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On Impulse Response Data and the Uniqueness
of the Inverse Problem

V. Barcilon

Department of the Geophysical Sciences, University of Chicago,
5734 South Ellis Avenue, Chicago, Ill. 60637, USA

Abstract. The problem of reconstructing the density and elastic properties of
a slab of infinite horizontal extent and finite thickness set in motion by a
double couple excitation is considered. It is shown that the information
contained in the amplitude and frequency response associated with a single
horizontal wave number is sufficient to insure the uniqueness of the solution
of this inverse problem.

Key words: Inverse problem — Amplitude and frequency response.

1. Introduction

This paper is concerned with the broad question of the uniqueness of the
solution of the inverse problem for the internal structure of the earth.

This question may seem academic in view of the variety of data which are
available for the earth and which have been used over the years to construct and
refine a sequency of earth models. The data arsenal includes travel-time curves,
dispersions of Love and Rayleigh waves, normal modes of vibrations. But what
if we were to tackle the analogous inverse problem for the Sun for which only
normal modes have been measured (Severny et al., 1976; Brookes et al., 1976)?
More mundanely, what kind of data is required to infer the internal structure of
a perfectly elastic, spherically symmetric ball? The truth of the matter is that we
do not know how to answer this question.

Recently, I was able to answer an analogous question for a much simpler
vibrating system, namely for a beam of variable density p and flexural rigidity
EI (Barcilon, 1976a). Inspite of its glaring deficiencies, the problem which I
considered had a geophysical flavor. The beam was set in motion by means of
an impulsive force concentrated at one of its free ends and applied at time t=0:
this is analogous to the occurrence of a (known) earthquake. The subsequent
motion of this free end together with its slope were recorded: this is analogous
to seismographic records made on the earth surface. From these data, i.e., from
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Fig. 1. Schematic diagram of the slab

the impulse response which contains both amplitude and natural frequency
information, I was able to reconstruct p and EI uniquely. The idea of using this
impulse response is of course not new and has been exploited masterfully by
Krein (1952) in his study of the inverse Strum-Liouville problem.

For the beam the method of solution differed from that used by Krein for
the string, in that the dynamical equation was not the equation used to carry out
the inversion. Rather, a different set of differential equations for Wronskian-like
variables analogous to propagators (see e.g., Gilbert and Backus, 1966) played a
key role.

Considered as a mathematical model of the earth problem, one of the most
severe shortcoming of the beam lies in the fact that it is a genuine one-
dimensional problem whereas the earth problem is a three-dimensional problem
with a symmetry group, namely spherical symmetry. The present paper is an
attempt to examine the modifications due to three dimensionality in the context
of the problem for an infinite slab.

2. Slab with Double-Couple Excitation

Let us consider a perfectly elastic slab of infinite horizontal extent and of
thickness a (see Fig. 1). We shall assume that the density p and the Lamé
parameters A and p are solely functions of the depth, ie. of x. We shall also
assume that the surface x=0 is stress-free, i.e.

Pxx=Pxz, =Px;, =0  at x=0, (2.1)

where p... stands for a component of the stress tensor. The slab is set in motion
at time t =0 by means of a double-couple applied to the upper surface x=a. For
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the sake of presentation, we consider the simplest case possible and write

Py =0
Pxe,=—T6(,) ' () H() at x=a. (2.2)
DPxe, = — T6'(&,) 5(_52) H(t)

In the above formula, § stands for the Dirac delta function and H for the
Heaviside step-function; a prime denotes differentiation with respect to an
appropriate variable. Tis related to the magnitude of the double-couple.

The slap can be looked upon as the mantle of a flat earth without liquid core
and gravitational force. To pursue the analogy with the geophysical situation,
we shall refer to the vertical and horizontal displacements u(a, £, t) and v,(a, &, 1),
(«=1,2) at the upper surface as the seismograms.

