) (3-2)
1) f[1=R(s)] ’
where accounting for (3-1) and (2-4) we have
f -2 L)

R(s)={1—-|1+1-K =

(s) { [+pf (s)] } s 1,6/5) (3-3)
and ,

u(S)=%{1+(ﬂ2—1)R(S)}”2, B=(1—fp,)~ V2. (3-4)

Since R(s)—0 for s— oo, f represents the wave front velocity of the pulse. We
shall consider short and long time responses to a step input, @, (s)=1/s, in order
to avoid inessential complications.

In order to compute the short-time solution we expand R(s) and u(s) in a
Puiseux series at s— oo

i 1
R(s)= ). pps™, #(S)=E{S+u1/z Y2+ 1o +0(s™ %)} (3-5)
k=1
where from (3-3) and (3-4) we have
ﬂZ

p1=2, p,=-—1, py=—%... Hij2 =p*—1, o= _?(ﬂz —-1). (3-6)
According to the method proposed by Buchen and Mainardi (1975) for transient
visco-elastic waves, we get

© h

A —%(sﬂu/zsmﬂzo) —(kj2+1) . X
a(x,s)=e kgos h;) A, W7 (3-7)
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where the A4, , are given by the following recursive relation
Ay =00

© B
A=~ Ak_1pt 113/2 (Mo+8) A_1h_1 +5Ak—2,h+1 (3-8)

1 7
—#oAk—z,h+ﬁ(//‘<2)+%#1/2)f1k—2,h—1 1/2 Z Pr+2Ak_sh-1-

The solution for j(x,s) is given by (3-8) provided that Ak0= —fp, with pg=—1.
The inversion of (3-7) reads

_Xto ® k/2 K
o(x,t)=e P {Fo(z)+ Y F(2)2" (t—%) Z Akhh'}H(t—x/ﬂ) (3-9)
k=1
where H denotes the Heaviside step-function, and
~1/2
z=% (t—%) ,  F(z)=I"Etfc(z) (3-10)

where I* is the k-th repeated integral and can also be obtained by a recursive
method (see e.g. Abramowitz and Stegun, 1968, p.239).

The initial character of the pulse is described by the leading term of (3-9)
which, accounting for the asymptotic form of Erfc(z) for large z, can be written

{w(x, t)} {1} 1
10 S m

2 t— 1/2 2_1 2_12 2

2 G g (D, G 2y
p*—1 x 2 4% (t—x/P)
The pulse exhibits no discontinuity on the wave front and evolves as in a
diffusion process. This behaviour is similar to the one found in a visco-elastic

solid with a creep function J(t)=a+b t'/? by Buchen and Mainardi (1975).
The long time behaviour is determined by the limit of (3-1) as s—0

a(x,s) 1)1 p2— ,
‘{x<x s)} {fs/s}‘E"p( "S‘“mﬁz“) (3-12)

The inversion is carried out by the saddle-point method which yields:

o(x, t)z%{1+Erf (1/—— tl;— )} (3-13)
1 ( 4/32 (t—x)z)
AT -

The pulses are centered at t=Xx with a spread

At=g——”j;_11/;.

(3-11)

(3-14)
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Since from the short-time analysis the pulses start at t=x/f we expect the
long-time approximation to hold when

x\ _ At . p+1
(X—E) >—2—, 1.€., x>ﬁ—j (3-15)

The long-time behaviour of the rotational wave w(x,t) is the same as for a

Maxwell visco-elastic solid with the creep function J(t)=c+dt (see Chu, 1962;
Mainardi, 1971).

4. Dilatational Waves

The transformed equation for the dilatational waves, obtained from (2-3) with
the initial conditions from (2-6), reads in obvious notation

A 1 _p A
1 —aM)| (é 5 S é
¥h=5 p (4-1)
o A0, %Kiy B
where é=28(x,s), {={(x,s). Imposing the boundary condition from (2-6) the
transformed solutions bounded at infinity read

{§}={2 12} {?i}ze_mx 0 {22} 42)

where é,=2¢,(s) {,={,(s), and u. (s) are the solutions (positive for s positive) of
the biquadratic equation

