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Finite Difference Calculation
of Stress Relaxation Earthquake Models*

H. Stdckl

Geophysikalisches Institut der Universitédt Karlsruhe,
Hertzstr. 16, D-7500 Karlsruhe, Federal Republic of Germany

Abstract. Two types of earthquake sources corresponding to the longitudinal
and the transverse shear crack are considered. First, 2 standard models are
treated which are characterized by homogeneous prestress, plane or anti-
plane strain, symmetrical crack propagation at a constant fracture velocity
up to a given final crack length, and 100 % stress drop. The displacement
time functions can be interpreted in terms of various types of waves
originating both from the initiation and the termination of the fracture.
Next, fracture experiments with nonhomogeneous prestress are simulated.
Finally it is shown for the longitudinal shear crack how the fracture velocity
v, can be calculated if the fracture energy is specified. The crack starts to
grow from a critical initial length at v, ~0. Crack growth accelerates rapidly,
and when the length has doubled, v, reaches 54 % of the shear wave velocity,
which turns out to be the terminal velocity in this case. The elastodynamic
problems are solved with a modification of a finite difference method
published by Alterman and Rotenberg.

Key words: Earthquake models — Stress relaxation source — Finite differ-
ence method.

1. Introduction

Until recently, earthquake sources were mainly modelled as dislocations or
equivalent forces (Burridge and Knopoff, 1964). In the dislocation models the
displacement time function is assumed on a fault plane and is calculated in the
surrounding elastic medium with a representation theorem (Haskell, 1969). The
motion in the earthquake focus, however, results from a relaxation of an initial
stress state: In a certain region, usually visualized as a plane, the physical
conditions determining the stress change, and the prestress is no longer in
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equilibrium. According to the elastodynamic equation of motion, the material
around the fault plane will move and radiate seismic waves. The stress in the
“fractured” region, in turn, may depend on the particle velocity, the tempera-
ture, and various rock properties. The fault plane will grow according to some
“fracture” criterion until an arrest criterion is met. Finally a new equilibrium is
established.

Earthquake source models constructed according to these ideas will have
some obvious advantages (see Archambeau, 1968): Energy, linear and angular
momentum are conserved as required for a spontaneous source. The motion in
the focal region is calculated and has not to be assumed beforehand. If prestress
and material behaviour are given, the model predicts the complete time history
of the focal event. At present, detailed and reliable laboratory or field data
about material behaviour in the focal region are not available. Despite this, it
seems more plausible to assume physically reasonable conditions concerning the
stress on the fault plane than to guess the time function of the displacement.

Further references concerning the work done on stress relaxation models
both analytically and numerically can be found in Richards (1976), Madariaga
(1976), Andrews (1976) and Stockl (1976). In the present paper, the elastody-
namic problems are solved with a modification of a finite difference method due
to Alterman and Rotenberg (1969). This powerful tool solves many problems
too difficult for an analytic treatment. The method is applied to some simple
stress relaxation earthquake sources, to fracture propagation with specified
fracture energy, and to the simulation of fracture experiments.

2. Standard Models of Stress Relaxation Earthquake Sources

Since the focal process is related to fracture, the concepts of fracture mechanics
should be useful in the discussion of earthquake sources. There are three basic
types of cracks, the so-called fracture modes (Fig. 1). The arrows at the outer
boundaries represent the applied stress, the arrows at the crack surfaces repre-
sent the resulting displacement.

In analogy to these fracture modes we define three standard models SI, SII,
SIIT as follows. Consider a block of homogeneous, isotropic, brittle, elastic
material. Let x, y, z be Cartesian coordinates, ¢ the time, and s(x, y, z,t) the
displacement vector with the components u, v, w. The initial conditions are

0s(x,y,2,0)/0t=0, (1)

and for the standard model

SI:  0,,(x,,2,0)=0),=const (2a)
SII:  7,(x,,2,0)=12,=const (2b)
SII:  1,,(x,y,2,0)=1),=const, (2¢)

where o, , 7, and 7, are stress components.
A state of plane strain is assumed for SI and SII:

w=0, 0u/dz=0v/0z=0, (3)
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Fig. 1. Schematic representation of the applied stress and the crack wall displacement for three basic
types of fractures. Mode I: tensile crack, Mode II: transverse shear crack, Mode III: longitudal shear
crack

while for SIIT we have a state of antiplane strain (or out-of-plane shear):
u=v=0, 0dow/dz=0. (4)

We assume then that a crack is initiated at x=y=0, t=0 and propagates
along the x-axis in both directions at a constant speed v, up to its final length
2L, where it stops suddenly. The crack walls are free surfaces, that is

0,=T,=1,=0 for y=0,x=L(1), (5)
where

L(f)=v,t for t=L,/v,,

L(t)y=L, for t=L/v,.

