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Data Seizing and Information Processing
Application to Recognition of High Seismicity Earthquake Areas

C.F. Picard and J. Sallantin

Structures de I'Information, Groupe de Recherche du CNRS, Associé a I'Université Paris VI,
Tour 45, 4, Place Jussieu, F-75230 Paris Cedex 05, France

Abstract. Different methods of information processing for discriminating
types of events, and some results allowing to build a projective repre-
sentation, are presented. The resuits are applied to the recognition of
possible locations of strong earthquakes in Pamir and Tian Shan.
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Introduction

When we study a phenomenon, we use data resulting from -experiments, and
these data contain all the information which can be obtained. We do not choose
the same method for information processing if we want to classify events by data
or to recognize one event. Obviously the choice of the method of information
processing depends on the expected result. We present here three of these
methods which are efficient when we want to recognize a class of events: each of
them supposes a mathematical representation for the type of events and for the
operations or questions separating the events.

In the first two methods, we can assume the possibility of a representation of
events and tests by a probabilistic state, such that we may identify all the events
with more or less accuracy by the subsets of this probabilistic state; in the third
method we show how to build a representation of the events by a set of
subspaces of a Hilbert space. The major part of this note is concerned with this
so-called projective representation method; the others, questionnaires and
pseudoquestionnaires, are briefly given here for a better understanding of the
links between classification methods and information theory.

1. In a number of cases an experiment is made with the idea of repetition in
mind. It is of course a wellknown aspect of computer science to work only with
highly repetitive programs. Then, the experiments have a statistical aspect and it
is often possible to build probabilistic spaces upon events known only by the
frequencies of their realization. A questionnaire is a mathematical object which
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can be used as a model of experiment or as a scheme of a computer program
acting on a lot of data. Without introducing the exact definition of a question-
naire, we will give some of its properties (Picard, 1972, 1974).

Let us suppose we must realize an experiment with a finite number N of
outcomes which are the events of a given space Q, whose set of subsets is .«
(finite case). These events are called the answers; if we have at our disposal a
mechanism such that we can identify the N events with only one elementary
experiment or question, we will say that only one question was needed for the
separation of these events. If the mechanism needs more than one question to do
the separation, then we will speak of a questionnaire with several questions. The
set-theoretical aspect of the questionnaire is given by the next remark: in many
cases each questions is acting exactly as a partition operator, and Q is cut into
smaller and smaller subsets until every subset is atomic; the process is then
called an “arborescent” one. But in other cases, a question does not realize a
partition because two outcomes of an elementary question are subsets of Q with
a non empty intersection: there is a covering of preceeding subsets, and the
process can be called a “latticoid” one. A graph obviously associated to a
questionnaire has the property: from the first question called root to every other
vertex (question or answer) there is only one path in the arborescent case, but
not in the latticoid case. In both cases, the questionnaire allows to find the
answer to the problem under study or what item would be selected. The
questions and final answers are weighted by frequency coefficients —or, in the
best case, by probabilities —so that it is possible to speak of weighted paths. The
length of a path is the number of its arcs or of its questions: there is one
incoming arc for every question, the root excepted. The routine length is defined
as the mathematical expectation of length of all the paths, linking the root to the
N answers. This routine length is fundamental to classify questionnaires built
over the same set €.

A given questionnaire, with a unique set of questions, can be used for the
processing of a lot of items coming from a collection of data. One of the main
problems is to build a questionnaire which minimizes the routine length: it is a
global optimization which cannot be done easily when some constraints forbid
the use of certain partitions. In fact, every question is associated to an operator
of interrogation. A simple one is the comparison between two distinct numbers
a and b, the two outcomes being a>b and b>a. But this operator leads to an
arborescence with 4 answers and not only 3, when it is applied to a set of 3
numbers {a, b, c} for finding their maximum.

