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An Example of Nonlinear Dynamo Action

F.H. Busse

Institute of Geophysics and Planetary Physics, University of California,
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Abstract. The earlier magnetohydrodynamic model of a convection driven
geodynamo (Busse, 1975) is extended to include Lorentz force effects of
higher order than those included before. It is shown that the action of the
Lorentz force is such that the magnetic field enhances its own generation
when the magnetic field strength is below a certain critical strength. Above
that value the magnetic field tends to stabilize the dynamo process and the
magnetic energy attains a stable equilibrium value.
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1. Introduction

During the past decades it has become generally accepted that the earth’s
magnetic field is generated by motions in the liquid outer core of the earth. The
nature of these motions and their energy source, however, is still poorly
understood. A large amount of potential information about the dynamic state of
the earth’s core is contained in the observed form of the magnetic field and its
secular variations. The development of mathematical models which are suf-
ficiently accurate to permit comparisons with observational data is therefore a
foremost challenge of dynamo theory.

Most of the work in dynamo theory has been concerned with the kinematic
dynamo problem which determines the critical amplitude of an arbitrary so-
lenoidal velocity field at which generation of magnetic fields becomes possible.
Since it has become evident in the past decade that nearly all velocity fields lead
to generation of magnetic field if the amplitude is sufficiently high, the kinematic
dynamo problem has lost some of its attraction for solving the problem of the
geodynamo. It appears to be necessary to consider the magnetohydrodynamic
dynamo problem described by the equations of motion together with the
dynamo equation in order to restrict the manifold of solutions which reproduce
the main features of the geomagnetic field.

The parameter of primary interest in any nonlinear magnetohydrodynamic
dynamo model is the strength of the magnetic field. It is not known what
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determines the equilibration value of the magnetic energy in planetary and
stellar dynamos although it is widely believed that the release of the dynamic
constraint of the Coriolis force by the Lorentz force is a determining factor
(Malkus, 1959; Chandrasekhar, 1961; Eltayeb, 1972; Roberts and Stewartson,
1975; Busse, 1976). Unfortunately it is not possible to test the various hy-
potheses on this subject by rigorous nonlinear theories. The perturbation
approach used in most nonlinear dynamo models does not permit a quantitative
application to situations of geophysical and astrophysical interest. However, a
qualitative understanding of the various possibilities for the equilibration of
magnetic energy may be gained from analytical models. It is the purpose of this
paper to contribute towards this more modest goal.

The simplest case of equilibration of magnetic energy corresponds to Lenz’
rule: The Lorentz force exerted by the growing magnetic field acts in the
direction opposite to the velocity field and reduces the amplitude of the latter.
The corresponding decrease of the magnetic Reynolds number leads to a
decrease of the growth rate of the magnetic field. This process leads to an
asymptotically vanishing growth rate and a corresponding equilibrium value for
the magnetic energy. The generation of magnetic fields by convection considered
in an earlier paper (Busse, 1973) describes a typical example of this process.

However, Lenz’ rule is not a general law in magnetohydrodynamic dynamo
theory. In a rotating system the Coriolis force may prevent the Lorentz force
from reducing the amplitude of the velocity field. Soward’s (1974) analysis of
generation of magnetic fields by convection in a rotating system indicates that
once the Lorentz force exceeds a threshold value the magnetic field tends to
grow out of the range of validity of the expansion indicating a highly nonlinear
process of equilibration which has not yet been investigated. In this paper we
shall study a more simple case in which a particular component of the velocity
field is increased such that the growth rate of the magnetic field initially
increases with the Lorentz force and decreases only after a certain value of the
magnetic energy has been exceeded.

The analysis of this paper is an extension of the theoretical model of the
geodynamo considered in an earlier paper (Busse, 1975), which will be referred
to as I. In that work the effect of the Lorentz force was taken into account only
as far as it affected the amplitude of the convection motions. The resulting
balance for the magnetic energy is not entirely satisfactory since in cases of
geophysical interest the heat transport, and thus the amplitude of convection,
rather than the temperature difference driving the motion must be regarded as
the given parameter. It will be shown in this paper that a different balance,
based on a higher-order effect of the Lorentz force, can be obtained without
changing the model in any significant way.