Given the excitation (2.2), the direct problem consists in finding the displace-
ment fields in the slab for t>0, i.e. in solving the equations

o*u 0 ou  Ovg 0*u 0% v,
”7922_‘&[('”2“)5“@]+“a¢ﬂaéﬁ+“axa¢ﬂ 2.3)
o%v, 0 ou 0Ov 0%*u 0% 0%y
e ¥ a et /1 B a .
P = | (acﬁ ox )] thaxae, T AW aeae, TR, v, @4)
subject to the boundary conditions (2.1) and (2.2), where as usual
__, (Ou  0Ovg ou
Dxx =p33_i (ax afﬂ)-l—z'uax
__ [0u + 6va) (2.5)
px{a:_p3a_iu (aéa ax

In (2.3), (2.4), (2.5) the summation convention holds, repeated superscripts taking
the values 1, 2.

If p(x), A(x) and u(x) were known, then the above problem could be solved
(in principle at least) and the seismograms u(a, &, t) and v,(a, &, t) be deduced for
all values of & and t. Conversely, the inverse problem consists in deducing p, 4
and u from a knowledge of the seismograms. Both the direct and the inverse
problem are best tackled by means of Fourier transforms in & and t. Therefore,
denoting Fourier transforms by carets, e.g.

o(x, k, a))=(2i)3 z et de _ﬁ;} ekteydg, dE, (2.6
we deduce that

—w?pill =6 —plPhd—ipk, v 2.7

—w?p O, =P, —iAk, 0 —(A+p) k ky D —pl? 9, (2.8)

In the above equations

& =(A+2u) i —idk, 6, 09
ﬁ3a=”(_ikaﬁ+ﬁ;)a ’
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stand for the Fourier transforms of the stresses p,, and p,, respectively; primes
for derivatives with respect to x and

?=k,k, (2.10)

for the square of the horizontal wave number. Finally, the boundary conditions
(2.1) and (2.2) become

G=p3;=P3,=0 at x=0 (2.11)
and

A T T

O'=p31 +8n3 k p32+8 3 k1=0 at xX=a (2,12)

3. Compressive (Rayleigh) and Torsional (Love) Modes

Just as for the earth, the response of the slab to an arbitrary excitation can be
synthesized by means of a superposition of 2 kinds of normal modes of oscil-
lations which we shall refer to as the compressive and torsional modes. For a
pure torsional mode, horizontal surfaces x=const. remain horizontal whereas
for a compressive mode they are deformed and/or displaced.

In order to separate these two modes, it is convenient to introduce the

following new variables:
Ip=—ik,b,,
31
It =—ik,ps,, 3D

and

W= —ik, b, +ik,d,,

Iy = —ik, ﬁ32+ik2ﬁ31~

These variables are analogous to those introduced by Alterman et al. (1959)
in their study of the normal modes of the earth. The factor [/ entering in (3.1) and

(3.2) has been introduced in order to facilitate the study of the degenerate case [
=0. Note that with these new variables

15, =ik, d—ik,,
16, =ik, §+ik, .
As anticipated, by substituting (3.1)«3.2) in (2.7)«2.12) this boundary value

problem splits into two independent problems. The one associated with the
compressive modes is made up of the following dynamical equations

(3.2)

(3.3)

—w?pii =6 —pulPh+puld,

~ 34
—?plp=1T — AP0 —(A+2u) 3 ¢; (3.42)
the stress-strain relations imply that
6 =(A+2u)i+Ald,
W ¢ (3.5a)

18 =p(—Pa+19);
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finally, the boundary conditions read:

A A

6=7=0 for x=0,

iT
6=0, lt=g—kk, for x=a (3.6a)

The other problem associated with the torsional modes is simpler, viz.

=0 plY=1f —uly, (3.4b)
with
=n¥
(3.5b)
and
2=0 for x=0,
li=i%(k§—kf) for x=a. (3.6b)

Note that except in the boundary conditions (3.6), k; and k, enter in the
problem only through the total wave number /2. In view of the linearity of the
problem, we can therefore assert that the solutions will be of the form

0] u
é iT kjk,|o
§"aw 1| (72
7 T
and
¥l T k2—k2 [y
[f_ 8w | [)?]’ (3.70)

where all the tilde fields are functions of x, | and w only. The inverse problem can
now be formulated as follows: given i(a, L, ®), ¢(a,l,w) and Y(a, I, ) find p(x),
A(x) and u(x). It should be noted that aside from its role in exciting the
compressive and torsional modes and in determining.the factors in (3.7), the
double-couple excitation as such does not enter into the inverse problem in a
prominent manner.

