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Equation of State of Liquid Iron
at the Earth’s Core Conditions
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Abstract. The Earth’s outer core is generally believed to be a mixture of
iron and one or more lighter constituents. This assumption is based on
shock-compression data. Here it is shown that at high pressures the current
interpretation of these data is highly questionable. An equation of state,
derived following selfconsistent quantum mechanics, is proposed. This equa-
tion is of general validity and can be applied to any state of matter in
any thermodynamical condition. However the lack of precision in the para-
meters involved in this equation, when applied to iron makes still impossible
a rigorous solution of the problem of the Earth’s core composition.

Key words: Earth’s core — Shock waves — Griineisen’s parameter — Liquid
iron — Equation of state.

Introduction

The purpose of this paper is to derive and discuss an equation of state for
liquid iron at conditions of the Earth’s outer core, based on a self-consistent
quantum-mechanical approach. The Earth’s outer core is defined, from
seismological data, as a region with very small rigidity and a density ranging
from 9.91 to 12.14 g/cm® (Dziewonski et al., 1975), and calculations under the
assumption of hydrostatic equilibrium give corresponding pressures ranging
from 1.37 to 3.14 Mbars (Bullen, 1975). The shear wave opacity suggests imme-
diately the presence of a liquid phase, while the pressure-density curve and
considerations about the distribution of elements in meteorites give iron as
the most probable component. A more detailed analysis is necessary to reach
a precise conclusion about the chemical composition. The generally accepted
method in solving this problem mainly consists in 3 steps:
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(i) determination of an equation of state for the Earth’s core;

(ii) determination of equations of state of materials at conditions of the
Earth’s core;

(iii) comparison between the 2 sets of Equations (i) and (ii) in order to
find an identity. The material satisfying such an identity may be present in
the Earth’s core.

Concerning (i), recent seismic data inversion models give reliable density-
radius relations, and the assumption of hydrostatic equilibrium leads to the
dependence of pressure on radius. In this way it is possible to obtain an accurate
equation of state for the Earth’s core. By contrast, the currently accepted solution
to the problem (ii) is highly questionable. The thermodynamical conditions
of the Earth’s core can be reproduced only by shock-wave experiments. Unfortu-
nately, the data obtained in this way, in spite of the large number of studies
about their interpretation, are not reliable just in the pressure range we are
interested in, as will shown below.

The Inversion of Shock-Wave Data

The fundamental assumption behind any reduction of shock-waves data is the
validity of the Hugoniot equations

VolVi=D[(D-4,) @
Py =A1D/V0 @)
E(P1sV1)=%P1(Vo'V1) €)

where V), is the initial specific volume, V; the specific volume behind the shock
front, D the shock-wave velocity, A; the particle velocity of the material, P,
the shock-wave pressure, and E the internal energy. These equations are valid
if the shock front is thin, i.e. if immediately behind the shock front the sample
is in thermodynamic equilibrium (Courant and Friedrichs, 1948). In fact shock-
wave experiments for pressures larger than 3 Mbars involve so high temperatures
that melting occurs in all substances and therefore this condition is surely
violated for the whole pressure range (see e.g., Benedek, 1959). These basic
considerations reduce the range of rigorous applicability of shock experiments
to rather low pressures, comparable with those achieved by modern static anvil
devices, and make very doubtful the results relative to core pressures, because
it is not possible to evaluate the phenomena related to shock melting. Apart
from this fundamental point, which implies a source of systematic errors practi-
cally impossible to correct, the equation of state used by the totality of the
authors (Walsh et al., 1957; Altshuler et al., 1958; Takeuchi and Kanamori,
1966) is greatly questionable for many reasons. In fact, all the above authors
use the classical Mie-Griineisen equation

P=—dU[dV+y(Ey 5/ V) )

where P is the total pressure, V is the volume, U the static lattice potential,
y the Griineisen’s parameter, and Ey 5 the vibrational part of the internal energy.
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Ey 5 is given by
Eyip=E-U(V) ®)]

Equation (4) is generally solved simultaneously for dU/dV, y, and E, ;5 under
the following two assumptions:

(a) Ey;p is harmonic, i.e. the anharmonic terms of the free energy, which
are of main importance at the high temperatures of shock experlments are
systematically disregarded;

(b) y is assumed constant (Altshuler et al., 1958), or as a Dugdale-MacDonald
function of the volume (Dugdale and MacDonald, 1953).