These standard models are the simplest conceivable stress relaxation models.
They are not supposed to be realistic models of the focal process, they may,
however, serve as a standard for comparison with more realistic models. Despite
this, some essential features of earthquakes are correctly modelled, as we shall
see later. Model SI, which has been studied by Stockl and Auer (1976) and
Stockl (1976b), will not be treated here. It is more important in engineering
rather than in focal mechanism studies.

3. Method of Computation
3.1. Discretization of the Equation of Motion

The computational method was adopted from the publications of Alterman and
her co-workers. There are some deviations from their procedure, which will be
indicated.

The equation of motion is

p(0°s/0t¥)=(A+2p) grad divs — i curl curl s, (6)

where A,y are Lamé’s constants and p is the density. In two dimensions under
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plane strain or antiplane strain conditions, Equation (6) can be written in the
following form:

0%2u/ot? =a2(0%u/0x?) + (o> — B?)(0%v/dx 0 y) + BX(0*u/d y?)
0% v/0t?* =a(0%v/0y?) + (o« — B?)(0%u/0x dy) + B*(0*v/0x?) (7a)
0?w/0t? = B2(0>w/0x* + 0% w/0y?), (7b)

with a?=(A+2u)/p, p>=p/p. « and B are the compressional and shear wave
velocity, respectively.

In the finite difference approximation the partial derivatives of
Equations (7a,b) at t=n-At, x=i-s, y=j-s are replaced by centred differences
in the following way (see Fig. 2a):

Q% ufo?) j=(up T ! —2ul j+up ')At

(0*u/ox?); ;= (ufyy ;—2u} j+uf_, s?

(0%u/ox aJ’)?j=(”?+1 jer— Wi o Uiy o Uy )/As? etc, (®)
where we write, for example, u(x, y,t)=u; ; as a short hand notation.

We now choose A=y, which implies «?=3p% and At=s/2f in the plane
strain case, Equation (7a), and 4 t—s/]f B in the antiplane strain case, Equation

(7b). Solving for u? %, f‘j’l, wit! we obtain from Equations (7a,b) and (8) the

following explicit recursive formulas

“?jl “?,;1+%[3(u?+1,j+“?-1,j)+“?,j+1+“?,j—1

+%(U?+1,j+1 =V g1 Vo1 V1))
vi‘f‘— v?,;l"'iD(U?,jH+U?,j—1)+v?+1,j+v'i'-1,j

+%(u;’+ 1,j+1 "“?—1,j+1 —“?+1,j- Uy 0] (9a)
W:'J,rl w?,;l+%(W?+1,j+w?—l,j+w?,j+1 +wiio1) (9b)

The chosen time steps are critical values; larger time steps would lead to an
unstable scheme (Alterman and Loewenthal, 1970). The critical values are
preferred in this work, because they give the most satisfactory result and because
they lead to simpler recursive formulas. Alterman and her co-workers used
slightly subcritical time steps.

3.2. Discretization of the Boundary Conditions

Since the problems are symmetric with respect to the x- and y-axis, one only
needs to calculate the quarter plane x =0, y=0. Figure 2 shows 3 possibilities of
arranging the grid with respect to the crack. The boundary- and symmetry
conditions are satisfied with fictitious grid points (symbols x in Fig. 2). We shall
discuss here only the arrangement of Figure 2b. For convenience we define here
y=j-s—s/2 instead of y=j-s. Along the y-axis and along the x-axis beyond the
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crack tip the displacement of the fictitious grid points follow from symmetry (the
superscript n is dropped):

SII {”_1,J‘= Up s Vg ;= — U (10a)
Wiy == Py T Une forimigrl (10b)
SIII{W“‘J: Y (10¢)
Wit = Wi for i>i +1. (10d)