Since from now on we shall work solely with the tilde fields we can drop the
diacritical mark without any risk of confusion. These fields satisfy the following
equations:

_ W _ ) ; o -
' 0 - 0
" A+2u A4+2u "
a —w?p 0 0 -1 c
= 3.8a
1§ P 0 0 % 1 (3.82)
Al ' A+
I7 0 —w?lp+4uy—-1> 0 l
T iran O LT
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with
0-(03 la Cl)) = T(O, l; CD) = O'(a, ls CU) = T(a’ l: CO) —-1=0 (39 a)
and 1
b= Lopen 811
_ u (3.8b)
v —w’p+ul 0] Ly
with

4. Information Content of Seismograms

We shall now generalize the result obtained for the beam. Namely, we shall
show that the seismographs (or rather their Fourier transform)u(a, l,w), ¢(a,l, ®)
and Y(a, [, w) contains more information that just the dispersion curves for the
Love and Rayleigh waves.

Let us first consider the problem (3.8a) (3.9a) looked upon as a direct
problem. In order to solve it, we introduce two fundamental solutions of (3.8a)
labelled by a superscript, such that

u) =1 u® =0
o) = o? _0
d)(l) 0 and ¢(2) for x=0. (4.1)
=0 7(® =0

Consequently, the most general solution of (3.8a) which satisfies the boundary
conditions at x=0 is:

" ud U
() )

g g g

ol A ey +B e 4.2)

. es 2@

The coefficients A and B are determined by the boundary conditions at x=a,
viz.

_ 0-(2)((1’ l’ CU)
" R(alw)

" R@lw)’

(4.3)

where

R(x, L, w)=0W(x, I, w) tD(x, I, w) — 6P (x, I, 0) T V(x, I, w) (4.4
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Note that R(a, I, )=0 is the dispersion relation for the Rayleigh waves (com-
pressive modes). Replacing 4 and B in (4.3), we see that

U(a,l, w)

u(a, l, CO) = —W (45)
&(a,l
b(a,l,0)= +R%l’% (4.6)
where
U(x, I, w)={u(x, ], w), o(x, |, )} 4.7
and
D(x, L, w)y={o(x, 1, w), d(x, 1, w)}. (4.8)

In the above expressions the symbol { } is used as a shorthand notation and is
defined thus:

{a,b} =aVb® —g@pD, 4.9)

The numerators of u(a, |, w) and ¢(a,l,w), which corresponds to the amplitude of
the response, can be interpreted as two additional dispersion relations for waves
(modes) associated with the following boundary conditions at x=a:

U(a,l,0)=0 < u=0=0

no vertical displacements

no normal stress;

P(a,l,w)=0 < c=¢=0

no horizontally divergent displacements

no normal stress.

Thus, knowing the seismograms u(a, , w) and ¢(a, [, w) is tantamount to knowing
three sets of dispersion curves.

The same situation exists for the torsional (Love) modes. If
[H(x,l,w) L(x, l,w)] is a solution of (3.8a) such that

H©O,l,w)=1

L0, ,w)=0

then the solution (3.8b)~(3.9b) is

['f] =‘L<a,1l, ) [’Z] (4.11)

In particular, the third “component” of the seismogram is
H(a,l, w)
La,l,w)

Once again, L(a,l,w)=01is the dispersion relation for the Love waves whereas
H(a,l, w)=0 corresponds to the knowledge of an additional dispersion relation
associated with zero twisting displacement at the surface x=a.

