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Application of Two-Timing Methods
in Statistical Geophysics

K. Hasselmann

Max-Planck-Institut fiir Meteorologie, Bundesstr. 55, Hamburg, Federal Republic of Germany

Abstract. Two- timing techniques have found wide application in geophysical
problems involving resonant interactions between fields or the propagation
of particles in random media. It is shown that a rather general class of these
applications can be reduced to a simple prototype problem, the diffusion of
particles in a statistically homogeneous, stationary turbulence field first
considered by Taylor (1921). The similarity of Taylor’s diffusion analysis and
the more recent resonant-coupling treatment of interacting fields or particles
becomes apparent if Taylor’s covariance integral expression for the diffusion
coefficient is rewritten in terms of the Lagrangian velocity spectrum. Particle
diffusion can then be interpreted as a resonant excitation of the particles at
their (zero) eigenfrequency. The concepts are illustrated for a number of
applications, including climate variability, which is interpreted as a low-
frequency random walk problem.

Key words: Two-timing methods — Interacting fields — Climate variability.

1. Basic Equations

In a fundamental paper in 1921 Taylor treated the problem of the diffusion of
fluid particles in a statistically homogeneous, stationary turbulent fluid. Taylor
showed that for times large compared with the integral correlation scale of the
velocity field, the dispersion of the particles is governed by the same laws as
molecular diffusion, the effective diffusion coefficient being given by the integral
over the covariance function of the random particle velocities. This simple result
has found wide application in geophysical turbulence. However, it appears to
have been less widely recognised that Taylor’s investigation provides the common
basis for the analysis of a number of other geophysical problems involving sta-
tistical fields, including nonlinear wave-wave scattering, wave-current interactions,
particle-field coupling, and, more recently, climate variability. In this note the
common mathematical structure of these problems is demonstrated, without
going into the algebraic details of particular applications.
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Consider generally a system characterised by a state vector § =(J,, ,, ...) and
governed by a set of first-order equations

dy;, -

) (1)
The restriction to first-order implies no loss of generality. The dimension of § may
be infinite, the system state being represented by a vector rather than an element
of an abstract space in order to use more familiar matrix rather than operator
notation.

The application of two-timing expansion techniques in our examples assumes
that the system has the following property: if the dominant time scale of the
problem (to be defined later) is scaled to be of order unity, Equation (1) can be
expanded in the form

yi_

dt
where the matrix M;; is constant (in many applications, zero) ¥ =0(1) and the
expansion parameter ¢ < 1.

The linear term can be removed by transforming to “interaction” variables
y=e M'§ where M denotes the matrix M;; in usual matrix notation, and the

Mi,-ﬁj+£$§1)(5’, D+, 1)+ )

matrix e~ ™" is defined by the infinite series e~ M'=1 —-M1f+M2 M e
Equation (2) then becomes 2 3.2

dy;

Tim gy 0+ YOy )+ G)
where

YOy, =e MMM y, 1), @)
The general solution to Equation (3) under the initial condition

yi(t=0)=y ®)
can be constructed by a perturbation expansion

y=yO+eyD4e2y® 4 ... (6)
where

ly V1> ely V> e ly 2> - ()

The zero’th order term y'® =const is determined by the initial condition (5). The
equation for the first-order solution is given by
dy
dt
with the initial condition y"’=0 for ¢t =0.
In general, the solutions y" contain secular contributions which grow inde-

finitely with time. Thus the condition (7) implies an integration time limit for the
validity of the perturbation expansion (6). This can be removed formally by using

¥y, 1 )
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a multi-time representation of the solutions in terms of a series of time variables
t™ =¢"t (cf. Benney and Saffman, 1966). However, we shall be interested here only
in the lowest order secular terms, which can be interpreted rather simply following
Taylor’s original approach. In this case the method of deriving secular equations
from the perturbation solutions can be immediately seen without recourse to the
more general multi-time formalism.

