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On Equivalent Models of Seismic Sources *

G. Jobert

Laboratoire d’étude géophysique de structures profondes, associé¢ au C.N.R.S., Institut de Physique
du Globe, Université P. et M. Curie, 4, Place Jussieu, F-75230 Paris, France

Abstract. The Green matrices for a general excitation (dislocation or body
force) of an elastic layered medium are expressed by means of 3 matrices
corresponding respectively to P, SV and SH waves. Two methods are used
to derive the solution corresponding to a point stress glut. It is shown that a
continuous medium cannot sustain the action of a dipole source without
faulting and the expression of the stress glut equivalent to this source is given.
It is shown that a dislocation is equivalent to an infinity of systems of 3 dipoles.

Key words: Green matrices — Seismic dipole — Seismic dislocation — Stress
glut.

1. Introduction

The difficult problem of the representation of seismic sources has been the subject
of many research papers. The classical method of Volterra for the study of dis-
locations has been applied to prove the equivalence of the fields of displacements
due to rupture in an elastic medium or to a system of body forces (Burridge and
Knopoff, 1964; Kostrov, 1970). The use of the propagator matrix in the Thomson-
Haskell method also allows to derive the displacement field produced by a point
dislocation (Jobert, 1975 noted below PaperI). A new approach, which may
provide a decisive progress in this domain, has been recently proposed by Backus
and Mulcahy (1976).

In the present work we try to show how the idea of stress glut introduced
in the last mentioned paper may be used in the Thomson-Haskell method to
clarify the equivalence of dislocation and system of dipoles.

2. Notation

References to the formula (10) of Paper I or of the Appendix will be noted re-
spectively (I, 10) or (A.10). The matrix transposed of a matrix A is noted AT.
I is the unit matrix.

*  Contribution IPG No 218



330 G. Jobert

We introduce a fixed orthonormed basis (h,, 6,, k) and cylindrical coordinates
(1, @, {) with respect to the k-axis. We shall attach a mobile orthonormed basis
(h, 6, k) to the (real) wave vector p such that

p=nh+{k.

The Fourier-Laplace transform (F.L.T.) of a function f will be defined by the
following expressions

complete F.L.T. f(p, v)=0jO }jcj? dtdxexp[w(pTx+ivt)] f(x,1)
0 —o

partial FLT.  f(e,n, @,v)= [ [[ dtdXexp[w(nh"x+ivt)]f

0 -

L.T. f(x,v)= }odt exp(wivt) f
0

where x is the location vector, dx the volume element, 3=kTx the vertical com-
ponent, X the horizontal projection of x, dX the horizontal area element, w=2in.
d(3) is the Dirac distribution, H the Heaviside function, ¢=sign3=2H —1.

p is the density, 4, 4 the Lamé’s parameters.

k=AA+2p), K=p/A+2p), a=k+r, mP=pv:/un*>0
st=m?+1, rP=m?x'+1 (r,s>0), b=s*+1.

0, represents a derivation with respect to the variable u.
The Thomson-Haskell (T.H.) vector is defined by

V=col(u, 7).

where u is the displacement, t the stress vector acting on a 3= C' plane.
We shall use in fact the modified F.L.T.

X =col(@, T/uwn)

3. Structure of the Green Matrices

We shall first recall some results concerning the solution of the differential system
0, X=MX+E (1)
where 0, M =0. Let P(3) be the propagator of M, i.e. the matrix such that
0,p=MP, P(0)=I.
For an excitation
E=Gs@3) (0
the solution is
X=P(GH@)+G)), ©)

with d, G, =0. This solution presents for 3=0 a discontinuity equal to G.
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If

E=Gd@3) 4
the solution becomes

X,=0,X=PG5(3)+(0,P)(GH+G,)

=G46(3)+ MP(GH +G,) ®)
as
PS(@)=P0)o(3)=14(3).

As shown in Paper I the eigenvalues of the matrix M corresponding to the
T.H. system may be noted +wnir, +wnis so that its spectral representation
is given by

M=wn[ir(ll; —I;)+is(II§ —II5)], (6)

where the IT are orthogonal eigenprojectors, the indices P and S corresponding
respectively to P and S waves, the signs + to down and up-going waves. The
unity matrix I may be decomposed in their sum

I=0; +1; +1I +1I; @)
The propagator P is then given by
P=II e; +1II, e, +I1ef +1I; e

where e} =exp(+wnir3), eS =exp(+wnis3).
In terms of converging (C) or diverging (D) waves we may write

— 1€ ,C C ,C D _,D D ,D
P=II e, +I e +11, e, + 11 eg

where
P o+ , (H 1-H
(HC)—J(H_) with J=J _(I—H H) ®)

are also orthogonal projectors. The wave functions are given by
es=exp(—wnirz)=exp(2nnri3|)
eg=exp(+wnir3)=exp(—27t'lr|3|)

with similar expressions for § waves. These projectors I1¢® may be considered
as composed eigenprojectors of M as they change discontinuously across the
plane z=0. Using (8) we have for example