(4.10)

Y(a, L w)= 4.12)
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5. A Different Version of the Inversion Problem

Following the procedure adopted for the beam (Barcilon, 1976a), we introduce
additional Wronskians

I ={u,¢},
J ={ur1}, (5.1)
K={¢,1},
and derive differential equations for U, &, R, I, J and K, viz.
Al
U'= o-—1J .
A+2u ’ (5-2a)
d5’=—a)2p1+lK—lU+;1l—R, (5.2b)
R = —w?pJ+ [—w2p+4 lz—l—tﬂ—]di (5.2¢)
M v aul® ‘
P 1
I' = +—J, .2d
A+2u u (5:2d)
R Al AU N Atu
o —wp+d zz—_] I .
it2n it2m +l+2u+[ A T (52¢)
Al
K'=lJ———9. .
A+2u (3.2
Because of (4.1), the variables U, &, R, I, J and K are known at x=0, viz.
U=p=R=I-1=J=K=0, at x=0. (5.3)
Now, from (5.2a) and (5.2f), we can see that
U+K'=0
and so
K=-U. (5.4)

But this is not the only relationship between these variables. Just for as for the
beam we can check the validity of the following algebraic identity: {u, o} {¢, 7}
+{u, ¢}t,0} +{u,t} {0, $} =0, or better still

U?(x,Lw)+1(x,l,w) R(x, l,w)—J(x, |, w) D(x, I, w) =0. (5.5)

Let us recall at this stage that U(aq,l, w), ®(a,l, w) and R(a,l,w) are considered
given. They are also entire functions of w? and [
The remaining half of the problem is

1
H ==L, 5.6a
p (5.62)

L =(—w?p+ul®H, (5.6b)
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with
H(O,1,0)—1=1(0,,0)=0. (5.7)

Also H(a,l,w) and L(a,l,w) are considered given.

On the face of it, the system of differential equations for U, @, R, I, J, K, H
and L seems overdetermined in view of the fact that all of these quantities are
specified at x=0 and most of them are also specified at x=a. However, we
should remember that the coefficients 4, u and p in these equations are unknown.
A similar situation arose in the case of the beam, and I was able to exploit the
apparent overdeterminancy of the problem to infer the density and flexural
rigidity. We shall try to use the same technique here. To that effect, we must first
discretize the problem.

6. Solution of the Discrete Inverse Problem

The three dimensionality of the slab problem, ie. the presence of the wave
number I, complicates the discretization considerably.

One of the difficulties is associated with the data. Indeed, whereas the first N
eigenfrequencies of a genuinely one-dimensional problem can be considered as
the eigenfrequencies of a discrete system with N degree of freedom, the counter-
part for branches of dispersion relations is not true. Said differently, if w=21,(])
are the branches of the dispersion relation L(a, I, ) =0, then the first N branches
do not form an algebraic curve and hence they are not bona fide dispersion
branches of a system with N degrees of freedom in the vertical (see e.g. Barcilon,
1976b).

Having recognized this technical difficulty, we shall assume that we know
how to resolve it. For instance, we could envisage approximating the dispersion
relations by algebraic curves.

We now come to the next technical difficulty that of discretizing the equa-
tions (5.2) and (5.6), or rather of deriving an analogous set suitable for a system
with N-degrees of freedom. The difficulty here stems from the wide variety of
seemingly acceptable discrete equations. The guiding principles for selecting an
appropriate set of equations as well as the procedure we have followed is
presented in an appendix. Incorporating the identity (5.4) into (5.2), we shall
adopt the following discretization of these equations:

Ayl

il o <D+hlJ U_, (6.1a)
h; 2

——R;=9,_ ,—w’ml;,_,—-2lh;U,_, (6.1b)
H;

A+
Ri=Ri_1—w2m,-J,~_1+[ w*m; +4H‘A aL h lz] 1 (6.1¢c)
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h; h;

i #lJi—AH_ o,=I;_, (6.1d)
h
Ji—'li"‘zl‘i
A b, A+
=J. P l i 4 - 12] * *
Jl_1+2/li+zui U,_1+[ w?m;+ 'u‘l o h; 1 (6.1e)

In the above equations m; stands for the mass (ph) of the i-th segment which has
been concentrated at x; in order to make the numbers of degree of freedom finite.
h; is the separation between m;, and m; and is unknown. Note that as h; — 0, the
system (6.1) reduces to (5.2) with identity (5.4) included. Note also that (6.1)
provides an explicit means for computing U, @;, R;, I, and J;. Indeed if U,_,,
&, ,,R,_,I_, and J;_, are known then by means of (6.1c), (6 1b), (6.1¢), (6.1a)
and (6.1d), in that order we can derive U, &, R;, I, and J;. Note also that if

Uy=P,=R,=1,—1=J,=0, ‘ (6.2)
then U, ..., J; are polynomials of degree i in w?.