Regarding assumption (a), the account of anharmonic terms at the tempera-

tures involved in shock experiments is vital (Leibfried and Ludwig, 1961). Fur-
thermore, iron is a metal and therefore, at shock-wave temperatures, also electro-
nic contributions become relevant (Kittel, 1963; Mulargia and Boschi, 1976).
With respect to assumption (b), we must remember that the original definition
of y
dlnv;
OolnV ©)
where v; is the normal mode of i, is valid only in the case of a harmonic
solid with a flat frequency spectrum. This model is a poor approximation of
a perfect solid at 0° K, and it loses any meaning with increasing temperatures.
Nevertheless, Altshuler et al. (1958) use it for inverting shock data for tempera-
tures of the order of 20,000° K. Takeuchi and Kanamori (1966) use a Dugdale-
MacDonald expression for y. It is well-known (see e.g., Irvine and Stacey,
1976) that this formulation is wrong, but we wish also to point out that a
quantity defined by (6), as the Dugdale-MacDonald y, has sense in an equation
of state such as (4) only in the harmonic case, as we will show in the next
section.

Y=Y:i=

The Equation of State

From the above discussion it emerges that at present we still have too poor
a knowledge of the mechanical properties of materials at core conditions to
risk any assertion. To say something certain, we need mainly two things:

(1) a reliable theoretical equation of state;

(2) a rigorous check of the equation of state by high precision high pressure
data.

The equation of state we propose is valid irrespectively of thermodynamical
conditions and for any kind of matter in any kind of state. Practically it is
a generalization of the Mie-Griineisen equation. By writing the Helmoltz free
energy F as

F=E-TS @)
and

F=UV)+Fy; ®
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where S is the entropy, T the temperature, and Fy 5 the vibrational free energy.
A differentiation of (8) gives

P=—(0F/0V)r=—dU[dV —(0Fy5/0V)r C)]
which can always be written as
P=—dU[dV+ @Ey, 5|V (10)

where @, according to Equations (5) and (9), is a function of T and V defined
by

¢=—VI[(OFy5/0V)1/Ey 5] (11)

Equation (10) represents a form of equation of state of general validity since
it has been derived without any restrictive assumption. The function ¢ coincides
with the original definition of Griineisen’s parameter (6) and therefore with
the Dugdale-MacDonald one, which in turn is based on (6), if Fy;5 and E,
are considered in the harmonic approximation. In this case Equation (11) goes
back to the classical Mie-Griineisen equation.

In general the function ¢ has nothing to do with the thermodynamical
Griineisen’s gamma, y,,, defined by

Y= VaK|Cy (12)

where « is the thermal expansion coefficient, K the bulk-modulus C, is the
specific heat at constant V. a K stands for (0S/0V),. However it can be shown
(Mulargia and Boschi, 1976) that in the harmonic approximation definitions
(6), (11), and (12) coincide, while it is well-known that the harmonic approxima-
tion is valid for temperatures in the range of a few times the Debye temperature.

