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The Statistical Description and Interpretation
of Geophysical Potential Fields
Using Covariance Functions *

H. Kautzleben, M. Harnisch, and W. Schwahn**

Akademie der Wissenschaften der DDR, Zentralinstitut fiir Physik der Erde,
Telegrafenberg A 17, DDR-15 Potsdam, German Democratic Republic

Abstract. This is a review of the statistical description of random potential
fields on spherical surfaces as well as on the plane. On spherical surfaces only
the radial component of the random field is homogeneous and isotropic. But
this is sufficient to estimate the degree variances of the potential and all the
other components. Using the general representation by spherical harmonic
series the collocation is described in the case of the radial component in
much detail. The covariance function of the random potential field in the
plane may be represented by a convolution. The covariance function of the
kernel in the source equation of the random potential field is folded with the
covariance function of the random source field. For two kernels the autoco-
variance functions are given and some statistical source models and the
possibilities for the determination of the depth parameter of the kernel are
mentioned.

Key words: Random potential fields — Spherical surfaces — Planes —
Autocovariance functions — Degree variances — Collocation — Kernels
and their autocovariance functions — Statistical source models —
Parameter estimation — Periodicities in the empirical random density
profile. :

1. Introduction

For a number of years it has been tried to apply mathematical statistics to
geophysical potential fields (a) to increase the knowledge about the spatial
distribution of these fields by interpolation between the available observations
and by combinations with other types of observations, (b) to analyse the
structure of these fields and, if possible, to establish relations between different
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164 H. Kautzleben et al.

fields, and (c) to obtain informations about the distribution of the sources of
these fields.

The two most important geophysical potential fields are the gravity field of
the Earth and the permanent part of the geomagnetic field. In geodesy and
geophysics methods were developed for the statistical description and in-
terpretation of the gravity field. This was not done with the same intensity for
the geomagnetic field, and, still less, for the other geophysical potential fields.

There it is to take into account that the geomagnetic field shows a very
pronounced secular variation and spatial irregularities much stronger than the
gravity field in the global scale as well as in the regional and local scale.

The treatment of the potential fields by the methods of mathematical
statistics is feasible as they may be understood as a linear superposition of a
determined normal component by a multitude of irregularly distributed anom-
alies. The whole of the anomalies may be treated as a realization of a vectorial
random field that has also a scalar potential. Beyond it the assumption is made
that this field is homogeneous and isotropic on concentric spherical surfaces or
on parallel planes in the case of flat Earth approximation. Then it is sufficient to
study the covariance function of the anomalies of the potential.

2. The Determination of a Normal or Systematical Part

The splitting of the potential field into a systematic part and the overlaying
anomalies is ambiguous. For instance it is possible to represent the potential
field by a series with suitable basic functions and to restrict the systematic part
to a very small number of terms. If global problems are considered this is always
a spherical harmonic series because of the spherical surface of the Earth but also
because of the optimal convergence properties for a statistical analysis of data
distributed over a spherical surface. To estimate the serial coefficients usually
the method of least squares is applied. There it is to take into account that the
differences between the observations and the resulting normal values are cor-
related significantly. As a disadvantage for the interpretation the very irregular
distribution of the observations at the Earth’s surface appears. Some of the
advantages of the spherical harmonics are efficient only for a continuous or a
specialized regular distribution of the observations.

To determine the lower terms of the Earth’s gravity field satellite obser-
vations are very important. Similarly the socalled L.G.R.F. (International
Geomagnetic Reference Field) is based on the analysis of satellite observations
of the total intensity, but it also contains terrestrial measurements. Because of
the existence of large scale anomalies of great intensity, and because of the slow
convergence of the spherical harmonic series the I.G.R.F. seems to be not
suitable as normal field for the geological interpretation of the anomalies of the
permanent magnetic field.

3. Statistical Description of Global Potential Fields

In considering global fields there are some troubles with the spherical surface.
One relates to the definition of the random field on this surface, another to the
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interrelation between the vector components. Lauritzen (1973) has shown that it
is impossible to find a stochastic process which is harmonic outside the sphere
and both ergodic and normally distributed. In the present case the ergodicity is
of great importance because the average taken over a great number of re-
alizations can be replaced by the average of one realization only taken for a
great number of observations distributed over the whole spherical surface.