2. Mathematical Formulation
As in I we consider a rotating cylindrical annulus, as shown in Figure 1. Because

of the symmetry of the problem with respect to the equatorial plane z=0 we
have omitted the lower part of the annulus shown in Figure 3 of L. Instead of
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Fig. 1. Sketch of the annulus configuration
used in the theoretical analysis

using L.=21 as the basic length scale, we use [ in this paper. This has the result
that the width-to-height ratio D of the annulus corresponds to 2D in . In all
other respects we shall use the same notation as in I. The assumption of the
small gap approximation allows us to introduce a Cartesian system of coor-
dinates (x, y,z) with the corresponding unit vectors i, j, k pointing in the radial,
azimuthal, and axial directions, respectively. As in I it i1s assumed that the
temperatures T, and T, (T, > T,) are prescribed on the outer and inner cylindri-
cal walls, respectively, and that the gravity vector points in the direction of —i.
We shall use the inverse of the angular velocity @ as the time scale; (T, — T,)/D
as the temperature scale; and (p, u)* LQ as the scale for the magnetic field,
where p, is the mean density of the fluid contained by the annulus and p is its
permeability. After subtracting the equations for the static solution of the
problem from the basic equations we obtain as equations for the velocity field v
and the deviation 0 of the temperature from the static temperature distribution

(%+V-V)V+2k>(\’:—VR+BQi+EV2V+(|7><H)><H, (la)
V.y=0 (1b)
d ;
(ajuv-v)a:.-wp—lwzg (10)

where the three non-dimensional parameters B, E, and P are defined by

B(T,—-T))g v v
B=—-———""2 E=—r>.  P=—

Q*Dpl ar K

B, v, and k represent the coefficient of thermal expansion, kinematic viscosity,
and thermal diffusivity, respectively. g is the acceleration of gravity. The dynamo
equation for the non-dimensional magnetic field H is given by

(%—IVZ)H:VX(VXH) @)
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where 7 represents the non-dimensional equivalent of the magnetic diffusivity 4,
T=1/QI%.

In order to eliminate the need for equation (1b) we shall use the general
representation

v=Vxky+Vx¥V xko)

for the solenoidal vector field v. The solutions for Y, ¢, 6 are obtained by
perturbation methods based on the expansion

¢={'l’o+fl‘/’1+'72¢z+"'+M¢(1)+~-'}exp{iwt+iocy}

dp=nd,+n* P+ +MPPV+--. —Erzy/2+ - Jexpliot+iay} 3)
0={0o+n0,+7%0,+--+MOV+..Jexpliot+iay}

in terms of 3 small parameters of the problem. 7 is the mean angle of inclination of
the top surface of the annulus, as shown in Figure 1. M represents the square of
the amplitude H, of the magnetic field H. The third small parameter, E?,
represents the effect of the viscous Ekman layer at the rigid top boundary of the
annulus, z=exp{—7 x}. In order to obtain a solution of the form (3) we must
neglect the terms v-Vv and v- V0 in equations (1). These terms determine the
amplitude A of convection and will not be discussed in this paper. Expansions
analogous to (3) must be assumed for B and o,

B=By+nB,+--+MB+ ...

w=wo+nw;+-+MoP+-.-. @
The analysis in I considered the case

“M7<“n*” (5a)
while in this paper we shall consider the case

“NKYEFTrCMT<y”. (5b)

By “M” we mean “terms of the order M” in the above expansions, since the
correct order of magnitude depends on other factors in the solutions. For
example, it was found in I that n2¢, is actually of the order #%/2E!/3. This
suggests a rescaling of the problem. However, in order to keep the changes of
notation to a minimum and because the assumptions of the perturbation
analysis can be easily checked by inspection of the results, we have omitted the
complicated process of rescaling. We note that the basic assumption of the
analysis in I, # > E*, is compatible with relationship (5b).

It should be emphasized that the limit (5b) does not represent the case of
direct geophysical interest since E?* is rather small in the earth’s core. Terms of
the order “x#2” serve a similar function, however, as those of the order “E*” as is
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shown in 1. Because the analysis in the case “E*”<“x%” is much more
cumbersome we have chosen the limit (5b) in order to illuminate the basic
process of nonlinear dynamo action.

3. Previous Results

In lowest order Equations (1) yield the solution (see I)

io

Yo=Asiny(x+D/2), 8, “EP i tioy

Yo (©)

where a? is defined by
a’=y*+a?
and y is determined by

nm
=—, n=12...
r=p n

in order that the boundary condition
Yy=0=0 at x=+1iD

is satisfied. As in I we shall use the property that for the physically relevant
solution

1gy*sa? (7

can be assumed. For the following discussion it is not necessary to consider the
results of the equations of higher order explicitly. It is sufficient to note that the
solution for ¢ satisfies the relationship

4,p=—a’¢ ®)

As was shown in I the task of solving the dynamo equation (2) can be
simplified by assuming a ‘flat’ annulus,

D>1. )

In this case an average over the x- and y-dependences can be defined (indicated
by a bar) and a representation of the form

H=H, {—jG(z)+iF()+V x(V xkh)+V xkg} (10)

can be assumed, where H,=M?* and where h and g are functions of space and
time with vanishing average,

h=g=0.
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The boundary conditions for G and F are given by
G(0)=F(0)=G(1)=0, 1)

as discussed in I. Using property (7) and the fact that ¢ is small in comparison
with s the solutions for g and h can be written in the form

- (F%QP—G 5‘} w) (o+1a?) ",
= (F%¢—G% qb) (iw+ta®)~ 1.