2. Statistical Fields

Assume now that the functions Y\", initial values y{*) and solutions y;(t) represent
elements of a statistical ensemble. In particular, let ! (y,,t) be a statistically
stationary function of ¢t with zero expectation value, {Y\"’> =0, (this can always
be achieved by suitable redefinition of variables) and covariance function

Ry;(@)= <y (t+ 1)y (0. ©)

It was shown by Taylor (1921) by straightforward integration of (8) that in this
case the function yﬁ” is nonstationary, its variance increasing linearly with time ¢
for large ¢,

P YPy=2D;t  for 1<t<e ? (10)
where
DU=% _“;0 Ru(f)dT (11)

The time scale is normalised here such that the integral correlation time is of order
unity, max j R; dt'(Ru( ) R;;(0)) "*2=0(1). The upper limit on ¢ in (10) follows

from the lnequahty (7). The equation is identical to the expression for the increase
in the variance of an ensemble of particles with prescribed initial positions y;=0
through molecular diffusion, characterised by a diffusion tensor D;;.

For the following it will be useful to interpret equation (10) also i 1n the frequency
domain. In terms of the variance spectrum

X

1 .
Ej(w)=ﬁ _LJ Ri(r)e "“"dt (12)

of the forcing function y{!), the response y{!) can be represented in the time interval
1 <t<e~ 2 by a variance spectrum

E )
G ()= (Juz for o> w, (13)
2nF;(0)6(w)t  for w<w, (14)

where the frequency w, satisfies the two-scale inequality
Z<w,<1. (15)

Equation (13) follows immediately from the Fourier transform of Equation (8).
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The non-stationary é-function contribution (14) at zero frequency is determined
by computing the variance of the response within a small but finite frequency
band around zero frequency in the appropriate two-scale limit 1 <t<e~ 2 For
w, satisfying (15) the spectrum F; in (14) is constant (white) in the frequency band
w<w,, so that the response can be expressed in terms of F;(0). The equation
should be read as an integral relation defining the total covariance in the given
narrow frequency band around zero frequency.

Equation (14) can be seen to be identical with Equation (10) by writing the
diffusion coefficient, using (12), as

D;;=nF;(0). (16)

Equations (13) and (14) show that the non-stationary response y{" to the stationary
forcing ") is concentrated asymptotically entirely in a narrow “resonance” band
at zero frequency, the rest of the spectrum representing a stationary process with
finite variance. The non-stationary growth of the covariance is accordingly
proportional to the spectral density of the forcing at zero frequency (Egs. (10), (16)).

It should be noted that the location of the dominant forcing and response at
zero frequency applies to the “interaction” variables. If the matrix M;; in Equation
(2) is non-zero, the transformation back to the original coordinates y; will generally
introduce a frequency shift. In many applications the variables y; represent
normal-mode variables, i.e. the time-dependent coefficients of an eigenfunction
expansion. The matrix then has the diagonal form M;,=d;,iw; (no summation
convention), where w; is the eigenfrequency of the j’th mode. The “interaction”
variables y;=7J;exp(—iw;t) then correspond to the normal-mode amplitudes.
In this case, a resonance in the spectrum of the amplitude variables y; at zero
frequency corresponds to a resonance in the spectrum of the normal-mode
variables J; at the mode resonance frequency w;.

In the following examples, the limitation t <&~ 2 will be removed by interpreting
the linear increase (10) or (14) as the differential rate of change of a slowly varying
distribution on a time scale of order &~ 2.