Firstly, we put “a>b?” and at the second level “a>c?” after a positive
answer, and “c>b?” after a negative answer. Then we get the 4 answers
{a>(b,c),c>a>b, c>b>a, b>(a,c)}. It is obviously possible to keep only three
answers (a or b or ¢ is the maximum) with a loss of information so that the only
feasible questionnaire with exactly 3 answers and built upon the operator “e>¢?”
is a latticoid, and the so-called processed information (with 4 events) is greater
than the so-called transmitted information (with only 3 events).

The theory of information is a guide for the prediction of a lower bound of
the routine length, and it gives a possibility to evaluate this length with the help
of only the probabilities of answers; the restrictions imposed by the set of
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interrogation operators create a gap between the lower bound and the practical
routine length. Other weights or parameters can be used to take into account
some other economical or practical concepts: cost of every question, power of
the questions, utility of the answers ...

We must point out the difference between these questionnaires and the
questionnaires as they are known in socio-economics. The information obtained
by such procedures allows one to do exclusively unions or intersections of sets,
but does not allow identification of items of a given class in a probabilistic
environment. The main applications of the questionnaires theory concern
searching and sorting, pattern recognition and the organization of data files in
computers by efficient procedures for classifying or interrogation problems.

2. Let us consider decision processes concerning a random variable T taking
a finite number of values T, T,, Ty, when having the observations X; of a
discrete random variable X. We denote by (2, o, P) the probability space over
which the random variable T is defined. Let us suppose that a set Q of finite
random variables on (£, &, P) is given. An element geQ is associated with every
internal vertex of an arborescence whose paths represent the interrogational
procedure. In the case of a questionnaire, Q is the set of authorized operations to
apply to every question, and there is a bijection between T and X. We cannot put
a question on T itself but only on X, and the answer is reliable and sure: the
answer X; will mean that the real phenomenon occurs with the event T.eT. In
the case where p(T;|X;) <1, the process is unreliable and there is a doubt: it is
possible that the real phenomenon corresponding to X; is the event T, with a
probability p(T;|X;)<1—p(T]|X;). There is no bijection from X to T, and we
cannot say it is such or such teT which is actually concerned; such situations
with indirect interrogation are not modeled by questionnaires with reliable
answers but by so-called pseudoquestionnaires with probabilistic vectorial an-
swers (Terrenoire, 1973).

3. Now we cannot assume the possibility to represent events and tests on a
probabilistic space. It may be possible with the help of correlation on the data
to find a vectorial space H, and to define the interesting events by subspaces of
this space; this is the case if it is impossible to determine the features in the data
that allow to classify the events.

These methods are called projective representations and have been studied
by Watanabe (1969) and Watanabe and Pakvassa (1973). Some actual develop-
ments will be represented in this paper with pattern recognition of earthquakes
areas as example.

Bongard and Gelfand’s problem of pattern recognition is in the third
category because, as we know, there are no discriminant features to distinguish
dangerous areas from others (Gelfand et al., 1972, 1973). Nevertheless a strong
earthquake as a geomorphological phenomenon has to mark the surface of the
earth; and it is possible to suppose a difference between the geophysical
descriptions of areas where earthquakes happen or not.

The pattern or class of events that we want to recognize is defined by an
issue:

a: epicenters of strong earthquakes may be situated in the area,

b: opposite (may not).
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If the data allow a good representation of the class of events, they do not
allow always an inductive analysis of the phenomenon. For example, it is
possible to describe only the secondary effects of the phenomenon in the code,
and these are enough to obtain a good projective representation of some
patterns.

Now we present some aspects of projective representation (Sallantin, 1976)
which allow a practical approach to this problem. Afterwards we show how
Bongard and Gelfand’s method can be justified by these results. Then we present
another method and compare the results.

Construction of a Projective Representation

From a mathematical point of view, we have three steps in the study of this
representation:

» To find the conditions of existence.

» To obtain the practical formulation allowing projective information pro-
cessing.

» To practise an algorithm.

1. For the first step, conditions are defined according to a logical algebraic
formulation. It is possible to show that projective representations do not
correspond to Boolean logic but to quantum logic as they are defined by J. von
Neuman and G. Birkhoff to justify the basis of quantum mechanics.

