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and Magnetospheric Physics, Telegrafenberg A 50, GDR-15 Potsdam, German Democratic Republic

Abstract. The statistical approach to electromagnetic induction in inhomoge-
neous media, developed in an earlier paper for the case of an infinite medium,
is extended to include the induction in very thin plane sheets where a simple
boundary condition can be used to match the fields at the sheet. This condition
is reformulated for the case of a stochastic conductivity distribution o=g0,
+0,(x, z). The solution of the linearized problem of the stochastic fields (index
1) is given. Then, the surface field correlation tensor K;;=B;B; is formed.
Because of the two-dimensionality of the problem, its components are linearly
dependent. Use of one to them, K, provides an equation for the mean square
(ms) amplitude of the integrated stochastic conductivity 7,(x), which can be

solved uniquely. The result is a representation of the rms conductivity (t7)*/2
through the spatial magnetic power spectrum K __, the global field B,, and the
mean sheet conductivity 7,. Since these are assumed to be known, and K, is a
measurable quantity, the rms deviation of the sheet conductivity from t,,
constant over the corresponding correlation length L, can be determined from
the solution. Thus the method provides a solution of the stochastic inverse
induction problem in thin sheets. A short discussion is added. In the Appendix a
formula for the case of a Gaussian power spectrum K, is given.

Key words: Geomagnetic deep soundings — Magnetotellurics — Electromag-
netic induction — Thin sheets — Inverse problem — Inhomogeneous media

1. Introduction

Changes in the earth’s conductivity distribution with depth and in the horizontal
space directions often produce very complicated spatial variations of the
geomagnetic induction field at the earth’s surface (cf. e.g. Schmucker, 1970). In
general, the conductivity in the earth’s mantle and crust does by no means
reflect a smooth and everywhere slowly variable dependence on space but can
be considered to be distributed by chance. In the case when this distribution is
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homogeneous, a mean global conductivity model of the kind used in MTS
(magnetotelluric sounding) is appropriate. On the other hand, if the distribution
is inhomogeneous, the treatment of the induction problem becomes extremely
difficult. To overcome the difficulty, several theoretical methods have been
proposed in the past, partly based on calculations of more or less refined
conductivity models of the earth (cf. e.g. Hobbs, 1975), partly triggered by the
idea of a so-called inverse method. The to our feeling most successful method of
the latter kind has been proposed by Weidelt (1972).

All these methods are based on a deterministic view of the whole induction
problem and are therefore restricted in two directions: (i) They depend very
strongly on the exact knowledge of the field distribution at the earth’s surface
resp. within the space volume under consideration; this knowledge can be
achieved only approximately, for at least the finite spacing of the measuring
points along a profile sets a natural limit. (ii) The stochastic distribution of the
conductivity is not taken into account; thus only a distinct mean or global
conductivity structure can be determined without any hint concerning its real
validity or estimate of its accuracy. As for an example we refer to the excellent
paper of Weidelt (1972) where his inversion method is applied to an impedance
curve previously explained by Fournier. Both interpretations coincide in the
mean course of the dependence of the conductivity on depth. There are however
significant differences in Fournier’s model of a stratified earth and in Weidelt’s
smooth conductivity curve, and there is no possibility to decide whether the
direct inversion method or the stratified model gives the correct conductivity
trend. Intuitively one would feel that the correctness depends on the depth itself.
One would hence be interested in a measure as e.g. a rms deviation of the
conductivity value that has been determined by any conventional method at
every space point. Another example is the so-called Northern German con-
ductivity anomaly which in the past has been explained satisfactorily as a deep
anomaly and/or a surface anomaly, missing to our knowledge any measure of
the accuracy of one or the other model.

We believe that such a measure can be found if the electromagnetic in-
duction problem is reconsidered to include the real stochastic distribution of the
conductivity within the earth. Actually, any such conductivity distribution
contributes a stochastic part to the electromagnetic induction field measured at
the earth’s surface via the induction process. Making use of this contribution, a
statistical method has been proposed recently (Treumann, 1973; Schéfer and
Treumann, 1975; Treumann and Schifer, 1975) applicable to an infinite medium
with the field source embedded in it, showing the possibility of a determination
of the ms deviation of the conductivity from its global value at any measuring
point by use of a measurable quantity, the magnetic field correlation tensor.
Such a structure is, however, far from application to the earth’s interior and has
been selected primarily because of its mathematical simplicity, and to demon-
strate the method (application to ionospheric or magnetospheric conditions
seems to be more natural and will be considered in future).