3. Applications

3.1. Diffusion of Particles in a Turbulent Fluid

As a generalisation of the dispersion of an ensemble of particles starting from the
same initial position, one can consider the evolution of a particle density function
p(y, ) with arbitrary given initial distribution. The characteristic space scale L
of p is assumed to satisfy the inequality L>1/D where 1/5(=0(1/D—U)) represents
a characteristic “free path” length (assuming again an integral correlation time
of R;; of order unity). For particles satisfying the diffusion relation (10), the distribu-
tion p then satisfies the heat conduction equation (cf. Wang and Uhlenbek, 1945)

dp 0 6( ap)

2 (v;p)=— (D, == 17
at+ayi (Ulp) ayl 1%} 6))] ( )
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where the advection velocity (including now a non-zero term {y{"’> in the general
case) is given by

0
Ui=<'M'1)>—E D;;. (18)
J

Equation (17) may be interpreted as the differential form of (10) with respect to
time and the integral form with respect to space. By rewriting equation (10) in
time-differential form, the upper time limit t <&~ is removed, provided the two-
scale inequality L>]/ D remains satisfied. The dependence of D;; on y‘” (through
(8), (9) and (11)) is replaced in (17), (18) simply by a dependence on the variable y.
(Note that in (17) y represents a space coordinate in the Eulerian sense, rather than
a time-dependent Lagrangian particle position.)

Equations (17)and (18) remain valid if the turbulence field is not strictly
homogeneous and stationary, provided D;; and v; vary slowly in space and time
in accordance with the two-scale inequality relations.

The equations have been extensively applied in problems of turbulent diffusion.
However, in geophysical turbulence problems the turbulence field may encompass
a broad range of natural scales, in which case the two-scale inequality is not always
satisfied. In this case a modified form of (17) is often used in which a heuristic
dependence of D;; on the scale L is assumed.

3.2. Diffusion of Charged Particles in Random Electro-Magnetic Fields

This problem has received considerable attention in connection with the propaga-
tion of particles in the solar wind and the magnetosphere. The problem is basically
similar to the diffusion of particles in a turbulent fluid except that the particles
experience random accelerations through their interaction with the electro-
magnetic fields. Thus the perturbation Equations (8) refer here to both momentum
and position variables. The heat conduction Equation (17) (or Fokker-Planck
equation, as it should now be termed when applied to a generalised phase space)
is six dimensional. However, the effective number of degrees of freedom is consid-
erably reduced if the particles are constrained to propagate along a mean magnet
field, as in the solar wind and the magnetosphere, and the superimposed weaker
field fluctuations are primarily magnetic. In this case the particle distributions
are axisymmetric, particle energy is conserved, and the diffusion is limited to the
pitch-angles of the helical particle motion and the guiding-center motions per-
pendicular to the mean field (Jokipii, 1966; Hasselmann and Wibberenz, 1968;
Kennel and Petschek, 1966).

Algebraicly, diffusion in the presence of a mean magnetic field is more complex
than the classical turbulent diffusion problem or the diffusion of charged particles
in a random electromagnetic field with zero mean component, as the lowest order
helical particle motion contains both zero eigenfrequencies (for the velocity
component parallel to the field) and non-zero eigenfrequencies (for the circular
motion perpendicular to the field). The interaction of these motions with the
fluctuating field yields an infinite series of resonant perturbations. However, all
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resonant contributions to D;; can be determined by application of the basic
relations (10) and (16).

3.3. Climate Variability

To a good approximation the global climatic system may be described as an
interaction between two subsystems with widely separated characteristic time
scales, a rapidly varying subsystem x =(x,, X,, ...) representing the atmosphere,
and a slowly varying subsystem y=(y,, y,,...) containing the remaining com-
ponents of the climate system, namely the oceans, cryosphere, land vegetation, etc.
The governing equations of the complete system are thus of the form

dx;

E=<pi(x, y) (19)

dv;

Do) 0
with

e<l,

where the time scale and all variables x;, y; and functions ¢@;, ¥; are assumed to
be normalised to be of order unity.