V(r,3,2) is assumed to be a scalar random function which is harmonic
outside the sphere r=r, and which is also ergodic. If V is also homogeneous and
isotropic on the spherical surface, then the expectance yields

M[V(r,9,4)]=0, 1)
and the covariance function
Kyy(r, 34, ¥, ¥, AV =M[V(r,3,1)-V(r, ¥, 1)] )

on every spherical surface depends on the spherical distance between the points
(r,9,2) and (', ¥, X). Here M is the average of the expression in rectangular
brackets, taken over all realizations. Owing to the ergodicity M can be re-
placed by the average over all observations distributed over the whole surface.
Because of the great number of observations it is allowed, and because of the
simpler treatment it is advantageous to approximate the sum over all obser-
vations on the surface by the integral over the whole surface

2n w 2n

1
~in g g— [ [1dasin3d9dA, (3)
where o is the azimuth between the two points (r,3, 1) and (v, ', 1').

Outside the sphere the potential V' is represented in series of spherical
harmonics

V(r,8,2)=r, Z Z (G™cosmA+ H™ sin m/l)P”‘(S)( ) H. 4)

n=1 m=0

Taking into account that the covariance function for ¥ depends only on the
distance 7, for the correlation moments of the series coefficients we get

2n+1 fKVV(‘c s1nrdr—K(G G?)

K(G™, G™)=K(H™ H™)=3,,. 5,
( )=K( )= )

K(G™, H")=0 for all combinations of m, m’, and nn.

These may be understood as coefficients in a Legendre polynom series of the
covariance function of the potential

© 2\ n+1
Kn(nr, =13 3 K(GLGHRY) (2)" . ©
n=1

They result from the equation

1
K(G? G =—— G™)?+(H" 7
(G, Go) =5 1, Z (G +(H7)*] ()
with the series coefficients of the known realization G7', HY. The parameters (7)
are defined as “degree variances”.
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If the covariance function of the potential V is known, in general it is rather
easy to determine the covariance functions for the field quantities which are
related to the potential, for instance the gradient F. Usually the gradient is split
into components related to the directions of the geographical coordinates

y_Llov 11y

Troy’ Y= rsind 04’ Cor ®)
Taking into account the criteria for the potential V(r, 3, 1) the expectances for all
three components disappear. Instead of the one covariance function of the
potential ¥ the random vector field derived from the potential requires three
autocovariance functions Ky, Kyy, K, and six cross-covariance functions K,
Ky, .... They are obtained using the relations

2

K, (r,8,4;7,9,1) =37 Kyy(r, 7,0, _,s
L o ©)
K (9,4, 7,3, 1) =? EPFI Kyy(r,r,7)l,_, etc.

After some steps analytical expressions result which have the following proper-
ties: on the spherical surface r=r" merely the autocovariance function of the
radial component Z is a function of the distance t only. All remaining autoco-
variance functions explicitly depend on the coordinates of the two reference points
(r,9,7) and (v, 9, 1'). Hence, under the given conditions for the potential only the
radial component is definitely homogeneous and isotropic on the spherical
surface r=r" and, therefore, suitable for an estimation of the covariance on the
basis of one realization. Since in the expressions for the covariance functions of
the potential and of the remaining components only the correlation moments
K (G?,G?) occur as empirical parameters, it should be noted that the radial
component is sufficient for the determination of all other remaining correlation
functions.

The matrix of the auto- and cross-covariance functions of the components of
the vector field F can substantially be simplified if, instead of a splitting into
geographical coordinates a split of components is used with reference to the
interrelated position of the two reference points on the spherical surface. The
radial component Z remains unchanged; X and Y are substituted by the
components L and T, with L being parallel to the great circle which joins the
two reference points, and T being perpendicular to it. They can be obtained
from the potential function V using the relations

10V 1 1 o0V
L(ra (2 a)=; Ea T(r5 T, a) =TT - Al (10)

For points on the spherical surface r=r, result the auto- and cross-covariance
functions

< 0 A0 ]/1 dR\(z)
KLL(r)= 21 K(Gn’ Gn) 5n(n+ l) T:
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Rl(0)

. »
St

Krn()= Y K(G,GO) Y/ En(nt 1)

n=1

Ky,(1)= i K(Gy, G(n+1)*B(x), -
n=1

K ()= —K ;(1)= Z K(G,?, GS) % %n(nJF 1)3 R;I(T)s

n=1
Kr(1)=Kz7(1) =K 1(t)=K7.(1)=0.