Ap*—s*’[B+K(s)]u>+s*[C+K(s)]=0 4-3)

with
A=M —(aM), B=M—2pfaM+%, C=%—p} (4-4)

and T, (s) are 2'x 2 matrices determined by the boundary conditions. Explicitly
we have

pe ()= [1+V2 (91" (4-5)
with *
24 \i12 0
ai=(ﬁ) . [=(B*—4AC)" (4-6)
K(s)£T{[1+W(s)]"2—1 K2+2K(B—24
V()= (s)x {[B':_F(S)] }, Wis)= + 1"(2 ) 7



88 ' F. Mainardi et al.

and
10 1 —F+2K(S) E+oaMK(s)
no-fo e | FHKO) “h
with ?
D=p,—aM E=%cxM—pr F=3fi—M. (4-9)

The fundamental inequalities o> M <1, p,f<1, f<a insure the positivity of A4,
C, E. Moreover we notice that

B=A+C+D*>0 TI?=(A—C)*+2D*+D*(A+ C)+D*>0. (4-10)

We remark that the (+) and (—) solutions correspond to the two independent
dilatational waves with velocities a, and o_ (since ¥ ,(s) = 0 for s — o) and
that they interchange for I' replaced by —I'. The (—) solutions correspond to the
so called waves of first kind (fast waves), the (+) solutions to the waves of
second kind (slow waves) according to Biot’s notations. Furthermore we remark
that the condition D=0 allows purely elastic wave propagation with unit
velocity e(x, t)=eq(t —x) without relative motion between fluid and solid: {(x, t)
=0 when (,(t)=0. Therefore the condition D=0 corresponds to the dynamic
compatibility relation mentioned by Biot (1956a) for harmonic waves.

In order to simplify the treatment without loosing the effect of coupling
between the solid and fluid we shall work in the condition of quasi-dynamic
compatibility, i.e, we neglect all powers of D higher than one. Such an
approximation is justified in cases of physical interest.

Assuming C> A we obtain from (4-5) to (4-10)

I'~sB—-2A~C—-4 (4-11)
a_~1  Y_(s)=~0 (4-12)
a, =) A/C Y (s)=K(s)/C (4-13)
and
izl 4+qM|_ D oM 0
Tj:(s)fz{zo2 %i%}+m{ i —ocM}' (4-14)

As for the shear waves we restrict our analysis to the short and long time
approximations. For this purpose we make explicit use of the Tauberian
theorems as s - oo and s — 0, for the following input conditions: &,(s)=1/s, {o(s)
=0. From (2-4), (4-5), (4-12), (4-13) we get for s —» o0

K(s):%[2s'”z+3s‘1 +15/45732 4]

1
p_(s)=s, ,“+(S)2a_[5+/‘1/251/2+N0+/‘—1/25_1/2+“'] (4-15)
+
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where
Bi2=B% Bo=3B*—3B% u_1p=%B*—3B*+3B° ... (4-16)
with B defined as for the S waves by f=(1—fp,)~ "2 Inverting (4-2) with T, (s)

1 2
given by (4-14) and [ +K(s)] '~— (1 —f—r s‘”2) we obtain the short-time

solution:

e_(x,1) N 3 - _2_ B3, o
{C_(x,t)}_H(t x)H 21}+]/_{Bz1}(t X) ] (4-17)

e )| oo o ~ A B:
{C+(x,t)}_Exp[ X po/ot JH(t x/m)[{A;l}U(é H{BL}V@ )] (4-18)

where
aM 20M

Af1=1+DT Biy=-D T2 Tf (4-19)
__D _ 2 p
A21=‘f By =— T2 ff
+ __pM ._D Pr M p_ypn
All_ D 1-! Bll-rz 2 M f+ F a+ X (4'20)
D 20, 1 u_
At = Bt = S "-1/2 )
21 T 21= ( 7 +F x,
E=xpyple,, t=t—x/a,, (4-21)
and U(¢, 1), V(&, 1) are given by
U(¢, 1)=Erfc[{/(2y/7)]
1/_ (4-22)

V(&,1)=21/1/n exp [~ E/(41)] - £ U(E,7)

The fast waves {e_, {_} exhibit a discontinuity at the wave front while the slow
waves {e, {,} show a diffusive-like behaviour as the shear waves.