Turning now our attention to the remaining half of the problem, viz. (5.6), we
adopt the following discretization:

h
_ll—iLi=Hi_1’ (6.3a)
Li=L, ;+[—w*m+uh?1H, ;. (6.3b)

The remarks made previously about (6.1) hold for (6.3).

We are now ready to solve the inverse problem, ie. to find m,, h;, 4, and ;.
Recall that Uy, ®y, Ry, Hy and Ly are given. Then using a discrete version of
(5.5), viz.

Ui+IyRy—Jy®y=0 (6.4)
we deduce Iy and Jy. Now dividing Hy by Ly we see from (6.3a) that

Hy hy H

NN N (6.5)

Ly uy Ly

in other words we can find hy/uy and Hy_ ;. We now switch to the compressive
modes and more specifically to (6.1d) which we write thus:
h
Iyv—-—>J
N Un N_ hy Iy_,

Oy Ayt2uy By

(6.4)

As a result hy/Ay+2uy and Iy_, are determined. Note also that Ay/uy is now
known.
For the next step we turn to (6.1a) which can also be written

Uy Uv_1
}'N hy By hy J N An . hy & hy J (6.5)
T A S N

Hn P v+ 2uy Ky N by An+2py N Un
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In so doing we have determined Ay, uy, hy, and Uy _,. The last quantity, viz.
my, can be obtained from (6.1b), viz.

Dy I Ry+2lhy Uy _,

(0]
KN : =_w2mN+ N-1 (6.6)
Iy_4 Iy_y

Finally, by means of (6.1c), (6.1e) and (6.3b) we can deduce Ry_,, Jy_; and
Ly _, which are needed to start the cycle over.

7. Concluding Remarks

We have solved a discrete version of the inverse problem for a slab. The
excitation was assumed known and for the sake of illustration was taken to be a
point double-couple. The data were extracted from the response to this exci-
tation. More specifically both amplitude and frequency information were ex-
tracted from the seismograms. But after making measurements for all times and
over all points on the upper free surface of the slab, the dependence in the wave
number was not exploited at all. Assuming that this result held for the earth, it
would be equivalent to dealing with a single angular number . This leads to the
following conjecture. By repeating the inversion procedure for a sequence of I’s,
we should be generating the same solution over and over again. If this were not
the case, then it would signify that the slab/earth has some lateral structure.
Perhaps a measure of this lateral inhomogeneity can be obtained by examining
the scatter of the various solutions.

Eventhough the wave number [ is a continuous variable for the slab problem,
we have treated it as if it were a fixed parameter labeling the various modes. If
we were permitted to exploit the dependence of the data on I, i.e. if we were
given R(a,l,w), L(a,l,w), etc. ... as polynomials in w? and I, then the procedure
could be greatly simplified. In particular, it would be possible to deduce m;, y;
and h; from the Love wave alone. The calculations would be modified as follows.
First we divide H, by L,, looking upon them as polynomials in w?, viz.

H; & H;_,

Lo L

By dividing L; by H;_,, again looked upon as polynomials in w? we see that
L, L h; I H,
i =—w2m,. 1—1+p’1 i 1—1.
Hi -1 Hi -1
At this stage we consider the remainder (L;_, +p;h;1*H,_,) as a polynomial in [
and write it as well as H;_, in decreasing powers of . Forming the ratio of these
polynomials, we get:
L, ,+ph*H,_, L,_,
i i i — hlz i .
H;_, Hil +Hi— 1

The missing A, can be easily obtained from the compressive modes.
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Appendix
Remarks on the Discretization Procedure

Let us consider the equations
1

y=—z
H (A1)
Z=(—0?p+pul)y

Except for a change in notation, these equations are identical with (3.8b). We
shall revert to H; and L, after we arrive at a satisfactory discrete version of this
equation.

