C‘ U q NIEDERSACHSISCHE STAATS- UND
-~ L UNIVERSITATSBIBLIOTHEK GOTTINGEN

Werk

Jahr: 1977

Kollektion: fid.geo

Signatur: 8 Z NAT 2148:

Werk Id: PPN1015067948_0043

PURL: http://resolver.sub.uni-goettingen.de/purl?PID=PPN1015067948_0043 | LOG_0028

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational,
research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections
are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission
from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online
system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further
reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the
source.

Contact

Niedersachsische Staats- und Universitatsbibliothek Gottingen
Georg-August-Universitat Gottingen

Platz der Gottinger Sieben 1

37073 Géttingen

Germany

Email: gdz@sub.uni-goettingen.de



J. Geophys. 43, 153-162, 1977 Journal of
Geophysics

Least-Squares Collocation
and the Gravitational Inverse Problem

H. Moritz
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Technische Universitit, Steyrergasse 17, A-8010 Graz, Austria

Abstract. The paper presents a unified least-squares method (collocation)
which encompasses least-squares adjustment and least-squares prediction.
This method is being applied to the determination of the terrestrial gravita-
tional field and of geodetic position by combining data of different kind.

The relationship between this method and geophysical inverse problems is
discussed. :
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1. Introduction

The determination of the earth’s external gravitational field from geodetic,
gravimetric, and satellite data may be formulated as a linear inverse problem that
is mathematically quite similar to other geophysical inverse problems, for instance
to the determination of the internal structure of the earth from seismic and other
data.

The gravitational inverse problem is likewise underdetermined. The external
gravitational field requires for a complete description an infinite number of
parameters, for instance, the set of all coefficients in the expansion of the external
gravitational potential in spherical harmonics. This infinite number of parameters
is to be determined from a finite number of observations, which is clearly an under-
determined problem.

During the last years, geodesists have worked out a comprehensive technique
for the determination of the gravitational field and of geodetic position, called
least-squares collocation. It has developed from two-sources: least-squares
adjustment, which has been classical in land surveying and geodesy, and least-
squares prediction, which is being used for some years for automatic interpolation
of gravity anomalies and similar quantities. Least-squares collocation may be
considered as a synthesis of adjustment and prediction to provide a unified
method for determining geometrical and physical parameters related to the
figure of the earth and its gravity field.
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Least-squares collocation has many features in common with other geophysical
inversion techniques. It may, therefore, be of interest to give a brief review of
collocation, exhibiting cross-connections to geophysical inversion methods. The
reader will find more information and references in (Brosowski and Martensen,
1975; Grafarend, 1975; Moritz, 1973).

2. Determination of Spherical Harmonics

We shall start with an example for which the relation with geophysical inversion
problems is particularly obvious: the determination of the spherical-harmonic
expansion for the gravitational potential from satellite data.

This expansion may be written as

V(. 0, 2)=M [1 -y (g) I B(cos 6)

r n=2
-y 3 (‘;‘) P, (cos 6) (J,,, cos mA+K,, sin m/l)]. (1)
n=2m=1

Here V denotes the external gravitational potential of the earth; r (radius vector),
0 (polar distance=co-latitude) and A (longitude) are spherical coordinates;
B(cos f) and B, (cos ) are Legendre functions —zonal and tesseral, respectively — ;
G denotes the gravitational constant, M the total mass of the earth, a the earth’s
equatorial radius; and J,, J,,, and K, are coefficients to be determined empiri-
cally.

An arbitrary measurement to a satellite (a photographically observed direction,
an electronically measured distance or range-rate, etc.) is obviously a function of
these parameters J,, J,, and K,,,,, since the orbit of the satellite is influenced by
the gravitational field:

L =f(Jn9 Jnma Knm)’

To linearize this function f one introduces approximate values for these
parameters as reference values and expands by Taylor’s theorem. This gives an
expression linear in the differences 6J,,6J,,,0K,, (actual minus reference
values), of the form

@
L=+ Is,, 2
r=1
where I° is the function f evaluated in terms of the reference values; the s, are the
differences 6J,, 8 J,,,, 0 K,,, in some linear order,e.g. s, =9 J,4,5,=0J,;,5;=0K,,,
54=0J5,, Ss=0K,,, s¢=0J3,, etc.; and the [, are coefficients (the partial deriv-
atives of L with respect to s,).