Along the crack surfaces, the boundary conditions, Equation (5), can be
written for A=y as follows:

dufox+36v/dy=0 (5,,=0) (11a)
duféy+ dv/ox=0 (1,,=0) (11b)
dwjdy =0 (r,.=0). (1lc)

The derivatives with respect to y may be approximated by centred differences
with respect to the free surface y=0, such as

(aw/&y}i,%:(wi,l_Wi,O)/S- (12)
Equations (11¢) and (12) lead to
W o=w; for i<i. (13)

If the fracturing grid point is released suddenly at the moment when the
crack passes, the energy stored at the crack tip is converted into large oscil-
lations with a period of a few time steps. In the physical analogue the individual
atoms oscillate when the bonds between them are broken. These oscillations
may be regarded as heat. In the numerical simulation the oscillations disturb the
results. They can be reduced very much, if, for example, the grid point i, +1 s
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released gradually while the crack runs from x=i,-s to x=(i,+2)s (Fig. 2). In
the transition zone work is done against the forces exerted by the fictitious grid
points, which simulates the fracture energy, because both the stress and the
displacement at y=0 are nonzero (t,.(x, 0) and w(x, 0)x3(w; o +w, ) in SIII).

We obtain a reasonable transition, if we take a weighted mean of
Equation (10d), which holds for the infractured state, and Equation (13), which
holds for the stress free state, in the following way:

wif,ﬂ

Wis1,0=Wi,41,1°(@—1), (14)

where a=L(t)/s—i, (see Fig. 2).

In the case of the models SI and SII two possibilities of representing the
boundary conditions (Eq. (11a, b)) were examined:

1) The derivatives with respect to y are treated in the same fashion as
Equation (12), whereas for the derivatives with respect to x the mean of the
centred differences at the grid lines j=0 and j=1 is taken, for example

=W 1a

(Qu/dx); y=(uy 41— Uy ;o FUg 41— Yo 1)/4S. (15)

This leads to a system of equations for the unknown u, ;, vy ;. The transition
zone can be handled in a similar fashion as in Equation (14). This possibility is
described in more detail in Stdéckl and Auer (1976) and Stockl (1976).

ii) The derivatives are calculated at the centre of the mesh x=(i+3)s, y=0.
They are approximated by the following average differences:

(a“/ax)i+g-,%:(ui+ 11— Wi g o— W o)/2s

(00/0Y)isy, s =01 — Vi 0+ Vit 1,1 —Vis1,0)/25. (16)

wix,0,t)
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Fig. 3. Standard model SIII (longitudinal shear fracture). Displacement of the crack walls w(x,0,t)
(unit ]ﬁsrfz/,u}. Fracture velocity: v,—00. Parameter: time step n
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This approach leads again to a system of equations for the unknowns v, o, ¥; o
with a tridiagonal matrix. Assuming that the stress at x=(i+1)s is (1 —a) times
the stress which would arise there if a=0, one obtains a suitable transition zone.
More details about this procedure are found in Stockl (1976).

Both approaches i) and ii) are equivalent in accuracy to centred differences,
therefore the solution has a truncation error of the second order in s/L in the
static and low frequency part of the solution.

Alterman and her co-workers put a grid line in the free surface (Fig. 2a). One
might try to approximate the normal derivatives by centred differences, writing,
for example, (0w/0y); o=(w; ; —w; _,)/2s instead of Equation(12), which is a
centred difference for the arrangement of Figure 2b. However, the resulting
scheme is unstable, and this is also true for the plane strain case (Alterman et al.,
1971). They obtained a stable scheme with one-sided differences, but the solution
had a truncation error of first order in s/L only. Recently, however, Ilan et al.
(1975) developed an improved representation with a truncation error of second
order.

4. Near Field Displacement for the Standard Models

4.1. Standard Model SIII

In the first example the crack appears instantaneously, that is, v,— c0. For some
reasons discussed later the grid was arranged as in Figure 2c.