In order to go from a continuous system to a system with N degrees of
freedom, we consider the case in which

N
p= Z m; 5(x —x;) (A2)
i=1

i=

where X, , , —x;=h;. Furthermore, we assume that in the interval (x;,x;,,) pisa
constant equal to y;. As a result, in (x;, x;, ;) the Equations (A.1) reduce to

L1
y=—:z
Hi (A3)
2=y

Therefore, in this same interval

y=A4, cosh [(x — x;)+ B; sinh I(x — x;)
(A.4)
z=1p; A;sinh l(x —x;)+1 y; B; cosh I(x — x;)

One way of determining A; and B; (but by no means the only one) consists in
requiring that

lim y,z=y,z,. (A.5)
x—xi+0
As a result

y=y;coshl(x—x;)+ Zi sinh I(x—x,)
l (A.6)

z=z;cosh l(x —x;)+ Iy, y,;sinh I(x — x,)

We now make a crucial approximation: we neglect terms of order I>h? or higher
and write
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Z;
y=yi+—((x—x,)

K (A7)
z=z;+p;y; P (x —x;)

If h; is small, this approximation is not very restrictive. Physically, it implies that
waves (or modes) must have large horizontal wave lengths to penetrate the slab.

Returning to (A.1) we integrate these equations from x; —¢ to x;+¢, where ¢
is infinitesimally small. We see that y is continuous, viz.

lim y= lim y (A.8)
x—=x;i—0 x=xi+0

whereas z is not. In fact the jump in z at x; is
[z];=—o’my;. (A9)

Making use of (A.7) we rewrite these two last equations as follows:

Z.
yi—1+'ul.——1‘hi—1=yia (A.10)

i—1
Zi_zi—l—/“ti—lhi—llzyi—1=_wzmiyi‘ (A.11)

These equations are not completely satisfactory. One of their drawbacks is that
they are not associated with an acceptable energy principle. They can be
corrected by replacing y; , by y; in (A.11), viz.

Zi_Zi—l_lui—lhi—llZyi=_wzmiyi' (A.12)

Note that within our approximation scheme, this step is quite legitimate. To be
consistent we should also modify the second equation in (A.7) and write

z=z;+ Py 1 (x—x) (A7)

Now in (A.10) and (A.12) we have an explicit scheme for the computation of y;
and z,. If z,=0 and y,=1, then y, and z; are polynomials in w? but not of degree
i. We shall now correct this minor flaw. We reason as follows: When we come to
solve the inverse problem the amplitude and frequency data are translated in a
knowledge of z and y at N+1, ie. zy+puy*hyyy,; and yy,, are given. Let us
therefore define the following new variables

H;=y;,,

A.13
L =Zi+l‘ilzhi%+1 ( )

Substituting in (A.10) and (A.12) we get (to the usual degree of approxima-
tion)
H; _ﬁ Li=H;_,
K (A.14)
Li=L;_+[—o?’m+phP1H,_,.

These are the equations (6.3).
The same considerations and manipulations have led us to the set (6.1). Since
the calculations are lengthy we shall not reproduce them.



152 V. Barcilon
References

Alterman, Z., Jarosch, H., Pekeris, C.L.: Oscillations of the earth. Proc. Roy. Soc. (London) A 252,
80-95, 1959

Barcilon, V.: On the solution of the inverse problem with amplitude and natural frequency data.
Phys. Earth Planet. Interiors 13, 1-8, 1976a

Barcilon, V.: A discrete model of the inverse Love wave problem. Geophys. J. 44, 61-76, 1976b

Brookes, J.R., Isaak, G.R., van der Raay, H.B.: Observation of free oscillations of the Sun. Nature
259, 992-95, 1976

Gilbert, F., Backus, G.E.: Propagator matrices in elastic wave and vibration problems. Geophysics
31, 326-332, 1966

Krein, M.G.: Ob obratnykh zadachakh dlya neodnorodnoi struny. Dokl. Akad. Nauk SSSR 82,
669-672, 1952

Severny, A.B.,, Kotov, V.A,, Tsap, T.T.: Observations of solar pulsations. Nature 259, 87-89, 1976

Received September 28, 1976, Revised Version December 28, 1976