If we have q observations L and denote the differences L—I° by x;, then we

obtain g equations of type (2):

Z birsr=xi (l=1a29,q) (3)
r=1
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In matrix notation this may be written as

Bs=x. 4)
A general solution of this underdetermined system (assumed full-rank) is

s=KBT(BKB")! x, %)

where K is an (infinite) square matrix such that the occurring infinite sums converge
and that BKB” is a regular g x g matrix; otherwise K is arbitrary.
The matrix

B~ =KB”(BKB")"! (6)
is a right (generalized) inverse of B; the solution (5) obviously satisfies (4). Less
obvious but also well known from the theory of generalized inverses (cf. Bjer-
hammar, 1973, p. 116) is the fact that the solution (5) satisfies the minimum condi-
tion

sTK~!s=minimum, @)
provided the matrix K~! exists in an appropriate sense. (In general, operations
with infinite matrices are formally identical to ordinary matrix operations provided
the infinite sums converge.)

Usually the measurements x; are affected by unknown observational errors,

denoted by n;; the notation follows the terminology of time series: “s” stands for
“signal”, and “n” for “noise”. Then (3) is to be replaced by

Z birsr+ni=xis (8)

r=1

or in matrix notation:
Bs+n=x. )
An appropriate minimum condition, replacing (7), is now
sTK-!s+n"D~! n=minimum, (10)

where K and D can be interpreted statistically as covariance matrices: K is the
covariance matrix of the “signal” s, that is, of the spherical-harmonic coefficients,
and D is the covariance matrix of the “noise” n, that is, of the observational errors.

The solution of (9) under the minimum condition-(10) is readily found to be

s=KBT(BKB” + D)~ ! x. (11)

The mathematical model (9) and the solution (11) have also been suggested
for geophysical inverse problems (cf. Wiggins, 1972, pp. 260-1). This solution has
remarkable mathematical and numerical properties, especially stability.

For the determination of the earth’s gravitational field this model has still
other advantageous features. The covariance matrices K and D are not just
auxiliary mathematical quantities introduced in order to obtain a convenient
solution of (9), but they admit of a physical definition in terms of the statistics of
the anomalous gravity field and are, in principle, determinable by observation.
Furthermore, the determination of s by (11) is optimal in the sense that it has the
smallest standard (r.m.s.) error possible on the basis of the given data. It is, more-
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over, perfectly consistent with apparently quite different techniques, for instance,
least-squares interpolation of gravity anomalies. All these techniques fit into the
general framework of least-squares collocation to be considered in Sections 4
and 5.

3. Least-Squares Interpolation

Consider the following problem of a quite different nature. Let the gravity anomaly
Ag (measured gravity g minus normal gravity y) be given at g points B, B, ..., F,
at the earth’s surface, represented e.g. by a sphere; to interpolate Ag at another
point P of the sphere.

If we consider the Ag-field as a stochastic process on the sphere, we may apply
the theory of least-squares interpolation of stochastic processes. The resulting

formula is (cf. Heiskanen and Moritz, 1967, p. 268):
Cii Cip- G742

q

Agp=[Cp; Cp; ... CPq] C‘:21 Cyy .o ng Agz . (12)
Ch Cpp...Cy ag,

Here Agp denotes the gravity anomaly to be interpolated at point P; Ag,, 4g,,

..., 4g, are the gravity anomalies given at B, B, ..., B, and the Cp; and C;, are

covariances which can all be expressed in terms of one covariance function C(y),
where i denotes the spherical distance:

Cpi= Cp), (13)
Ciu=CWir) (14)

Vp; being the spherical distance between P and P, and y;, between P, and B, (cf.
Runcorn, 1967, pp. 1437-8).

Is there any relation between the ideas of Section 2 and the present case? The
problems are as different as they can be. The only indication for a possible inter-
relation is the minimum standard error property, which holds for (11) as well as
for Agp, minimum standard error being the condition from which (12) derived.