This aspect is studied in von Neuman and G. Birkhoff (1973). We suppose
here that it is possible to have a projective representation.

2. Let Q be a set of objects about which we put a set of questions having a
proposition as a semantic value: the assertion of each proposition his called an
issue, and the non assertion, negation, out of the context, is not considered, % is
the set of issues. Information on the objects is accessible by a code xe X, X c R

The quest of the issue a transforms the code xeX, we shall define that
function:

¢, R">R"
We have also to consider an application f:
f: xR"—>[0,1],

where f(a, x) is the frequency of verification of the issue a for the class of objects
coded by x.
The analysis describes an interrogational process

{X. 2.1, 0,laeZ}.

To have a projective representation, it is necessary to suppose on % a
monoid structure for an operation of concatenation [], corresponding to the
succession of 2 assertions, and to have for each code a morphism of £ on [0, 1].
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This is verified for the next set operation
1) f(aOb,x)=f(a,x)-f(b, p,(x)),

and a pseudo complementation verifying:
2) f(Ta,x)=1-f(a,x).

These operations are proposed by S. Watanabe (1969). Now to obtain a practical
projective representation we have to find

{X,2.f, 0,lae 2L}

that verifies properties 1 and 2. We shall give a procedure to obtain it.
Let us consider R", and £ (IR") the set of vectorial subspaces of R". The
scalar product is noted <|>; Z(R") is a lattice, ortho-complemented with

1) 71-7a=a aeZR"
2) Tanra={0} with {0}=71 I=R"eZ(R"
3) anb=a=1bA 1a="7b
and orthomodular with
anb=b=b=an(bv a).
On #(H) we have functions verifying
m0)=0, m()=1
anb=a=m(a)Em(), abeZ(H)
a Ab=0=m(a v b)=m(a)+m(b).

This functions are denoted generally state in literature; we can now use a
Gleason result (Parthassarathy, 1970).

Theorem. Let us have R", n=3, and £ (RY) the lattice of all the subspaces of R".
We have a one to one mapping on the positive self adjoint operator Ty with a unity
trace to the states of & (R"). If (a;,i=1,n) is a basis of ac £ (R"), then:

N(a)=z<ai|Tﬂ a;).
With the help of this result, it is possible to obtain all the states of #(IR"). We
suppose now that f(a, x)=pu({x}), where {x} is the subspace generated by x, for a

state u of Z(IR"), and we try to obtain subspaces that optimize the state u. For
this, we need also that they should minimize the entropy function.

Definition. Let (1, ...,1,) be a basis of the subspace I. Define

> 1
1y— _
H'()=Y mt)ln (m (l.-))
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and if f+1, f=0
HA ()= [i m()(1=m(P =] -[1 -2t

These functions are known as f§ type informations:
Now it is possible to show

Proposition 1. Let A be the self adjoint operator associated to the state m. Let
K=(K,,..., K,) be a basis of eigenvectors of A then any other orthonormal basis
I=(, ..., 1) of R" verifies:

HP () 2 HY (K).
Now, we define the entropy of a subspace S of R" by
H*(S)=min H(s)

sel
where 0 is the set of orthonormal basis of S.

The next result can help us to choose the subspace that maximizes the
state and minimizes the entropy. Let us call Karhunen Loéve expansion the
basis of eigenvectors of A ordered by decreasing eigenvalues (S. Watanabe,
1969).

Proposition 2. For a state m, between all the subspaces S of Z(IR") with dim(S)=d,
d>1, there is one S,, built with the d first vectors of the expansion of Karhunen
Loéve of the autoadjoint unity trace operator associated to m, which verifies

HA(S)<HAS), dzfi.

For experimental results, we look for a state and choose a subspace
corresponding to the solution of Proposition2. It is possible to know this
subspace; its basis is the eigenvectors basis of A.

3. To obtain the algorithm, we use the classical steps of pattern recognition

1) to describe the feature of the objects (code)

2) to learn the issue of ¥ we want to recognize with a set of issues verifying
them (learning)

3) to verify validity of learning on other objects (generalization), and to
apply the program.