Figure3 shows the displacement of the crack surfaces. The results are
interpreted as follows: The stress drop from 1y, to zero propagates in the y-
direction at the shear wave velocity . Behind the wave front, which is parallel to
the x-axis, the material moves at the velocity dw/ot= B‘c;’z/u. The crack ends
radiate cylindrical wave fronts, the stopping signals, which lower the constant
particle velocity just mentioned. They appear as slight kinks in the curves of
Figure3. Arrows drawn at the theoretically expected places indicate their
propagation direction.

At the time t=L /B (n~33) the signal reaches the middle of the crack. The
displacement at this point is w(0,0, L/f)=L, r_?z/,u, which happens to be equal to
the static value. Since the crack walls still move, they overshoot the equilibrium.
After this time the stopping signal of the other crack tip enters the figure and
reaches the drawn tip at t=2L /B (n~66). In this moment, as it turns out, the
crack walls attain a maximum displacement, which exceeds the static value by
27 %. w(x,0,2L,/P) is elliptical as a function of x. Since equilibrium is not yet
established, the crack walls, although momentarily at rest, begin to move
backwards and fall 3 % below the static value. The stopping signals running
parallel to the crack are partly diffracted backwards, but most of the energy is
radiated away. While the diffraction repeats again and again, the motion
becomes damped oscillatory and the displacement around the crack approaches
the static solution. The dashed curve (n=340) differs from the final value by
about 1/1000. It agrees with the analytic solution

w(x,0, 00) = L(t3,/pu)(1 —x*/L})" /2
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Fig. 4. Standard model SIII (the same example as in Fig. 3). Displacement of the crack walls w(x,0,¢)
and velocity dw(x, 0, 1)/dt (unit f15,/u). Parameter: x,’l/l.s. $,,S,: Stopping signals from the near
and far crack end. S}, S5, 87, S5: Stopping signals diffracted once and twice

86

stopping signal _—— 72 _f———1
crack
stops
static solution

(etlipse)

& 05 0 05 /L, i

Fig. 5. Standard model SIII. Displacement of the crack walls (unit: L, r_f?:/;,c). Fracture velocity v,
=0.5f. Parameter: time step n

within drawing accuracy. Assuming that the finite difference solution is equal to
the analytic solution for w(0,0, c0) one obtains an effective crack length, which is
L,=16.61/2s in this example.

Figure 4 shows the displacement of the crack walls as a function of time. The
theoretical arrival times of the different direct and diffracted stopping signals are
marked. On the displacement curves the signals are hardly seen. Therefore, the
particle velocity dw/dt of two of the curves is drawn above them. The direct
stopping signals and the stopping signals diffracted once appear as clear kinks.
Magnified fivefold, the stopping signals diffracted twice are also evident.
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Fig. 6. Standard model SIII (the same example as in Fig. 5). Displacement of the crack walls
w(x,0,¢). Parameter: x/L,

In the next example the fracture velocity is v,=0.5 . The grid was arranged
as in Figure 2b. Figure 5 shows the displacement of the crack walls in a similar
fashion as Figure 3. The crack length is L, =20-s5. Up to n=86 the left half of
the crack is plotted, after this the right half. Erdogan (1968) gives an analytic
solution valid for the time before the crack stops. For v, < the displacement of
the crack walls is elliptical as a function of x. The finite difference solution
agrees well with this result except at the crack tips, where the curves are
smoothed due to the transition zone. When the crack stops, stopping signals are
produced which behave similarly to the example described before.

In Figure 6 the displacement of the crack walls is plotted as a function of
time. Before the first stopping signal arrives, the crack centre moves at a
constant velocity, which agrees completely with the analytic value

dw(0,0,8)/0t =v,(t%/W)/E((1 —v}/B?)})  for v,=h, (17)

wf2
where E(x j (1 —x?*sin*)* dy is the complete elliptical integral of the sec-

ond kind. For x/L,>0 we obtain hyperbolas approaching asymptotically the
straight line, which ho!ds for x/L,=0. This follows from the fact that the crack
wall displacements are elliptical as a function of x. At the apex of the hyperbolas
the velocity and the acceleration are singular. In the difference solution the
discretization and the transition zone remove the singularity, whereas in nature
this is done by the atomic structure and by plastic deformation. The stopping
signals are more distinct in this example than in Figure 3, since they are
associated with a jump in the particle velocity. The curves have their maximum
when the stopping signal arrives from the remote crack end.