MII? = M(HTT} +(1—H)[I;)=onir(HIT; —(1—H)I;)
=ewnirll}. ©)

One obtains the result for the converging wave by changing ¢ into —eg, for the S
waves by changing r into s.
In order to destroy the converging waves in the solution (3) we have to take

G, =—(I; +1I;)G.
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Using (7) we have indeed

(IT*+I")H—-II"=¢(II*H+(1—H)II")=¢lI”.
The solution of (1) (2) diverging from the source is then given by

XP=¢(MReR +112eD)G. (10)
Using (9) and similar formulae in (5) we find the diverging solution for the excita-
tion (4)

XP=GoR)+mn(irlPed+isMPed)G, (11)
but this solution is d-singular at the origin.

The discontinuity for 3=0 of the diverging wave in (11) is according (8) and (6)

onlir(ly —1II; ) +is(lI§ —M5)]G=MG. (12)
We shall need later the expressions of the products IT° (g), mn’ (2) ... A very

simple result is obtained: As shown in the Appendix (A.4, 5) these 6 quantities
may be expressed by means of 3 matrices R, S, T only corresponding respectively
to P, SV and SH waves.

eh—irk ek+ish 5 [ €
R‘(sbk+2irh>’ S_(—-abh+2isk)’ T=m (is)g' (13)

4. Thomson-Haskell Equations and Stress Glut

Let us now examine how the concept of stress glut introduced by Backus and
Mulcahy (1976) may be applied in the T.H. treatment of point sources. Let o,
be the tensor of the stresses really present in the medium and ¢ a model of o, for
example the tensor derived from the displacement using everywhere Hooke’s law.

In the region of the source —at the origin for a concentrated source —these
two tensors differ. Their difference has been called stress glut by Backus and
Mulcahy.

I'=0y,—0. (14)
The equation of motion is always given by
divey+F=po,u (15)

where F is the extraneous body force. The T.H. equations may be derived by
2 methods.

(a) If the source conditions contain some information about the real stress
field, for example if they imply the continuity of the stress vector 7, =0,k acting
on the fault plane 3=0, we may use X =col(ii, T,/uwn) as the modified T.H.
vector. 7, has to be evaluated from the stress model vector 7, the expression of
which may be deduced from (1.9)

t=A0,fi—wnBi (16)
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where

A=A+2wkkT +pu(hh™+6067), B=AkhT+phk”
we therefore have

To=60k=G+I k=% +T k.
The first T.H. equation becomes

0, i=A"'%,+wnA 'Bi—A"'T k.

The second equation is derived from (15) as had been (I1.8) for 7. The excitation
due to the stress glut is thus

N
— (N arrk,
B (O)A k

As the stress glut must be concentrated at the origin, it may be expressed as a
sum of Dirac and Dirac derivatives distributions. We shall limit ourselves to the
case of a Dirac

I'=Ty6(3).

The corresponding diverging solution is then given by (3)

- 1
XP=—e(II? R +1I0eP) (

17
O)A Ik,

I~t corresponds to a classical dislocation depending only on the stress glut vector
I'yk=y=v,h+v,0+y5;k. The discontinuity of # for 3=0 is

d=d h+d,0+dsk=—A"T k= —(yh+7,0+K y3k)/u
as A~ =(hhT+007 + K kk)/p. (17)

Using (A.4) we obtain for the solution the following expressions

XP=[(y, +ebr'ys/ir)ReD+(Q2x'y;—eby,/is)Se? —y, Tel]/2 um? (18)
in terms of the stress glut vector components, or

XP=—[(2d, +ebds/ir)ReP+(2dy —ebd,/ir)Se? —d, Tel]/2m’ (18 bis)

in terms of the dislocation d components.

b) We may also use the model stress ¢ as unknown. The first T.H. equation
is then simply (16). The equation of motion (15) becomes

div(c+I')+F=p0,u,
so that an apparent body force divI is introduced. As

divi = —wlp=—wl (nh+(k)
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the stress glut excitation is given by

B (?) GT Jwn = — (‘1’) [0, k—wnl* h/uon

0y . .
- (1) [F'ok& —wnlohd]/umn.