Let us assume that we want to solve our present interpolation problem on the
basis of the ideas of the preceding section. In this case we should have to express
Ag in terms of spherical harmonics:

4g=Y c,P(cosO)+ ) > (cymcosmi+d,,sinmi) B, (cos b). (15)
n=2

n=2m=1

This is, in fact, possible, the c,, c,,, and d,, being proportional to éJ,, J,,, and

0K, respectively (Heiskanen and Moritz, 1967, p. 108). There exists, therefore,
a relation
4g(0,4)=Y. B,(6,4)s,, (16)
r=1

where B,(0, A) are certain functions of (6, 1), obviously related to the Legendre
functions.
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It is now possible to write Equation (16) for all given points P, obtaining g
Equations (3) with x;=4g; and b;,=B,(0;,4;). The linear equation system so
obtained may be solved by (5); we assume that there are no measuring errors,
whence D=0. The infinitely many quantities s, thus found are substituted into
(16), written for point P, to obtain 4gp.

It is clear that this solution is totally impractical, but if we would try it and
succeed in performing correctly all the numerical operations, what would we get?
Precisely the same result as by using (12) (provided we operate with correct
covariances and disregard convergence problems)!

The reason for this equivalence will be made clear in the following section.
Here we remark only that Equation (12) contains only finite matrices and vectors,
whereas (5) deals with infinite matrices and vectors. The reason is that (12) involves
covariance functions. Since a function, as element of a Hilbert space, is in some
sense equivalent to an infinite vector (e.g. composed of Fourier coefficients), the
infinite number of degrees of freedom is, so to speak, built into the covariance
function and does not explicitly appear.

Finally I should like to point out another feature of the interpolation formula
(12), namely locality. Assume that the data points P, all lie in a certain small region.
Then one cannot hope, from these local data, to obtain meaningful estimates for
the spherical-harmonic coefficients, which form the vector s of Section 2. Never-
theless, the interpolated value 4gp according to (12) will be quite reliably deter-
mined provided P is closely surrounded by data points P.. Thus Equation (12)
works in a local fashion, in contrast with (5).

In the terminology of Backus and Gilbert (1968), the local interpolation
formula (12) expresses a deltalike functional.

4. The Many Facets of Collocation

The question now arises: What is the common background, if any, for the methods
of Sections 2 and 37 Is there a general mathematical model, of which these methods
are only special cases?

In fact, there is such a general model. If we subtract a suitably defined “normal”
(ellipsoidal) gravitational field from the actual gravitational field of the earth,
then the residual field will be quite small; it is called anomalous field, or disturbing
field. This holds for all field quantities, not only for the potential: quantities
pertaining to the anomalous field are, for instance, the disturbing potential T,
gravity anomalies Ag, geoidal heights N, or deflections of the vertical &, 7. All
these quantities are related to each other by linear differential or integral opera-
tions, such as Stokes integral expressing N in terms of Ag. These operations may
be considered as linear operators or linear functionals in a suitable Hilbert space.

The basic idea is now to consider the anomalous potential 7, which is small,
fluctuates irregularly and has, in some sense, zero average, as a stationary sto-
chastic process on the sphere, and the other anomalous field quantities as other
stochastic processes derived from the T field by linear operations mentioned.

These stochastic processes possess covariance function which are related by
analogous linear operations (“propagation of covariances”) to a basic function,
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for which we may take the covariance function K(P, Q) of the anomalous potential
T. This function can be developed in spherical harmonics as

© r2 n+1
KRQ= 3 k (Z2) Bicosy) (17)
n=0 Tptg

where rp and r,, are the radius vectors of the spatial points P and Q and ¥ is the
angle between these two radius vectors; B (cos ¥) are Legendre polynomials, r, is
a constant slightly smaller than the mean radius of the earth, and the A, are non-
negative coefficients. This expression shows that K(P, Q) is harmonic. satisfying
Laplace’s equation at both points P and Q.