If the properties of the atmospheric circulation system are known, so that
X (f) may be regarded as a stochastic function with known statistics, Equation (20)
has the basic form (3), and the results of Section?2 can immediately be applied
(Hasselmann, 1976). In particular, it follows that for times ¢ in the two-timing
range 1 <t<e~? the covariance tensor of the climate variability increases linearly
with time ¢, and the covariance spectrum has a red distribution in accordance with
(13). Observed climate variance spectra agree quite well with these qualitative
predictions (Frankignoul and Hasselmann, 1977; Lemke, 1977). If a statistically
stationary climate probability distribution is postulated, the results of Section 2
have to be extended to include stabilising feedback terms—for example by
inclusion of a non-constant mean excitation {y‘"’» which is linearly dependent
on y®b.

The evolution of the probability distribution of climate states is governed by
the Fokker-Planck Equation (17). Because of the diffusion terms in the equation,
which tend to broaden sharply peaked distributions representing well defined
climatic states, climate evolution has only a finite degree of predictability. The
predictive skill depends on the relative magnitude of the advective terms, which
represent a deterministic evolution of climate states along characteristics in
climate phase space (without broadening of the distribution), and the stochastic
diffusion terms. In most climate models, both terms are approximately of the
same order of magnitude, and the maximal predictive skill is of the order of 50 %.
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3.4. Wave-Wave Scattering

One of the earliest and most extensive applications of two-timing techniques was
in the problem of the energy exchange between nonlinearly interacting random
wave fields (e.g. Peierls, 1929; Kadomtsev, 1965; Litvak, 1960; Hasselmann,
1966, 1968). The components y; represent in this case mode amplitudes, and the
functions Y{" describe the nonlinear coupling between the modes. Normally the
perturbation parameter & represents a scaling parameter proportional to the
magnitude of the wave amplitudes, and the functions Y are homogeneous
polynomials of degree (n+ 1) in the wave amplitudes. For non-degenerate modes,
the covariance matrix <y, y;> is diagonal, and the rate of growth of the diagonal
term, the wave spectrum, is proportional to the variance spectrum of the nonlinear
forcing at zero frequency —which corresponds in the original y-representation
to resonant forcing of the modes at their resonance frequencies.

The main algebraic difficulty in wave-wave scattering analysis is the evaluation
of the variance spectrum of the forcing functions at the resonant frequency. It is a
basic result of irreversible statistical thermodynamics (cf. Prigogine, 1962) that in
the limit of infinitely weak nonlinear coupling the variance spectrum of the forcing
can be determined under the assumption that all mode amplitudes are statistically
independent (Gaussian). (In this respect wave-wave interaction theory stands on
basically firm ground, as opposed to interaction theories for strongly nonlinear
systems, such as turbulence, where no rigorous closure schemes are known.)
Applying the Gaussian relations, the general structure of the resonant forcing
term (10), (16) can be summarized in a few universal rules in terms of interaction
or Feynman diagrams (Hasselmann, 1966, 1968).

The complete analysis of wave-wave scattering actually 1nvolves an extension
of the first-order perturbation theory presented in Section 2 to second order, since
the lowest-order secular contributions of the mode spectra arise both in the term
M y®S (no summation convention) given in (10) and the term {y{® 3> involv-
ing the second-order response y!?. However, if the system is conservative, the
second term can be deduced from the first by consideration of the energy and
momentum balance.

4. Conclusions

Recognition of the common mathematical structure of various interaction and
diffusion problems involving random fields in apparently unrelated areas of
geophysics can be very useful. The principal bridge connecting Taylor’s classical
turbulent diffusion theory to resonant-interaction theories involving wave-wave,
wave-field or particle-field interactions is the reformulation of Taylor’s expression
for the diffusion tensor in terms of the variance spectrum. The diffusion process
may then be interpreted as the resonant excitation of the system (the particles) at
its eigenfrequency (in this case zero). By transforming to “interaction” variables
in which the zero’th order linear response of the system is removed, all weak
interaction problems amenable to a statistical two-timing analysis can be cast in
the form of the turbulent diffusion problem. Examples include the scattering of
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charged particles in random electromagnetic fields, wave-wave scattering prob-
lems and the analysis of climate variability.
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