4.2. Standard Model S11

Alterman et al. (1971) have already calculated the instantaneously appearing
transverse shear crack, that is SII with v,—occ. The results presented here agree
with their findings, but are interpreted somewhat differently.
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Fig. 7. Standard model SII (transverse shear crack). Displacement of the crack walls u(x,0,1),
v(x,0,1) (see sketch on the right side). Unit: stgs./,u. Above: velocity du(x,0,t)/0t (unit: firf)./y).
Fracture velocity: v,—oo. Parameter: x/s. Not all of the stopping signals are identified

Figure 7 shows the time functions of the displacement components u and v at
the crack surface, as indicated by the sketch to the right. Similarly as in Figure 4
the stopping signals show up clearly only in the time derivatives. In the
continuous curves, which represent u(0,0,¢) and du(0,0,t)/dt the first stopping
signal travelling at the velocity « arrives at na 18. It is labelled P, P, (1 and 2
refers to the near and far crack end, respectively). No arrival is seen at n=31,
where a signal travelling at the velocity f is expected (S, S,). According to the
travel time, the kink at n=34, labelled R,, R, appears to be a Rayleigh wave,
travelling at v, =0.92 . The stopping signals P and R are diffracted backwards
at the other crack end as waves of the same type and as converted waves. These
signals are seen after 5 fold magnification. The labels P, P, P, R, ... mean signals
travelling from the near crack end to the far end at the velocity « and from there
to the observation point at the velocity o and v, respectively.

In the next example the fracture velocity v,=0.32~0.52 f# was chosen. The
component u(x,0,f) has the shape of an ellipse up to n=60, when the crack
stops (Fig. 8). On this representation the stopping signals are hardly seen. The
component v(x,0,t) shows that the crack rotates counterclockwise, whereas the
relative displacement of the crack walls is right-handed. As long as the crack
runs it remains straight. During the presence of the stopping signals it is
distorted, but straightens again in the static case, which is approximately
reached at n=200.

Figure 9 shows the time function of the displacement. The signals labelled P
and § on the component v(x,0,f) are radiated when the crack starts. They
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Fig. 8. Standard model SII
(transverse shear crack).
Displacement of the crack walls
ulx, 0, 1), v(x, 0, ) (unit: st2 /u).
Fracture velocity v,=0.3a.
Parameter: time step n
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Fig. 9. Standard model SII (the same example as in Fig. 8). Displacement of the crack walls u(x, 0, 1),
u(x,0,¢), Parameter: x/s

travel at the body wave velocities « and . In agreement with theory (Haskell,
1969; Richards, 1976) the starting signal P, which is found in the x-direction
only in the near field, has the opposite sign as the final static displacement. On
the component v the S-type stopping signals seem to be more prominent. On the
curve y(16-s, 0,t) a clear kink appears at the expected travel time of S, rather
than of P, and R,, whereas on the other curve v(8-5,0,t) the situation is not so
clear because the expected arrival times are not well separated.
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Fig. 10. Experimental data of tensile fracture experiments with Araldite B. v,(x): measured fracture
velocity; v(x, 0, e0): crack separation measured after fracture; a7y (x,0): stress before fracture (calculat-
ed from v(x, 0, c0))

5. Simulation of Fracture Experiments

The prescribed constant fracture velocity of the standard models is, of course,
not very realistic. Furthermore, in a homogeneous material a crack will stop
only if the prestress is nonhomogeneous. The following experiments and their
finite difference simulation were described by Auer and Berckhemer (1972), Auer
(1974), and Stoéckl and Auer (1976). Some of their ideas should be useful for
realistic earthquake models, although the results are not directly applicable,
since they correspond to mode I cracks. Plates of Araldite B, a homogeneous,
isotropic, photoelastically sensitive material with the dimensions 16 x 15 x 0.3 cm?
were stretched in the y-direction (Fig. 10). Heating relieved the stress on the left
and the right side. After cooling the plates were removed from the apparatus. The
photoelastic pattern revealed remaining internal stresses, which were more or
less symmetrical to the x- and y-axis.