The equations for the mean magnetic field are given by

a? df, a2y 8 a?

—  F=—iG|l-d, 0" —F 4+ y+——
1:dzzF dx{4G[ 29 io+ta? 6y iwy+1a? 6y¢+cc]} (122)
d? d . Y o, ., a
TPG_dz{ [ 29 io+ta® 'Ew io+ta’ 6x¢+cc] (12b)

where ¢* indicates the complex conjugate (c.c.) of ¢ and where 4, is defined by

Azsa—xz——az. Again, terms of higher order have been neglected in Equations

(12).

It was shown in I that the lowest-order term proportional to # ¢, Y, vanishes
on the right hand side of (12ab). Thus the dynamo action depends on terms of
the order n? 4%, E*A4% or MA? While in I the first two possibilities were
considered we shall concentrate in the following on the third possibility.
Although it will turn out that the term of the order MA? cannot provide
dynamo action by itself, in conjunction with other terms, in particular with the
Ekman layer-induced term, it leads to an interesting nonlinear form of dynamo
action.

4. Action of the Lorentz Force

It was shown in I that the Lorentz force arising from the vector product of the
mean current and the mean magnetic field is balanced by the pressure. For this
reason only the Lorentz force arising from the fluctuating current and the mean
magnetic field is of interest in lowest order. By taking the z-components of the
curl and the curl of Equation (2a) we obtain 2 equations for y* and ¢*) which
were previously derived in I,

(EVZ—iwo)Azn//‘”+Bo%0‘“+2k-VAzq.’)“’

d
=B(1’590+iw<1>412 Yo+Ly, (13a)

2k- VA, V=L, (13b)
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where L, and L,are given by

o 0

L1=(G@—Fa)dzg, (14a)
o o\,

LZ—(Fa—G5>V 45h. | (14b)

In I the solvability condition for the system (13) of equations was derived and
expressions for B and ! were determined. In this section we shall proceed
beyond that stage and actually solve Equations (13). The solution becomes
simple if we use the fact that L, is of the order # smaller than L, and thus can
be neglected. Using in addition the solvability condition derived in I we find

Y =0, (15a)
z 1
AN =1 ((j)lez—zilez). (15b)

The evaluation of expression (15b) yields

— g2
A (1) — G2 2 F2 2d GZ 2 F2 Zd 1
29 1w0+7:a {j W ETyaz— ZI ot Z} Vo
ia’a
— GFd
lw +1a? 0x %5 z (16)

5. The Nonlinear Dynamo Problem

When expressions (6) and

d=nd,+ MV —E*zy)expliay+iwt} 17)

are inserted on the right hand side of equations (12) the contribution of # ¢,
vanishes, as shown in I. For the same reason the second term on the right hand
side of (16) does not yield a finite contribution. Thus we obtain after integrating
equations (12) once

4 pe _*Kf(G.F.2)G, (18a)
dz y

d vy

2 6="Kf(G,F,2)F+c (18b)
dz o

where f(G,F,z) and K are defined by

tE*
May

f= j( G*+- F2>dz zs( G*+ sz)dz— z,
a?y?2a? A’ M

K=—"F——.
dt(w?+1%a*)
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The constant of integration c¢ denotes the electrical field in the radial
direction. Because the problem is periodic in the azimuthal direction a mean
electrical field in the y-direction cannot exist, with the consequence that the
constant of integration in Equation (18a) must vanish.

Equations (18) can be simplified by the transformation

R y 3 . o 3
FE(—K) F, G= (—K) G, (19a)
o y
sok B 4 (KE)%c (19b)
T May Uy
with the result
(20a)
d . (= . Lo
—F:G{I(G2+F2)dz—z(5+j(Gz+F2)dz)},
dz ° 0
d .z . . o
EG=_F{§(62+F2)dz—z(5+5(62+F2)dz)}+d. (20b)
0 0

An explicit solution of these equations subject to the boundary condition (11)
was derived in I in the limit where the amplitudes of G and F tend to zero. The
lowest eigenvalue u for which a solution exists is given by

§=1pu,=4.60. 1)

At finite amplitudes of the magnetic field numerical methods are required for
the solution of the nonlinear boundary value problem.