All covariance functions depend only on the spherical distance z between the
two reference points (3,4) and (¥,4), and they can be estimated using the
observations of one realization. The numerical calculation, however, is rather
laboreous since the horizontal components L and T are to be determined
separately for each combination of reference points (Kautzleben, 1966, 1967,
Harnisch and Kautzleben, 1976).

Figures 1 and 2 contain the auto-covariance functions of the gravity field
and of the geomagnetic main field, for which the empirical values have been

Kyv [107 mGal%km?]
-=== Kz [mGal?]

----- K, [mGal2]
—omem Kor[mGal?]

Fig. 1. Autocorrelation functions of the anomalies of the Earth’s gravity field

— Kuu [m“}' ka2]
_____ K i []UL ?,2]
e

Fig. 2. Autocorrelation functions of the anomalies of the permanent geomagnetic field
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drawn from studies by Tscherning and Rapp (1974) and Kautzleben (1969). We
can see that the longitudinal covariance function K;; and the covariance
function of the radial component oscillate in a more pronounced way, whereas
the transversal covariance function K;; over a major part rather smoothly
approximates the zero line, however, leaving it again with increasing 7. The
largest difference is found between the covariance functions of the potential
function of the two fields.

4. Correlation of Different Fields

The correlation analysis of an individual potential field may also be applied to
the investigation of the stochastic relations between different fields on a spheri-
cal surface. For this end the various fields are taken as components of a
multidimensional random function which is defined on the spherical surface. Of
particular interest in this case are the cross-covariance functions in the meaning
of two-point-correlations. Using here the spherical harmonic series for two func-
tions F(39, 1) with the coefficients A7, Br and G (¥, A') with the coefficients C, D}
for the cross-covariance function the expression

Kpe(t)= Y. K(43, CY)B(7) (12)
n=1
is obtained with the correlation moments
1 n
K(A°, CO)=— A™ C™+ B™D™).
( n n) 2n+1 mgo( n Il+ n n) (13)

Only the serial coefficients with equal indices and equal angular functions are
different from zero. For equal n the correlation moments are equal to each
other. These formulas have been derived by Kaula (1967) and introduced into
geophysics. Since then they have been used by several authors.

Let us assume that the functions F and G are field quantities, to each of
which a scalar potential can be associated. It is, of course, reasonable to relate
every possible cross-covariance function to the relation of the correlation
between the two potential fields themselves.

5. Prediction and Collocation

In the determination of the Earth’s gravity field statistical methods of in-
terpolation, extrapolation and prediction have been added to the classical least-
squares adjustment. Krarup (1969) showed that the prediction formulas can be
used to calculate arbitrary parameters of the gravity field if arbitrary elements of
this field are measured. Moritz (1973) showed that the prediction methods can be
combined with a determination of parameters which represent systematic parts
by adjustment. This yields a rather generalized method of least squares, which is
called “collocation”. It allows the standardized application of any kind of
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geometrical and physical measurements for an optimal determination of the
shape of the Earth and its gravity field. This method can also be applied to any
other geophysical potential field, and by the optimal processing of any available
observations it provides as much detail as possible about the field variation
which are compatible with the observations.

Collocation may always be used if the problem under study contains, apart
from the measuring errors n, another irregular part s, ie. if the remaining
residuals after subtraction of a systematic part may be split into two com-
ponents which are different in their statistical behaviour.

We start at the observation equation

x=AX+s+n (14)

x designates discrete observations, A a given matrix of coefficients, X the vector
of the wanted parameter, n the measuring errors, and s the signal as the second
random variable. The vectors n and s are purely random vectors whose
expectances vanish. The correlation matrices of the two vectors are designated
as D and C. It is assumed that the measuring errors and the signal are not
correlated.

We look for a linear estimation of the signal s, at some new points which
may be different from the observation points. In analogy to adjustment col-
location requires the unknown parameters X to be determined in such a way
that the total of deviation squares at the observational points and the new
points is a minimum. Hence, in the present problem occur additional random
parameters which are related to the observations only in an indirect manner via
correlation. Due to the requirement of minimum we obtain the formulas

X=(ATC-'A)"'ATC !x, (15
sp=CEC~}(x — AX). (16)

Equation (15) determines the parameter vector X, then follows the signal s, at
the new points from Equation (16). The matrix C is the correlation matrix of the
observation vector x. Provided that n and s are not correlated we have

C=C+D. : 17

The matrix C} covers the correlations between the signal s, and the observation
vector Xx.