Evaluation of the Quantities in the Equation of State

In order to show the applicability of our equation of state, we consider in
detail the problem of liquid iron at conditions of the Earth’s outer core. The
evaluation of the quantities in Equation (11) is performed starting from the
identity

Fyip=Ey;p—TS (13)
which gives
¢=—VI[(OEy;5/0V)r—TaK] Eyjg (14)

Instead of extrapolating, with dubious rigour, values relative to solid crystals,
we apply our theory to the liquid state. By liquid state we intend a lattice
with a simple cubic structure in which transverse waves have a trasmission
coefficient irrelevant in comparison with the longitudinal transmission coeffi-
cient. This liquid model arises from experimental diffraction data on liquid
metals (see e.g., Maddin et al., 1957), which show a nearest-neighbour pattern
similar to that for solids and the next-nearest neighbour pattern much more
randomly located than for solids. This gives the reasons to support, for liquids,
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Table 1. The harmonic Griineisen’s function U
yH the anharmonic leading term coefficient 4, AVIV,  yE, A, ergz) ——— (Mbars)
and the 0° K static pressure as functions of the °K av

compression 4V/V,

0.00 1.90 1.8x10° 00
0.02 1.85 1.7x10®  0.004
0.10 '1.68 1.7x10®  0.13
0.20 1.50 1.6x10® 041
0.30 1.36 1.4 x 103 1.0
0.40 1.22 L1x10® 20
0.50 1.10 1x103 43

a lower coordination number than for solids, and a very low transverse force
constant in order to allow nearly free shear movements in the lattice. On this
basis, we can, under hydrostatic pressure conditions, write VoK as (Wallace,
1972)

VaK=3Nkyl+[Vd([—2A,)/dV]T (15)

where k is the Boltzmann constant, N is the Avogadro number, 4, is the
anharmonic leading term of the free energy (Leibfried and Ludwig, 1961), I
is the electronic specific heat coefficient (Kittel, 1963), and yZ is the thermody-
namical gamma. y, according to definition (12), can be easily written as (Born
and Huang, 1954)

0EHR 1%
v5,=( ”") . (16)
v T(aEv,B) g
aT . VIB

while the harmonic internal vibrational energy E¥,; is defined by (see e.g.,
Wallace, 1972)

EVIB=E¥IB_(A2_%F) T? (17)
We have now all the quantities of (11) written as functions of Ey 5 I,
A,, T, V. E¥,p can be evaluated without finding the explicit eigenvalues of

the dynamical matrices by using a Thirring’s series expansion (Thirring, 1913),
namely

o B fl 2n
E’V’m=5NkT{1—Z,,(—1)" 2 uzn( ) } (18)
1

@2n)! kT

where # is the Planck constant, B,, are Bernouilli numbers, and p,, are the
statistical moments of the frequency distribution function of the eigenvibrations
of the medium. In our case, Equation (17) is evaluated using the values of
12, computed on the basis of a Rydberg type intermolecular potential given
by

U=—D[1+b(rij—r)lexp[—b(ri—r.)] 19
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where r, is the distance of approach of the molecules, r; is the instantaneous
distance, and D, b are constants. This potential leads to the best agreement
in the description of the thermodynamical properties of iron (Varshni and
Bloore, 1963). A, is computed according to Wallace (1965) while I" is taken
from extrapolated experimental values (Shimizu and Terao, 1967; Wood, 1962).
I' is assumed constant in T because we are far from the Fermi temperature,
and in V because extremely high pressure computations (Henry, 1962) show
a very low pressure gradient. The quantities of Equation (11) are computed
for the density range up to V/V,=2.0 and for temperatures up to 6,500° K.
The results are shown in Tables 1, 2, 3.

Discussion

As it appears from the tables the uncertainty in I" alone is capable of a noticeable
shift in the results. Furthermore, also 4, and mainly the intermolecular potential
parameters are not completely sure because the Varshni-Bloore potential was
derived from shock compression data of Walsh et al. (1957), data which can
be criticized as already pointed out above.

In conclusion the problem of the composition of the Earth’s core is still
open. We have pointed out that current theories based on shock-wave inversion
are misleading. We derived a general equation of state and checked its parame-
ters with the most reliable data available for iron. Unfortunately the precision
of these experimental quantities is up to now insufficient to give an answer
to our problem. However we think that the development of static high precision
high pressure equipment will make possible the solution of this question in
the next future.

Acknowledgments. This work has been performed in the framework of activities of the Italian
National Research Council.
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