The long-time solution is easily computed from K(s):8£f£s‘1 (s—0) and
reads

e_(x,1) - 1
{ r t)} ~ {0} H(t—x) (4-23)

, M 2
{Z:g 2}2 _{al }D 8p€£+ —xt™*% exp[—2(B/a,)*x*/t]. (4-24)

The fast wave solution corresponds to a perfectly elastic propagation while the
slow wave is affected by the porous-elastic coupling. The pulse of the latter is
centered at t,,=4/3(B/x,)*> x> and the rise time is Agt~31t,,/4 while the decay
time is A, t~10t,,. Since from the short-time analysis the pulses start at t=x/o
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we expect the long-time approximation to hold when x/o, <t,/4, ie.,
x> 3a, /B> We notice also that the amplitude at the maximum decays as x~?2
and consequently is strongly damped !.

5. Discussion and Geophysical Implications

From the previous analysis we see that the effect of poroelasticity on pulse
propagation can be summarized as follows. The relative motion of a viscous
fluid in the pores generally implies an attenuation in the motion of the solid.
The rotational waves exhibit the same dispersion as if the attenuating mech-
anism were a particular type of linear viscoelasticity. The dilatational waves
were investigated in the quasi-dynamical compatibility condition since we expect
that the deviation from the elastic behaviour can be treated as a perturbation for
most physical purposes. The deviation from pure elasticity is measured by the
parameter D which can be considered as a coupling constant, in analogy with
thermoelastic theory. The distortion of the fast wave is relevant only for very
short times and the slow wave decays very rapidly so that even when the dynamic
compatibility condition is not exactly satisfied the medium allows a perfectly
elastic propagation without relative motion between fluid and solid.

We confine our numerical analysis to a particular liquid filled porous solid
of geophysical interest (a kerosene-satured sandstone) whose parameters can be
deduced from experimental data (Fatt, 1959) and are quoted in Appendix B.

For the S wave the nondimensional wave front velocity is f=1.05, and the
evolution of the pulse at fixed distances is shown in Figure 1 where the short and
long-time solutions are compared. Since unit distance and time are very small
(see Appendix B) the long-time approximation well describes the propagation of
seismic pulses. As a consequence the (continuous) precursors do not start
effectively at t=x/f but rather at t=x—At/2, with At given by (3-14) so that the
actual velocity appears to be v~1+[(8—1)/(2x)]"/2

In order to have an estimate of the porosity influence on the seismic pulse we
point out that after one second the pulse has travelled ~1km and its spread is
~5m.

For the P waves the dynamic compatibility condition is fulfilled within the
uncertainty of the experimental values of elastic coefficients and consequently
we have a perfectly elastic propagation of the seismic pulses.

Appendix A. Discussion of Biot’s Equations

The dynamical equations of poroelasticity obtained by Biot (1962b) in the case
of isotropy and uniform rigidity are:

62
uViu+V[(A+ue—aM{] =(W(pu+pfw)
1 It can be observed that for the most general input e,(t), {,(t) the conclusions are essentially the
same. The solution for x> 1 reads {e_(x,t)~[ey(t —x)—p{o(t —x)], {_(x,t)=~0}, ie., we have elastic
propagation in the solid corresponding to an effective input pulse (e, —p, o). Any other disturbance
has an amplitude decaying like x~2



Seismic Pulses in a Porous Elastic Solid 91
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Fig. 1. The shear response w(x, ) to a step input w,(t)=H () is shown at various distances. The wave
front (dotted line) and long time response (continuous line) are plotted versus ¢/x and compared with
the elastic response H(r—x)

(A1)
ik -~ 0
V(aMe—MC)=W(pfu)+ Yaw.

We recall that: e=V.u, {=—F -w, w=f(U —u), where u, U are the displacement
vectors of the solid and fluid, respectively; u, 4., o, M are elastic coefficients
whose physical meaning is clarified by Biot and Willis (1957); p, p are the mass
densities of the aggregate and fluid, respectively; and Y is the viscodynamic
operator, a function of s=d/dt, which embodies the dynamics of the fluid in
relative motion?. The specific form of Y(s) can be determined, assuming a simple
geometry for the pores, by considering the flow of a viscous fluid under an
oscillatory pressure gradient ¢'“' below the turbulent regime. From Biot (1956b)
we deduce the following result for cylindrical pores of radius a:

o=bsi=2 () TG T e
Y(s)=—ts<l——|-] Tlal- . T(z)= ; A2
g fs{ () rlal O=10 (A2)
where f'is the porosity, v is the kinematic viscosity of the fluid and I, I, denote
modified Bessel functions. The above-mentioned limit of validity can be ex-