The correlation values of the signal occurring in the matrices C and C, are
calculated, from the given covariance function of the anomalies of the potential
and of further field parameters which are related to it. The observed parameters
and those which are to be calculated may be heterogeneous. There is only the
requirement that the mathematical relations between them are known, and all
correlations must strictly be related to the same covariance function of the
potential.

One application of collocation, important for all geophysical potential fields,
concerns the combination of spherical harmonic series of the field with direct
observation on the Earth’s surface for the derivation of an optimum description
of the field concerned, by the improvement of the numerical values for the
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coefficients as well as by prediction of values for the field in areas where direct
observations are absent. The method was in much detail tested when combining
results of satellite geodesy with terrestrial measurements of the gravity field
(Moritz, 1970).

The principle may be demonstrated considering the radial component Z of
the anomalies of the field gradient. From direct terrestrial measurements there
should be available as observations the M parameters Z; and from other
observations, e.g. via satellites, the (N + 1)* coefficients a™, b™ in the finite series

N n
Z©8, )=, Y (aF cosmi+bysinmi)B(9). (18)
n=0m=0

We now need the estimates Z of values at some new points and estimates a for a
number of serial coefficients, each as a linear combination of all available
observations. A systematic part is assumed to be already completely eliminated
in the observations. The solution of the problem is furnished by Equation (15),
where the signal vector in the defined way consists of the wanted estimate.
Following Section 3 the covariance function of Z will be

N
K,(t)= ). ¢, B(1). (19)
n=0
For the correlation moments between the serial coefficients al, b7 we obtain
using Equations (5) and (19)

K(ay,ah)=K(@®y, b =c, (20)

n>>n

or zero for all remaining combinations of the indices m, n. The covariance
functions between the values of Z and the serial coefficients result by using the
series and taking into account the properties of the correlation moments.

K(Z,a)=c, P/(9) cosmA4,

(1)
K(Z,b})=c, P(9) sinmA.

The coordinates are related to the point where Z is considered. Now all
parameters are known from which the matrices C and C, in (15) and (16) have
been set up. The matrix D of the observations must be derived from the
measuring and the observational errors. The prominent problem of the practical
evaluation is the inversion of the matrix C in Equation (15).

6. The Statistical Structure of the Potential Field and That of the Sources

In the previous chapters the considerations were focused on the statistical
structure of the potential field only. But from the mathematical and physical
point of view the investigation of the relation between the statistical structure of
the potential field and the structure of the sources is of much more concern.

To avoid difficulties concerning ergodicity we consider in a first step a model
with the following properties: The Earth’s surface within the area of in-
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vestigation is considered as a section of an infinite plane (so-called “flat Earth
approximation”. For global problems see Tscherning, 1976). Observations are
interpreted as a realization of a random function which is defined on this plane.
Therefore the observations within the limited area are a sample of the random
function. To get in the observation plane a random homogeneous potential field
the stochastic'source field must also be defined over an infinite plane, i.e. the
support (the definition region) concerning the two horizontal coordinates x, and
X, must be infinite.

Naturally the random source field itself must fulfill the condition of homo-
geneity with respect to the horizontal coordinates. In the vertical direction the
source field may be homogeneous or inhomogeneous. If the source field is
homogeneous in all three coordinates one gets for the first moment (mean value)
the model of a Bouguer plate.

Then the connection between the stochastic source field ¥(x) and the
stochastic potential field @(x) may be written in the form

o(x) = [ k(x —x') P(x')dx, (22)
T

where k is the Green function or the kernel of the integral equation, which is
different for each discrete expression of a potential, T is the support of the
random source field

—0=Ex, 4o, —0=x, S+, t,=x3=5t,, tjandt,

the lower and upper boundaries in the x;-direction.
For the autocovariance function of the potential field we immediately obtain
from (22) the general expression

Kpp(Xy,X5)= I fk(x1 —x) k(x, —X5) Kgy(X], X5) dx] dx; (23)
TT

where Ky is the autocovariance function of the random source field. For
reasons of simplicity the support of the random source field is suggested to be
reduced to a simple layer in the depth ;x’y=,x’ =t parallel to the Earth’s surface
1X3=,X3=a. Since by the above noted assumptions the source field is a
homogeneous random field and the integration is a linear operator, the both
autocovariance functions Kgq and Ky are dependent only on the horizontal
distance

S=(51,8,),  S1= X1 Xy, $;=2Xp— X,
between the two points concerned and on the distance
! ’
h= X3 — 1 X3=2X3—,X3=a—L.