The present paper extends these calculations to another model: that of a thin
nonuniformly conducting plane sheet. Since its treatment is relatively simple,
electromagnetic induction in thin sheets has experienced wide application in
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geomagnetic induction theory (cf. e.g. Ashour, 1971; Weidelt, 1971). Here, the
model of a thin sheet will be considered for the case, when the stochastic
distribution of the conductivity comes into account. In that case, as will be
shown below, by use of an appropriate averaging procedure with respect to the
scale length L of the conductivity fluctuation, a boundary condition for the
secondary stochastic fields is obtained. Subsequently, the stochastic field is
calculated up to a first-order approximation, and the second-order field-
correlation tensor is constructed. In the fourth section of the present paper, this
tensor will be used to obtain a representation of the spatial power spectrum or
auto-correlation function of the stochastic part of the sheet conductivity, from
which it is possible to determine the mean squared (ms) deviation of the
conductivity resp. its rms amplitude from the mean value t,. In Section 5, using
the representation of the ms conductivity amplitude, the nonlinear contribution
of the fluctuating conductivity to the thin sheet boundary condition will be
calculated. This leads to the definition of an effective sheet conductivity which is
a very complicated function of space and nonlinear in the components of the
average field. This suggests that in the presence of a stochastic conductivity
distribution in the sheet the surface distribution of the global field becomes
extremely complicated, and use of a simple sheet conductivity model is for-
bidden. Section 6 presents a short discussion of the theoretical results. An
application of the derived formulae to a Gaussian power spectrum of the
horizontal induction field is given in the Appendix.

2. Formulation of the Problem

Following the program outlined in the Introduction we assume that the con-
ductivity o(x, z) of the sheet is the sum of a mean conductivity oy(x, z) and a
stochastic conductivity o,(x, z) (Fig. 1) according to

a(x, 2)=04(x, 2)+0,(x, 2),

and o,(x, z) is assumed to vary on a much shorter horizontal scale than o(x, z)
so that oy(x,z) can be considered laterally constant when compared with the
variation of ¢,(x,z). According to the 2 parts of the conductivity any outer
inducing primary field leads to the appearance of two parts of the induced
secondary field, —mean and stochastic part, respectively —, so that all the field
components can be split into mean and stochastic parts distinguished by the
indices 0, 1. Further, for simplicity, the sheet is assumed as plane, thin, and two-
dimensional (— o0 =x, y < c0).

After integrating with respect to the vertical coordinate z the whole in-
duction process is contained in the equations

B,= —04,/0z=(iw)~ ' E,/0z, 2.1)
B,=0A,/0x = —(iw)~ ' OE, /x, 2.2)
j, =15 '[B,(x,0)— B,(x, —0)]1=7(x) E,(x,0), (2.3)

where B,, B, and E, are the magnetic and electric field components, respectively,
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Fig. 1. The model of the thin sheet under consideration

and j, is the sheet current density. From Equation (2.3) a simple boundary
condition for the only component A = —(iw)™!? E, of the magnetic vector

potential at z= +0 can be derived (e.g. Price, 1949; Weidelt, 1971):
iwpgt(x) A (x, 0)=(0A,/0z2) [F= *3. (2.4)

Further we have

éB,/0z=CB,[0x (2.5)
dj2
everywhere outside of the sheet, and t(x)= j o(x, z)dz, the integrated sheet
—-d/2
conductivity.
From Equations (2.1), (2.2) and (2.5) the two-dimensional Laplace-equation

is derived for Ay outside the sheet:

024, 824

Bx* ~ 6z°

1-0, z20. (2.6)

Together with Equation (2.4) it forms the basis of the calculation. Introducing
Alx, z)=Ag(x, 2)+ A (x, 2), T(x)=1o(x)+T,(x), where By, ; =Fx A, |, 14 4
Td/2
= j o4 ;dz, into Equations (2.4) and (2.6) and averaging with respect to the
—dfi2
scale length of the sheet conductivity fluctuation 7,(x), L, all terms linear in 7,(x)
and A4,(x) average out because of the assumption 7, =4, =0, and we get the
boundary condition
z=0

0Ay(x, 2)

iwpgTo(x) Aglx, 0) Fiwpgt,(x) A, (x,0)= (2.7)

vz z=-0

for the mean vector potential AOEE_‘_. The bar indicates averaging in the above
sense.
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Subtracting Equation (2.7) from (2.4) we receive the boundary condition for
the vector potential of the stochastic fields, 4,(x, z):

iwpgTo(x) Ay (%, 0)+iwpe[ry(x) A (x,0)—7,(x) A;(x, 0)]
_0A,(x,2)| =0
=i

Finally, Equation (2.6) is transformed by the same procedure info

024 0’4
Sattgt=0, (z+0). (29)

Equation (2.9) has to be solved for both the mean and stochastic fields, and the
conditions (2.7), (2.8) have to be imposed subsequently to match the fields above
and below the sheet at z=0. These conditions are, however, essentially nonlinear
in the fluctuating fields. To proceed further, we therefore introduce the lineariz-
ing assumption max |t,(x)/to(x)|<1. Since A4,(x,z) is of first order in this
parameter, 7, 4, becomes small of second order and will be neglected in a first-
order calculation of A,(x,z). Moreover, though 7,(x), Ay(x,z) are in general
(smooth) functions of position, they will be considered constant in the calculation
of A,(x, z) because of their much weaker dependence on space over the charac-
teristic length L of the variation of 7,(x,z) when compared with the latter.
Hence, 7, in our model is any given constant mean sheet conductivity, and
Ao(x, z) is the vector potential of the mean field which is slowly variable in
comparison with A4,(x,z) and which is induced by an arbitrary outer source
field, situated in the half-space above the sheet. But A4,(x, z) depends strongly on
space, firstly through the space dependence of 7,(x), but secondly through that
of Ay(x,z) (and in general for other average sheet conductivity models also 74(x)).
Taking the average of any second order quantity, as for instance 7,(x) 4,(x, z) or
A (x,2) A (x, 2), T,(x)7,(x), over the “fast” horizontal scale-length L, the short-
scale variation of the quantity under consideration is eliminated. What remains
is a “slowly” variable quantity (variable on a scale larger than L and compara-
ble with that of 74(x), 44(x, 2)), in the expression of which the space dependence
of Ay(x, z) (and eventually 74(x)) has to be taken into account.