2 The viscodynamic operator Y(s) accounts for the deviation of the microvelocity field from the
Poiseuille flow (s=0) as the frequency increases
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pressed as an upper bound ., =7 v,/a on the frequency w=s/i, where v, is a
characteristic phase velocity. The characteristic frequency of the system is given
by a)0=2n v/a? and we notice that for our purposes Opax/ Do =aV/(2V) is very
large since vy ~10° cm/s, a=~10~>cm, v~ 10~2 cm?/s. The limits of the operator
Y at low and high frequencies can be easily deduced from (A.2); we get

4p

_8vp _4ey
2 3f

(s—20) Y(s)=dy+ms, d,= m= (A.3)

Py
f’
- 2
(s o0) Y(s):%s+dws*, d, =;v’f’%. (A4)
At zero frequency (s=0) the operator yields Darcy’s law, i.e. ¥ =d,=pu/x, where
p=p,v is the dynamic viscosity and x= a’f/8 is the permeability.
For the case of uniform porosity, using the variable U instead of w and

introducing ¢= —F-U, the dynamical Equations (A.1) can be written in the
alternative form

o .
Nl72u+l7[(A+N)e+Q8:|=EZ—(p11 u+p,,U)

" (A.5)
V(Q3+R8)— 2(P12“+022U)
where
N=p, A=i-2faM~+f*M, Q=fM(—f), R=f>M (A.6)

=p=2fp;+f2YO)s,  Pra=fo, =L Y()s  po=fT(s)s. (AT

The Equations (A.5) are to be considered the correction of equations derived
formerly by Biot (1956b) and usually adopted in geophysical applications (e.g.
Deresiewicz and Rice, 1962)

0?2 N
NP2utP(A+N) e+ Qo= 3 oy, utpz U +b F(5) = (u—U)

> s (A.8)
V(Qe+R8)=W(p12u+p22 U)—bF(S)gz(u—U),
where
11=P_2fpf+f2m, P12=fpf_f2m, pr2=fm (A.9)
and
8 . 1 T H
=—fopv=[*dy, F (5)=7 alsfo)” Tlalsh)] (A.10)

12 ( ) Tla(s/v)]

Strictly speaking, the Equations (A.8) are correct only when s -0 (F(s) 1)
as considered by Biot (1956a) in the low frequency range. For higher frequencies
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a correction factor must also apply to the density parameters p;;, P12 P22
namely to the parameter m in (A.9). For s— oo we get m=p /f so that

PLi=p—fps  P12=0,  pr=fp, (A.11)
and 5
bﬁ(s)za forvs)i=f2d, st (A.12)

We point out that Equations (A.1) are valid for any frequency range and that all
the parameters are uniquely determined 3.

The equations for shear and dilational waves are obtained as usual by taking
the curl and divergence of Equations (A.1), respectively, and read

y2 -ﬁ _
pVio=-slpo—p-y)

(A.13)
0= (000~ 29 2
Sz Pr® ( ot’
where o=V Au, y=—V Aw, and
62
V2(He—aM{) =¥(pe—PfC)
(A.14)

02 ~ 0
72aMe—MO) =23 (p,0)— T(5) 2

where H=1,+2u=A+2N+2Q +R.

Appendix B. Numerical Values

We quote the numerical values of the physical parameters of a kerosene-satured
sandstone (Fatt, 1959). In cgs units we have:

a=10"3, v=244.10"2, p,=082, p=2.137, f=026
N=0276-10", H=1.178-10"!, M=0482-10', &=0853.

The characteristic time is t,=a?/v=4.1-10">. For S waves the elastic velocity is
Uos=(N/p)¥=1.14 - 10° and the characteristic distance x,=v,,t,=4.6. For the P
waves the analogous quantities are v,, =(H/p)* =2.35 - 10°, x,=1v,, 1, =9.6.
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Note Added in Proof. Using the data available in a recent work (Yew, C.H., Jogi, P.N.: Study of wave
motions in fluid-saturated porous rocks. J. Acoust. Soc. Amer. 60, 2-8, 1976), we find that the quasi-
compatibility condition holds for several water-saturated rocks (0.05<D?<0.1).