For each idempotent issue for [, ie., a[Ja=a, we are looking for a
representation. Let Q, be the learning set of a, ae.¥; Q, has ¢ elements; let
I;,...,1, be the basis of the code, {|) be the scalar product. Every event w, has a
code

C(wa) = (cl (wa)’ AR C" (wa))

with a weight p(w,) such that

S plw)=1
a=1



Data Seizing and Information Processing
let k be a symmetrical application of R? to R verifying
k(x,x)=0.

A matrix G of self correlation will be:
Glul)=| 3 ki@, )]
o=1

<2 3 peIkcla@]

a=1 i=1

with the associated state for Le £ (R") with a basis [, ...,1,

p(L)=3 ¥ <L G DKL

i=1 j,j’=1

221

According to the preceding result, if we diagonalize G(l;,[;), we find the
subspace that maximizes the state corresponding to the learning set and

minimizes the entropy.
We define:

loa ()2
(9]

fla,x)=

where

=<2

and ¢, is the projector corresponding to the subspace chosen to represent a. For

this choice we verify:
1) f(aOa,x)=f(a,x)
2) f(_‘ a, X) =1 —f(as X).

The projective information processing is here defined by

2
{9, R", x,%’ﬂl, <pa|aes’}

and ¢, is the projector associated to a subspace chosen with Proposition2 to

represent a.

3.1. Now we can apply this to the study of earthquakes areas. We have a
R32 code of events in Pamir, and for an event c(w)=0, 1,2 according to the
feature i being false, true, or unknown. Between the functions k that it is possible

to choose, we put

k(ci (wa)7 cj (wa)) =a

€i(We) ¢j(Wa)
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where

1 0 02 i=0,1,2
(@a)={ 0 1 02 012
_ 02 02 02/ J=%%
is generated by two issues:

a: epicenter of strong earthquake may be situated in this area
a': opposite (may not).

These issues are considered as simple: a[Ja=a, a'[]a'=a’.

For the calculus we use the second part of Proposition2 and choose a d-
dimensional representation. To help this choice we use an informational dimen-
sion, for an issue a and its subspace A4:

D(a)=e"",

This function measures how A4 represents the events, used to learn A; if the geo-
metrical dimension of 4 is d:

1<D(a)<d.

The decision function that we use is the least sophisticated possible.
¢, and @, can be chosen so that the geometrical dimension of the subspace
corresponding to ¢, + ¢, is

dim(¢p,+¢,)=dim ¢,+dim ¢,
and we have also:
PP =9y, d0TNa=T1ad =d.
fla,x)=f(a’,x)+¢  decision=+1 theareais dangerous
e+f(a,x)<f(d,x) decision= —1 the area is non dangerous
|f(a,x)—f(a',x)|<e decision= 0 no decision

3.2. We can describe the Bongard-Gelfand algorithm (Gelfand et al., 1972;
1973) in the same formal way. From the first same code X in R3? they extract
another one X’ in R2!. We have not to justify this change of code; on this new
code, the next function k has been chosen:

k(ci(wa)’ Cj(wa) = 5ij
where

124

5,=0 if i+j, &;=1.

G(l;, 1) is diagonalized for a and a’, and we take the ten largest eigenvalues and
these eigenvectors to represent a, and the 11 eigenvectors, with the lowest
eigenvalues for a but largest for «, to represent a'.
2
x
{Q,]Rn, & 1.0

x> s P.lae® }are defined, and there we remark that a’ is71a.
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The decision function is here: an area is dangerous if
le X =l s X Zinfll@,(x) =@ L (x),  x€c(R,).

Now we present the results, with the help of 2 data. On this example we can
see how it is possible to have projective representations: but we do not know
how to find the best one.