Then a laser pulse was focussed into the centre of the plates. This triggered a
crack, which propagated symmetrically in both directions along the x-axis, until
the available elastic energy became too small. The crack interrupted thin strips
of vapor sublimated aluminum, allowing the measurement of fracture velocity.
At two points indicated in Figure 10 piezoelastic transducers recorded the
acceleration. After fracture the separation of the crack surfaces, 2v(x,0, co) was
measured under a microscope.

Since some of the results were difficult to interpret, the experiments were
simulated with the finite difference method. Suppose the crack is closed again.
This requires an additional normal stress o¥ (x,0) on the x-axis, which is equal
to the prestress ¢,,(x,0,0) on the crack surface. In the finite difference simulation
the measured final crack surface displacement uv(x,0,00) is applied in-



Stress Relaxation Earthquake Models 323

v(x.0,t}//mm
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Fig. 11. Numerical simulation of tensile fracture experiments with Araldite B. Above: crack
separation u(x,0,1). Below: stress ahead of the crack tip a,{x,0,t)/u (tensile stress positive).
Parameter: time step n (4t=0.46x 10~ %5)

stantaneously with a negative sign. A damping term is added to the left side of
Equation (7), for example (du/dt)/T, where T is a time constant. Physically, this
term simulates a thin layer of a viscous fluid, which separates the elastic plates
from a rigid block. It damps the vibrations until the static solution remains,
from which the stress o¥(x,0) is calculated (Fig. 10). An appropriate value of T
is chosen which minimizes the computing time.

After this calculation the closed crack was released again at the measured
fracture velocity and the associated dynamic displacement was calculated with
the method of Section 3. The model satisfactority simulated the wave form and
the amplitudes of the accelerogrammes, which exceeded 107 cm/s? in some
experiments.

Figure 11 shows the simulated displacement of the crack surfaces. The point
x=y=0 reached a maximum velocity of 4.8 m/s. The crack exceeds the range
where the prestress is tensile (o, positive in Fig. 11). At the instantaneous crack
tip o, (x,0,1) is, however, always tensile.

The simulation of the experiments yielded the following approximate re-
lation between v, and the stress intensity factor K,, which determines the
strength of the stress singularity at the crack tip (the definition of K, is
K;=Iixng 0,,(x,0) [2n(x—L)]*): v, becomes greater 0 at a critical value K;

=30 Nmm~*2, reaches 250-300 m/s at K;=50 Nmm~*? and increases then
linearly to 500-550m/s at K,=200-250 Nmm~*2 Crack branching inhibits
larger values of v, and K.
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6. Crack Propagation at Constant Fracture Energy

Crack propagation is governed by the energy balance equation

dAjdt=dE,/dt+dE,, /dt +dE,/dt. (18)

A is the work done by the applied forces, E,, is the elastic energy, E,;, is the
kinetic energy. The dissipated energy E, is proportional to the specific fracture
energy yr.

Let us consider a static mode III-crack. Following Griffith, one finds that the
crack will grow, if

k2=4pyp/nLl’ 102 <1, (19)

where 2L° is the initial length of a crack parallel to the x-axis, 7y, is the
homogeneous prestress. Assuming that the dynamic displacement field is similar
to the static field with the same length, one can estimate E,;, and obtains from

Equation (18) (Erdogan, 1968):
v2=v3(1-L°/L)(1—(2-k*—1)L°/L). (20)

This quasistatic approach, which is originally due to Mott, is elastodynamically
not quite correct. It does not predict the correct terminal fracture velocity v, for
L— o0, which is equal to § according to analysis. This problem of an accele-
rating crack is probably too difficult for an exact analytic solution. Therefore, a
finite difference solution, the details of which are found in Stockl (1976), is
outlined here.

The fracture energy is dissipated in a thin strip ahead of the crack tip, which
deforms plastically. In this strip the stress increases linearly with strain up to an
elastic limit, then remains constant up to a plastic limit and finally decreases and
becomes zero at a third limit where new free surface is generated. This stress-
strain relationship can be simulated in the boundary conditions. The grid is
arranged as shown in Figure 2c. L°, t0, and y are chosen such that the crack is
just on the threshold of stability according to Equation(19). First, the static
solution is found with a similar method as described in Section 5. Then y; is
slightly lowered. Figure 12 shows how the crack becomes unstable, accelerates
and finally attains the constant terminal velocity vy =p. The three crack lengths
Lg, L, L, refer to the places where the three limits of elasticity, plasticity and
generation of free surface are exceeded. L is an equivalent crack length cor-
responding to the case of negligible plastic zone size and is approximately equal
to the average of L, L, L. w(x,0,t) is still almost exactly elliptical, but the
aspect ratio w(x, 0, t)/L(t) decreases with time.