Any quantity of the anomalous gravity field may thus be considered as a
random “signal” s. Assume that a certain number g of such quantities, which
form a vector x, has been measured and that we want to derive from them a set
of p other, unknown, quantities of the anomalous gravity field, which form the
vector s. The solution of this problem is given by the fundamental Wiener-Kolmo-
gorov prediction formula ’

s=C,. Ci\ X (18)

(cf. Liebelt, 1967, p. 138; he calls it Gauss-Markoff theorem). In statistical terms,
this is the linear minimum variance unbiased estimate for the quantities forming
the vector s. The matrices C,, and C,, are covariance matrices that are interrelated
by covariance propagation mentioned above.

The formula (18) has very nice mathematical properties which are unique
indeed, being related to geometrical features of Hilbert space:

minimum variance, that is, best possible accuracy available on the basis of
the given data;

invariance with respect to linear operations; this ensures that all quantities s so
obtained are mutually compatible and refer to one and the same gravity field;

both vectors x and s may comprise arbitrary, even heterogeneous, quantities of
the anomalous gravity field;

the measurements x may even be affected by random errors (“noise”); formula
(18) will still hold provided the covariance matrix C,, is modified by adding the
corresponding covariance matrix of the noise.

Equation (12) is now readily recognized as a special case of (18), if all compo-
nents of the observation vector x are gravity anomalies Ag; and if the vector s
consists only of one component Agp.

But also (11) is derivable from (18). Let s be the infinite vector of the spherical-
harmonic coefficients, as in Section 2, and let the covariance matrix of this vector
be known and denoted by K; this matrix is found to be a diagonal matrix whose
diagonal elements are proportional to k, in (17). Let further the covariance matrix
of the measuring errors n be denoted by D, and let s and n be uncorrelated. Then
the application of covariance propagation to (9) gives easily

C,.=BKB"+D, (19)
C,,=KB", (20)

whence (18) in fact becomes (11).
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Thus the theory of stochastic processes provides a very convenient mathemati-
cal formalism and terminology. How seriously the statistical interpretation is to
be taken, is a matter of controversy and also of personal taste. It is possible
largely to play down the statistical aspects, emphasizing Hilbert space geometry
and considering the covariance function as a kernel function in Hilbert space, as
Krarup did in his fundamental paper (1969). (There are interesting parallels with
Backus’ (1970) Hilbert space treatment of geophysical inversion problems.)

The statistical and the Hilbert space approach are mathematically completely
equivalent (isomorphic). Both approaches provide important insight, and they
complement each other, rather than competing with each other. To avoid the
impression that the present method “messes up every thing statistically”, we
look at it from yet another angle, which shows that we do have an underlying
completely “clean” analytic model.

We represent the anomalous gravity potential T at some point P as a linear
combination of sufficiently many suitable base functions ¢;(P):

T(P)= Y bid(P), @1

The base functions ¢; are to be harmonic functions of a simple analytic form;
b; are numerical coefficients.

Assume that we have g errorless data, which are linear functionals of T, such
as gravity anomalies, deflections of the vertical, spherical-harmonic coefficients,
etc. The problem is to fit the expression (21) to the data, so that the g given func-
tionals are exactly reproduced. This is the principle of collocation, which is fre-
quently used in numerical mathematics (cf. Collatz, 1966).

Once the functions ¢, are given, the g coefficients b; are completely determined
by the g data, supposed independent. Depending on the choice of the functions ¢;,
the interpolation error using the finite approximation (21) will vary. Now the
functions ¢, are determined in such a way that the r.m.s. interpolation error mp
is minimized; this accounts for the name “least-squares collocation” for the
method described in the present paper.

From this principle one obtains the explicit solution

¢:(P)=C(P, x)), ' (22)

which is the covariance between T(P) and the measurement x;. It is a function
of point P, for which a suitable analytical expression should be used. The co-
efficients b;, which form the vector b, are determined from the equation

b=C:; x, (23)

where C,, is the autocovariance matrix of the observation vector x =(x,).

Thus, with errorless data, least-squares collocation determines the analytical
form of the functions ¢; by the requirement of optimal accuracy, whereas the
data are exactly reproduced.