In absence of extraneous body force the corresponding diverging solution is
then deduced from (10) (11)

- 0 - 0
ponX§=e[IID el + 110 e?] (1> onl  h— (1

0\ -~
—wnlirlIl el +isII?e?] (1) Iok. (19)

)f‘oké

The real stress T.H. vector contains only diverging waves as it is given by
. < 0\ -~ 0\ -
X2=X2+ (1) I'k/pwn=g[II)ed + 117 eP] (1) Foh/u
0\ -
—[ir 1P eP +isTPeP] (1) Fok/u. (19 bis)

To compare to the solution X? obtained in (a) we must take into account the
continuity of 7,. From (12) and (A.1) we obtain the condition

Foh—(0 )M ((1)) Fok/on=0, or

Foh=(khkT +kh")["ok. (20)

The solution depends then only on y=1I" k.

It is easy to prove the identity of the expressions of XP and X2 using (A.4).

Let us now compare these results with those obtained for classical body
force sources. For a force f(t) 6(x)! we deduce from (10)

XP= —o(IIP 2+ I1PeP) ((1’) T, 1)
The L.T. of Xy is
© 2n
X2=(ndn | dp exp(—wnh’ x) X2 (x). (22)
0 0

A momentless couple or dipole, of unit vector /, may be considered as the limit
for d >0 of two forces +f1/2d acting at x,=1Id and —Xx,. To obtain the cor-
responding solution X” we must replace in (22) x by x +1d. The limit is then

© 2z

X2=—0,{ndn | doexp(—mnh"(x—1d) X2(x —1d)|s_-
0 0

We obtain finally
ponX2=[k"16—ecwn[(h" —eirk") P 2 +(h" —eisk™) 11T eP]] ((1)) fl (23)
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This solution has a d-singular stress vector. This is impossible in a continuous
medium, as the displacement must be continuous and therefore the stress vector
is at most discontinuous. A continuous medium cannot sustain a dipole action.

We note the similarity between (19) and (23). A dipole is equivalent to a
stress glut defined by

Fok=—1Tkf, [oh=—1I"hf
or _

Fo=—=1IT+no"f.
As I, is symmetric and fixed in space we must take n=0 so that the stress glut
equivalent to the dipole f(t) 6(x)! is

I'=—f(t)é(x)IT. (24)

This stress glut cannot satisfy the condition (20) and the real stress vector cannot
be continuous. We have indeed if

I=ah+B0+yk
Foh=—alf Fok=—yIf.
The condition (20) becomes

al=(kchkT+khT)yl=xy*h+ayk
or
o —xy?=0

af=0 (25)

but « and § are either both zero, or functions of ¢ whereas 7y is constant.

S. Equivalence of a Dislocation and of a System of Dipoles

The dislocationd =d, hy+d, 6, +d; k is from (17) produced by the stress glut vector
Fok=—p(d ho+d,00)—(A+2p)dsk.
Let us introduce three dipoles defined by their intensities and directions
lj=0tjh+ﬁj9+))jk=05jo h0+ﬂj0 90+7jk (=13).
Using (24) we have the conditions of equivalence

or

_jo‘joyj:#dl
fjﬁjo)’j=ﬂd2
ijf =(A+2u)d;. (26)

On the other hand the continuity of the stress vector implies from (25) that
o3 =xfp}=1d,
fjocjﬁ ;=0. (27)
The relations (27) must be satisfied for any value of ¢ =(h,, h).
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We thus obtain
_1“12'0 =fjﬂ;2‘o =Ad,
fit50B50=0. (27 bis)

(a) Unit Dislocation Normal to the Fault Plane (d; =d, =0, d;=1). We introduce
the vectors A=col(eo%;0%30), B=c0l(B10B20B30), C=col(y;7,73), the matrix
F=diag(f, f, f3) (f; are supposed here positive) and the vectors

X=F'*4 Y=F'"?B Z=F'?(C.
The system (26) (27 bis) may then be written
XTY=YTZ=ZTX=0
XTX=YTY=) Z"Z=(A+2p).
Its solution is therefore
X=1YARh, Y=1IRO, Z=y(+2i)Rk,
where R is an arbitrary orthogonal matrix, and so
A=1LF'?Rh, B=yAF 2RO, C=17+2uF "?Rk. (28)

The values of the intensities may be deduced from the condition of unitarity
of the vectors [;. As

(ABC)=(l, ,,15)"
We must have
diag[(ABC)(ABC)T]=I1 or
diag(AF~! +2uF 2R EKTRTF-12)=]
F=diag(AI +2uR kkTRT). (29)

In particular for R =I we find the classical representation deduced from Betti’s
formula

fi=fH=4 fi=(0+2p)

12=h0 lz=00 13=k.
(b) Unit Shear Dislocation along hy (d; =1, d, =0, d; =0). The system (26) (27 bis)
becomes

fi%s07;=n

fiBjov;=1i%0Bj0=0

fii =fode=1;B5=0.