The Table 1 is a comparison of results when the learning is on an increasing

Table 1

5 8 9 10 11 12 13 14 15 16

1896 1907 1911 1911 1934 1938 1941 1948 1955 1970
1 6 1 1 1 1 1 1 I 1 1 1
Z 1 1 1 1 1 1 1 1 1 1 1
3 3 1 1 1 1 1 1 I 1 1 1
4 35 1 1 1 1 1 1 1 1 1 1
5 13 = 1 1 1 1 1 1 1 1 | 1
6 38 —1ex 1 1 1 1 1 1 1 1 1
7 20 —lex 1 1 1 1 1 1 1 1 1
g 27 1 - 1 1 1 1 1 1 1 1 1
9 4 1« le = 1 1 1 1 1 1 1 1
10 36 1 —1ex I = 1 1 1 1 1 1 1
11 25 —1ex 1 1 1 -1 1 1 1 1 1
12 5 I 1 1 1 I = 1 ;. 1 1 1
13 24 —1=* —1x 1 1 1 1 - 1 1 1 1
14 15 | 1 1 1 1 1 1 - 1 1 1
15 122 1 1 1 1 1 1 1 I = 1 1
16 7 « 1 1 1 1 1 i 1 1 1 =1
17 37 1 1 1 1 1 1 1 1 1 1
18 23 -1 1 1 1 1 0 1 1 1 1
19 31 1 1 1 1 1 1 1 1 1 1
20 26 1 1 1 -1 -1 -1 -1 -1 -1 -1
21 41 1 —1 1 1 | 1 1 0 0 0
22 34 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
23 8§ o1 -1 —1- -1 —1 -1 -1 -1 -1 —1-
24 32 -1 1% 1* 1ex 1% 1% 1% 1= 1= 1=
25 10 —1e —1e —1e -1 -1 -1 -1 —1 -1 -1
26 14 -1 -1 —1 -1 —1 -1 -1 -1 -1 -1
27 39 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
28 40 -1 -1 —1e -1 -1 -1 -1 -1 -1 -1
29 16 -1 lex Tex 1 * -1 1% 1ex 1ex 1% 1%
30 17 —1 —1 -1 -1 -1 —1 -1 -1 -1 -1
31 19 -1 —1- -1 -1 —1 -1 -1 -1 -1 —1
32 21 -1 —1 —1 -1 -1 —1 -1 -1 -1 -1
33 33 -1 —1 -1 -1 -1 -1 -1 —1 —1 -1
34 9 -1 -1 —1 —1 —1 -1 —1 —1 —1 -1
35 11 -1 —1 -1 —1 -1 -1 —1 —1 —1 —1
36 12 -1 —1- —1 -1 -1 -1 -1 —1 -1 -1
37 29 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
38 30 -1 -1 —1 -1 -1 -1 -1 -1 -1 -1
39 2 -1 —1e =1 -1 -1 -1 -1 -1 -1 -1
40 18 -1 -1 -1 —1 —1 —1 -1 —1 -1 -1

I
=
]
o
|
=

-1 =] -1 -1 -1 -1 ] -1 ~]
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Table 2
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37 29
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36

-1

40 18
41 28

-1

-1

number of events. The 16 first lines correspond to decision functions about
effective events. These events are in a chronological order and decision function
must be + 1. From 17 to 22 we have the analysis of suspect areas. From 23 the
lines correspond to the decision for areas considered as non dangerous, the
decision must be —1, unless a wrong appreciation of the area. To learn the

dangerous area we take the events that happen before the date, 5, § etc. The

second column corresponds to the Gelfand et al. number to determine the area.
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« Decision is wrong in the analysis of Gelfand et al. (1973).
* Decision is wrong in our analysis

Dimension of 4 and A’ is 5.

In the Table 2 we have 16 events to learn A and each line corresponds to the
decision function when dimension of 4 and A’ vary from 1-17. Evidently the
first 16 lines must have decision +1 and from the line 23 the decision must be
—1. The dimension choice is empirically made because no relations have to be
taken into account between issues.

Conclusion

We gave 3 methods useful for classification and pattern recognition. With the
projective analysis on geomorphological data, we can give representations of the
issues formulating the risk of strong earthquakes on an area.

In this example we had not enough issues to obtain relations on the set of
the representations of issues. These relations allow a very interesting study of the
part that each feature of the geomorphological data plays to represent the issues.
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