6. Numerical Results

Starting at z=0 Equations (20) can be integrated by the Runge-Kutta method
for any prescribed value of d if the expression

1
r=6+[(G*+F?*dz (22)
0

is regarded as an adjustable parameter of the problem. A subsequent Newton-
Raphson iteration on the boundary value G(1) as a function of I" allows us to
determine the value I' for which G(1) vanishes. In this fashion the lowest values
of [6] for which solutions of the boundary value problem exist have been
determined as a function of d. The results are shown in Figure 2.

The most interesting result is that solutions are possible for values of o less
than a quarter of the value of (21). Initially it was thought that solutions with ¢
=0 were possible. This would have been remarkable in that dynamo action
would have occured at a finite strength of the magnetic field in a case when the
purely hydrodynamic solution corresponds to a toroidal velocity field. However
solutions with =0 do not appear to be possible.
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Fig. 2. I" and § as functions of the parameter d for the solution of Equations (20) corresponding to
the lowest value of |4

0 05 10
Z

Fig. 3. F and G as functions of z for §=4.5, ' =4.775, d = 1.005

The form of solutions G and F is plotted for some characteristic values of d
in Figures 3-5. As d increases the number of zeros of F and G increases. For
large values of d, G and F assume a boundary layer character near z=0 and for
larger z, F becomes a constant F, while G nearly vanishes. An approximate
expression for E, is

E~d/s (23)

which follows from the fact that dG/dz tends to vanish at z= 1. It is evident from
Figure 5 that relationship (23) is nearly satisfied. The asymptotic properties of
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s F
G
0
o 0 10
7

Fig. 5. F and G as functions of z for &
. . . s w . . . " =173, TI=1574,d=92.1

the functions G and F suggest the application of boundary layer methods. This
has not yet been attempted.

Without an analytical theory for guidance in the interpretation of the
numerical results it is not easy to understand the reason for the minimum of é

S,n=108 at d=11.13.

It appears that this minimum represents the optimal balance between the
influence of the term I'—§ which tends to decrease ¢ and the effect of the first
term in the wavy brackets of (20), which tends to increase it.

There are other branches of solutions to equations (20), all of which appear
to correspond to values of |§| of the order 10 or larger. Since solutions
corresponding to higher values of |4 are of lesser physical interest we shall not
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discuss them at this point. We simply mention that the next higher branch
corresponds to negative value of § and is characterized by a zero of F in the
interval 0<z<1.

7. Discussion

It is apparent when the foregoing analysis is compared with the analysis in I
that the first relationship in (5b) is not essential. The term proportional to & in
Equation (20ab) which originated from the Ekman layer suction could be
replaced by the term arising from 52(, ¢, + ¥, ¢,), the dynamo effect of which
was considered in I. Since the latter term possesses a more complicated z-
dependence we have chosen the case of (5b) in order to isolate the nonlinear
dynamo effect in its simplest form.

One of the most interesting aspects of the nonlinear dynamo action is the
tendency towards boundary layer formation. Boundary layer formation was
observed in an earlier magnetohydrodynamic dynamo model (Busse, 1973) when
it was caused by the expulsion of magnetic flux from the convection eddies. In
the present case the boundary layer formation is an intrinsic part of the dynamo
process, which reduces its characteristic length scale in order to keep the
magnetic Reynolds number close to its optimal value. Whether the property
that the azimuthal or toroidal component G becomes reduced relative to the
radial or poloidal component F applies to the geodynamo is a matter of
speculation. At least it demonstrates that a large toroidal field is not a necessary
feature of the earth’s dynamo.

As was emphasized in the introduction the objective of this paper is to
illuminate a basic nonlinear aspect of dynamo action rather than to explain
features of the geodynamo. In an earlier paper (Busse, 1976) it was pointed out
that it is likely that the release of the Coriolis constraint by the magnetic field in
the earth’s core will lead to much larger scales of motion than those for which
the analysis of I and this paper is directly applicable. However, since there does
not seem to be any reason to change the basic geostrophic balance of the
convective motion, it is possible that a process similar to the one analyzed in
this paper is occurring in the earth’s core. Hopefully, more detailed numerical
investigations of the dynamo process in a sphere will provide realistic models for
the geodynamo in the future. The simple analysis of the present paper may then
be useful to interpret features of the numerical results.
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