Commonly the observation plane is the Earth’s surface. Then h means the depth
of any layer in the Earth’s interior.
We can rewrite Equation (23) into

Koo(s,a)= [ [ k(y,h)k(y+2,h) Kgy(s—z,t)dydz. (24)

— 0 — o0
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Provided that k is absolutely integrable, following the communication theory
the expression

+ @

Kz hy= | k(y,h) k(y +z h)dy (25)

can be designated as the autocovariance function of the determined Green
function k. We obtain the rather unsophisticated relation

+ oC

Kgols, a)= j Kz, h) Kyy(s—z,t)dz (26)
between the three covariance functions of the potential field in the measuring
plane a, the distribution of sources on the boundary surface ¢ and the Green
function k. The first is obtained by a convolution of the latter two functions.

There are not much difficulties in setting up analogous formulas of less
simpler models for instance a stack of planes or layers of finite thickness
(Schwahn, 1975a). In such cases the autocovariance function Kyu(s, x5, ,X5)
between the two points x| and x) and the integration concerning x5 and ,xj
within the vertical boundaries must be taken into consideration. This shows that
the function Kgg depends on the properties of the random source field in the
vertical direction also. This fact was neglected up to now.

Let us divide the further discussion of Equation (26) into the determination
of K,, for distinct Green functions and the consideration of K, for some
simple stochastic source fields.

One yields (Schwahn, 1975b) by a twofold Hankel-transform for the Green
function g(y, h) of the gravity field the autocovariance function (Fig. 3)

K (s, h)=2m 2h(|s|2 +(2h)?)~¥2, 27)

Using the relation between the autocovariance function of a scalar random
potential field and his derivatives the autocovariance function K_, of the kernel
z(y, h) of the vertical intensity of the anomalous magnetic field results in the

i

081
0.6}
0.4

0.2}

0 1 2 3 4 5 6 7V

Fig. 3. Autocorrelation function (e—e—ae) (normalized autocovariance function) of the kernel of the
random gravity field. For comparison the gravity anomaly due to a point mass in the same depth is
added (0—0—0). Both functions are given for the relation v=sampling interval-point
number - (depth) ™'
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Fig. 4. Twodimensional autocorrelation function of the kernel of the geomagnetic vertical intensity
for different inducing geomagnetic main field. a Examples for different inclination I (I1=90°, 60°)
and declination D=0°. b Example for declination = —30°, inclination = 65°.

The functions are given for the relation sampling interval - lag number - (depth)~!

following form (Schwahn, 1976)
K .(s, ) =67 2h((2h)* + 15|~ T2 fA(2H)* + 53 —4s2)
+ fA(2h)? + 52 — 45D+ f2(2(2h)% = 3(s +53) (28)
=101, f25:52)s

whereby f stands for the direction-cosinus of magnetization vector (Fig. 4a, b). If
the vector has not (as it is assumed here) a constant direction, then we must
replace the simple terms of f by the corresponding elements of the covariance
matrix of the magnetization vector.

If the random field of susceptibility is homogeneous and isotropic an
anisotropic autocovariance function of the vertical intensity yields for regions
apart from the geomagnetic pole. That means, that it is impossible to get an
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information on the statistical structure of the susceptibility from very long
profiles crossing different geomagnetic positions if the data of the vertical
intensity are not reduced on the north pole before the further computations.

Let us now consider some random fields of sources. In the rather simple case
the sources in the plane t would have to be packed densely, while the related
parameters of the involved random material ¥(y, ) between two areal elements
are—in statistical terms —entirely independent of each other and being N(0, s?)
distributed. From (26) we immediately obtain

Kasls @)= K8, ). (29)

This model, for example, has been successfully applied by a number of authors
(e.g. Seron and Hannaford, 1957; Mundt, 1969; Schwahn, 1975¢) to the statisti-
cal interpretation of anomalies of the gravity or the magnetic field of the Earth.

Except for a constant factor we obtain the same results even for a model
with single point sources which are distributed within the plane following a
Poisson distribution and the same material parameters as noted above (Serson
and Hannaford, 1957; Schwahn, 1975¢).

For the cases of infinitely extended strips in the x,-direction models were
considered by Vasiljev (1965) under the assumption of exponential distributed
widths of the strips and by Schwahn (1976) under those of equal distribution of
the widths.