As |[;|=1 the three last relations imply that Xf;=0. It is always possible to
choose fl <0,f,>0, f,=0. We take now F =diag(— fl, f>, f3). Using the same other
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notations as before we obtain now
Z'Z=f;—2fivi=—-2fi"n.
Similarly
XTX=-2fid}, Y'Y= -2f B
X"Z=p-2fio07  Y'Z=-2fiBion; Y X=-2fi00B;
We see that

(YTZ? =(Y"Y)(Z2"Z)
(YTX)P=(YTY)(XTX)

which proves that Y=a X =cZ. Either Y=0 or the three vectors are proportional.
The last case corresponds in fact to a simple couple and gives no solution (from
(25)). To find the solution corresponding to Y =0 we introduce the angles w;=(h,, [;)

dj0=COS(L)j Yi=Ssmao;.

The system reduces then to

fisinw;cosw;=u
£ cin2 —f 2 —
fisin® ;= f; cos* w;=0.

This system gives f_J for any orientation of the three coplanar dipoles. It is
however possible to obtain a solution with only two couples by taking

fi=0 o, +w,=n f=—fi=1/sin20,.

In particular for w,=n/4 we find the classical representation by means of two
orthogonal dipoles of intensity u inclined at ©/4 to the normal to the fault plane
and to the displacement.

(c) Dislocation of Arbitrary Direction. A similar method could be developed for
the case of an arbitrary direction. A given dislocation is therefore equivalent
to a continuous infinity of systems of three dipoles.

6. Conclusion

The main results of this paper are the following:

The diverging waves produced by an arbitrary point source may be described
by only three simples matrices corresponding to P, SV, SH waves.

The introduction of the stress glut tensor in the Thomson-Haskell method
clarifies the notion of equivalence between dislocation and system of dipoles.

A continuous elastic medium cannot sustain without faulting the action of
a dipole. This last appears as an apparent force system derived from a stress
glut tensor. -
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A given dislocation is equivalent to a continuous infinity of systems of three
dipoles. Orthogonal dipoles are therefore a particular case without special
physical meaning.

Acknowledgement. We wish to thank F.A. Dahlen and P. Richards for their critical comments.

Appendix

We shall use notations analogous to, but slightly different from, those used in
Paper 1. The matrix M of (1) is simply proportional to the matrix M of (1.12)

Meo ( kkhT +hk” I—akkT) Al
TN\ w21 —4ahhT—007 khkT+khT) (A1)
From this expression we deduce
D aQ
M? =2 2( )
TN\ _2ab9 D)
with
D= —(s*4+2a)hhT —(r* —2a)kkT —s* 007
Q=hkT+khT (Q*=I1-06").
It is easy to see that we may write
K [0) L -0
27_ 2
ml—(_sz K)+(2bQ L) m*(E,+E,) (A2)

m*M?*= —w’n*(r*E,+s*E,)

E,E=E,E,=0, E.=E,, E}=E,
if

K= —2hhT+bkkT™

L=—2kkT+bhhT+m?007.
The orthogonal projectors E, and E, are therefore the eigenprojectors of M.

The eigenprojectors of M are deduced from them

I =[+wnirE,+ ME,]/(+2w@nir)

E=[+wnisE,+ ME]/+2wnis) (A3)
After some algebra we obtain
+bhk"4+2r2khT  hhT —r?kkT
—4r*hh" + b2 kKT bkhT+2r2hkT>

bkhT+2s*hkT™ s*hhT —kkT+m? 007

4s*kkT—b*hhT —s*00T bhk™ +2s*kh” )

mZMEp=—um(

m*ME,= —ay (

According to (8) the diverging projectors are given by

20°P=M*+1~ +e(lI* —I1")=E+eME/wni|A|
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where |A| is r or s. We thus obtain
irK —e(bhk™ +2r*kh") irQ+e(*kk™—hh") )
—2irbQ+e(@r*hhT —b?kk") irK—e(bkhT+2r*hkT")
isL+e(bkh™+2s*hk")
2isbQ+e(4s*kkT—b>hhT —s*007)
—isQ+8(szhhT-kkT+m200T))
isL+e(bhk™+2s?khT)
expressions which correspond to (.29, 30).

We remark that the products IT° (g) , 1P (2) ... may be easily deduced from

2m2irH{,’=(

2m2ist=(

1 (g 2>=th
We thus obtain

2miirtly (g 2)=_(22ii’;)hkt24sar:2kh 2?:‘}1‘::’;1():—(2”811)3

T Berus A A R

2m?irIl? ((9) ((-)))=0

25812 (0 5)= Gk eptn s 2o ) =1 598

2812 (0 2)= oo asiok —ainkopa) = ~i5e103

2mPisII? (g g) - (’_S:;Zf; fs";z%) —(ise|)T (Ad)
where the matrices R, S, T correspond respectively to P, SV and SH waves:

R= (322112’;1:h) 5= (—:::;;’;sk) T=m’ (ii) 0. (A-3)
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