If the data are affected by measuring errors, then the requirement mp=mini-
mum determines simultaneously

(1) the best analytical expression for the functions ¢; and
(2) the best values for the coefficients b;.
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In this case, the mathematical expressions are the same as before, (22) and (23).
The measuring errors have no influence on the choice of ¢, by (22), so that ¢, again
represent pure signal covariance functions, that is, analytical and harmonic
functions; again the least-squares principle helps only to single out the most
suitable analytical expression for the base functions ¢; among the many possible
choices.

Where statistics enters directly, is the determination of the coefficients b;, which
is done in such a way that the effect of the measuring errors is minimized; in
statistical terminology, we have a “best linear estimate”: an unbiased linear
estimate of minimum variance, as we have already mentioned.

Expressions analogous to (21) may be given for any other quantity of the
anomalous gravity field, such as geoidal heights, deflections of the vertical,
gravity anomalies, etc. The coefficients b; remain the same since they depend only
on the data x by (23); what changes are the base functions ¢;; the new base functions
are derived by simple analytical operations such as differentiation since a linear
operation performed on (21) acts on the base functions ¢;. This is, of course,
covariance propagation as mentioned above, which is now seen to carry the
precise mathematical structure of the terrestrial gravitational field.

In fact, (21) together with (23) is the same as the prediction formula (18), so
that we have only been looking at the same mathematical model from different
angles. For lack of time it is impossible here to consider the treatment in terms of
Hilbert space with kernel functions (Krarup, 1969), which provides still another
aspect.

If esthetic appeal in science is characterized by a combination of basic sim-
plicity, richness of mathematical structure, and practical usefulness, then least-
squares collocation might present itself as a candidate for such a qualification.

5. Inclusion of Systematic Parameters

So far we have assumed that we deal only with quantities that have zero average
(zero statistical expectation), such as the elements of the anomalous gravitational
field. This restriction must be removed if the least-squares collocation is to be
applicable to more general geodetic problems.

We shall, therefore, consider the following model:

x=AX+s+n, 24

where the vector x comprises the measured quantities and s are the signal and
noise parts, as before. The new component is AX, where the vector X comprises
systematic, non-random parameters, and A is a known matrix.

This model is general enough to encompass all conceivable geodetic mea-
surements. In fact, any geodetic measurement may be split up, according to (24),
into 3 parts:

1. a systematic part AX involving, on the one hand, the ellipsoidal reference
system and, on the other hand, other parameters and systematic errors (original
non-linear functions are thought to have been linearized by Taylor’s theorem);

2. a random part s expressing the effect of the anomalous gravity field; and

3. random measuring errors n.
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As an example, consider a measurement of gravity, g. Here AX represents
normal gravity y, as well as systematic errors such as gravimeter drift; s is the
gravity anomaly 4g; and n stands for the measuring error.

The formulas for estimating X and s may be derived from either of two different,
but equivalent, minimum principles:

1. From a least-squares principle corresponding to (10);

2. From the condition of minimum variance (least standard errors of estimated

X and s).
The results are
X=(ATC A TATC ! x, (2%5)
s=C,, C;}(x—AX). (26)

The first equation is analogous to classical least-squares adjustment by param-
eters, except that the covariance matrix C, , includes now the covariances of the
signal as well as those of the measuring errors. The second equation is an obvious
generalization of (18) to the case in which the expectation of x is AX rather than
Zero.

These formulas are an extension of the corresponding problem for time series
(Grenander and Rosenblatt, 1957, p. 87).

The present method may be regarded as a combination of least-squares
adjustment and least-squares prediction into a unified scheme, which makes
possible the use of all geodetic data —classical angle and distance measurements,
gravity measurements, satellite data of different kind, etc. — to obtain the geomet-
rical position of points of the earth’s surface as well as the gravitational field.

As an idealization, we might assume that all geodetic data available at the
present time are combined by (25) and (26) into a single solution for the earth’s
gravity field. As a matter of fact, this cannot be directly realized in practice because
it would involve the inversion of an excessively large C,, matrix.

In practice, the number of data to be combined is limited by the size of matrix
that can be inverted by the computer. This presupposes suitable representative
selection of the data and some working “from the large to the small” in several
steps.
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