All the resulting theoretical autocovariance functions have not, with few
exceptions, the shape of those autocovariance functions, obtained on the base of
empirical data. As an example serves there (Fig. 5) the autocovariance function
of gravity K%, ,, on a profile Schonen —Lappland in Sweden (Schwahn, 1975b).
The long periodicities in the gravity data were removed by filters with different
length. Periodicities of nearly 25... 30km are remarkable.

!
1.0p
¥,
I
T
%
‘..':;
0.5 \'..; 2 - - 2% 2%
fon ' '
Lo g__': Se,
. s N
\ e /. -“.-;’;,.D-«'N«;'/ 100 120  “I'selkm]
-.....“:o \‘-’/’.- ’/,;;o
-0.4 \‘sll‘au

Fig. 5. Empirical autocorrelation function of gravity on a profile in Sweden after high-pass filtering
000 51 coefficients, -- --- 41 coefficients, ® @ ® 31 coefficients, — — — 21 coefficients. The lag distances

are smaller than profile length/10. The distances between one maximum to the next are given by
numbers above the curve
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Fig. 6. Empirical autocorrelation function of density on a profile in Sweden after high-pass filtering

0 0 0 51 coefficients, ——— 31 coefficients. The lag distances are smaller than profile length/10. The
distances between one maximum to the next are given by numbers above the curve

According to Equations (26) and (27) such periodicities can be explained
only in terms of the autocovariance function Ky, of the density. For a
confirmation a density profile for the same location was compiled on the base of
the geotectonic situation and rock density measurements (Schwahn, 1975b).
After corresponding filtering the autocovariance function of the rock density
K&y on the earth’s surface was computed (Fig. 6). Indeed, as it was desired, this
function shows very pronounced periodicities in the range of 25km, i.e. the same
range as in the case of gravity.

Within the framework of the statistical analysis of potential fields the con-
sideration of the autocovariance function Kyy from the theoretical as well as
from the empirical point of view is very important because we have now a close
connection to the ideas on the statistical structure of geological features (e.g.
Agterberg, 1970; Mundt and Wirth, 1973; Wirth, 1975) and their physical
parameters, for instance the viscosity (Schwahn, 1975d).

But not only the connection with geological models are of interest, when the
stochastic potential field is considered. Often we are interested in the value of
the parameter h, the depth. If we know the random functions both of the
stochastic potential field and of the stochastic field of the sources (as in the case
of Sweden) and if we make the assumptions that the sources may be con-
centrated within a plane and that the stochastic fluctuations on the Earth’s
surface are quite similar in reasonable depth range (the latter supposition is
fulfilled presumably within the Fennoscandian shield), then we can get

— the autocovariance function K, of the stochastic potential field
— the autocovariance function Ky of the stochastic source field
— the cross-covariance function Kyg.
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The kernel k(y, h) may be obtained using the Wiener-Hopf-equation
+ 00
[ k(y,h) Kgg(s—y)dy —Kyge(s)=0 for s=0. (30)

We did not solve this equation. Using the known empirical autocovariance
function K¢, the expression

+ oo 2
f(h)=E{[_I Ky, h)Kiw(S—Y)dy—KigAg(S)] } (1)

was computed for the gravity in Sweden and we looked for the minimum of f(h)
by a stepwise choice of the parameter h. One gets the minimum between 18 and
22km. These values coincide very well with the depth of the seismic Conrad-
discontinuity in Sweden.

The detection of periodicities in a sample of the potential field, if there is a
stochastic periodicity in the source field depends on several factors. Equation
(22) means a smoothing operation (low-pass filter) all the more the greater the
distance h is between the two planes. Therefore the detection of any periodicity
in the source field on the basis of a sample of the potential field is an estimation
problem in dependence on the field under consideration, the wavelength of the
periodicity and their amplitude in the stochastic source field, the parameter h
and the sampling interval. On the basis of a Rice-distribution of the distance
between the two consecutive point-masses we found (Schwahn, 1976), that the
relations sampling interval/depth >0.3 and mean distance/mean square error of
the mean distance for the x,-direction>2 must be fulfilled for a suitable fixed
sampling interval.

7. Conclusions

In this article the problems have been made evident which arise in the appli-
cation of the general theory of stochastic processes to the potential fields of
stochastic nature in global and local scales.

There are troubles which are caused by the finite integration range of the
sphere in connection with the ergodic hypothesis and in problems on the plane
the assumption of the absolute integrability of the kernels and the demand for
homogeneity.

From the statistical treatment of geophysical potential fields it may be
concluded that it is necessary to study stochastic source models which are
consistent with models of other Earth sciences.
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