Figure 13 shows the fracture velocity as a function of the crack length. The
continuous lines represent the finite difference solution, which is supposed to be
correct within the accuracy of the method. The dashed lines are calculated from
Equation (20), where v, = f was taken. The deviation is significant, but Equation
(20) may be regarded as a fair approximation.
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7. Discussion and Conclusions

Despite the obvious advantages of stress relaxation models, dislocation models
are still very useful. Having looked at the results of stress relaxation models, one
may be able to construct more realistic dislocation models. The farfield displace-
ment cannot be calculated with the finite difference method, since this would
require too much storage and computing time. Therefore, I used the solution on
the fault plane to obtain the farfield solution with a dislocation model.

For the standard models, some essential features of the near field were also
found in a modified form in the far field. The stopping signals appear as clear
kinks. Corresponding to the overshoot over the static value the time function
falls below the zero line in the far field. This causes a small maximum in the
spectral amplitude curve near the corner frequency. At high frequencies the
amplitude spectra decrease as ™2, since there are discontinuities in the first time
derivative. The dynamic overshoot could occur in deep focus earthquakes, if a
low viscosity melt lubricates the fault planes. In shallow earthquakes friction will
probably prevent an overshoot. If the fracture decelerates before stopping or if
the prestress decreases towards the crack end, the stopping signals are smeared
out and no longer recognizeable.

Although it takes more sophisticated models to explain measured near field
accelerogrammes, the standard models allow the estimation of maximum ve-
locity and acceleration. For example, model SIII scaled to a fault length of 2L
=10km, a stress drop of 30 bars, v,=f=3km/s yields an acceleration of about
5m/s? and a velocity of 0.3 m/s in a distance of 7km from the hypocentre in the
frequency range 5-10 Hz, which seems quite realistic. To obtain this result with
a dislocation model, one must assume an additional quantity, for instance the
rise time of a ramp function.

In order to understand why an earthquake rupture arrests, one must
probably consider nonhomogeneous prestress fields. Section 5 gives an idea how
such problems can be treated with a finite difference method. Once the relation
between v, and the stress intensity factor K is found experimentally, the
computer programme can calculate v, from the instantaneous value of K. With
respect to earthquakes, we are far from this goal. In the meantime, one may
theoretically postulate some fracture criteria as demonstrated in Section 6. The
fracture energy y, may depend on v, or on the size of the crack. If v, is to reach a
terminal velocity vy <p in a mode III crack, y, must increase strongly as v,
approaches vy, or it must increase linearly with L. For mode I and mode II
cracks f must be replaced by v, as it turns out.

Although some stress relaxation problems have been solved analytically,
realistic earthquake sources are probably too difficult for analysis. The finite
difference method of Alterman and co-workers proved very successful in the
numerical solution. It is straight forward, easy to use and to program. The
standard model SII takes only about 60 FORTRAN statements, and 250 time
steps for an array of 110x 110 grid points are calculated in 3.5min on an
UNIVAC1108 computer.

Whenever the results of the finite difference method of analytic calculations
could be compared, they agreed satisfactorily. For instance, the maximum error,
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which occurs near the crack tip, is about 1 9 of the displacement at the middle
of the crack for L=15-s. Equation (17) could be verified with an accuracy better
than 0.1 %.

Of course, the method has also some limitations. For instance, suppose that
the propagation of a step function is simulated with Equation (9). One observes
that the time function increases gradually before the theoretical arrival of the
step and oscillates afterwards. These oscillations can be filtered out, but some
loss of high frequency resolution cannot be avoided. This effect depends on the
direction of propagation: For instance, Equation (9b) simulates waves propagat-
ing in the direction of the mesh diagonal without any distortion. In some
applications it is therefore advantageous to choose the arrangement of Figure
2¢, which was done in Section 4.1 and 6. This results in very sharp stopping
signals. With the appropriate caution these limitations are not very serious.
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