After these introductory remarks we are in the position to select our model
(Fig. 1). For simplicity we let t,=const but include an infinitely conducting half-
space at depth z=h below the sheet. Further, in accordance with the above

assumptions we drop the term 7,(x) 4,(x, 0) in Equation (2.7). Then the solution
for the mean field over a homogeneous sheet becomes the familiar expression

—iwpoT(x) Ao(X, 0). (2.8)

z=-0

e~z pellz {1 — (1421 ]s|/0pgTo)
@ ) -exp(—2|s|h)}/my(s) for z<0
Ao(x,2)= | p(s)e**ds P(=2lsl /ol (2.10)
- 2e 1121 |s|wpote)
-sinh {|s|(h—z)}/my(s) for h=z=0
where ¢(s) is the Fourier-transform of the vector potential of the source field

above the sheet, and my(s)=1—2i|s|/wuy7o—exp(—2]|s|h). Below, the vector
potential 4, is to be considered constant. The discussion presented above
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enables us, however, to include the slow spatial variation of A4,, given e.g. by
Equation (2.10) for the simple model of constant t,, in the final result. The case
of a homogeneous inducing primary field is included in Equation (2.10) with ¢(s)
=B, 8(s)/|s|, where B is the constant field amplitude.

3. The Stochastic Field

Since there is neither a mean conductivity outside of the sheet, nor are there any
fluctuations of the conductivity, the spatially fluctuating first-order part of the
induction field possesses no sources above and below the thin sheet.
Consequently, the solution of Equation (2.9) for 4,(x, z) outside the sheet can be
written as

— ) pisx—|s|h 3.
Ai(x2)= | c(s)e 951 sinh |sl(h — 2) for h2z20' (3.1)

— 00

+ {sinh(|s|h)exp|s|z for z<0

As has been supposed, this field is of first-order in the parameter |t,/7,|, so that
Equation (2.8) in a first-order approximation can be linearized, neglecting the
second term on the LHS to produce the linear but inhomogeneous boundary
condition

iwpotoA; (X, 0)—(94,(x, 2)/02) ;22 o= —iwpgT,(x) Ao. (3.2

Here 7, and A, are constants with respect to the lateral variation of 4,(x, 0) and
7,(x). It is thus a simple matter to solve Equation (3.2) with the vector potential
field of Equation (3.1) by applying the Fourier transform with respect to x,
assuming the existence of

o)

n(s)=% _f 7,(x)e~s*dx. (3.3)

Now, the solution of Equation (3.2) for the so far unknown function c(s) can be
given as

n(s) Ao
my(s) T’

c(s)=— (3.4)
where m,(s)=1—exp(—2|s| h)[1+i]|s|/wuyTol.

The vector potential of the first order stochastic field produced by the
spatially fluctuating sheet conductivity reads

y 4 }" ds e'** =" p(s) {sinh(|s| h)exp(ls|z) ~ for z=0,
i D==4o | = ST \sinh|sl(h—2) for h=>220,

and the magnetic field components in the region z <0 resulting from it are

(3.5)

T Asin(s) _
=A isx+|s|(z h)d 3 SO,
B, .(x,2) o_jm __ml(s)ro e s, z<
. Tosnls) _
B,,(x,2)=—Ayi | — €Tl (3.6)
A= —doi § oo
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Similarly the fluctuating electric field E, (x, z) can be found from Equation (3.5),
multiplying A4,(x,z) by —iw. These field components will be used in the next
section for the construction of the field correlation tensor. On the other hand,
using E, (x,z) and B, (x, z), one could construct an appropriate surface imped-
ance fluctuation resulting from the statistical conductivity distribution within
the sheet.

We will only use the field components above the sheet in the nonconducting
air space for in practice there are no measurements available from the re-
sistosphere below the conducting sheet at the earth’s surface but above the con-
ductosphere at z=h. On the other hand, if the thin sheet represents the
conducting flat ionosphere, and the conductosphere is the conducting earth,
both the fields above and below the sheet can be used for probing the
ionospheric conductivity by means of satellite and ground based measurements
of the magnetic variation field. In that case, however, it would be more
appropriate to take into account the anisotropic conductivity tensor of the
ionospheric plasma. An extension of the present theory to that case seems to be
straightforward.

4. The Correlation Tensor

As in our previous paper (Schifer and Treumann, 1975) we now come to
construct the second-order magnetic field correlation tensor

K&, z=20)=B(x,z=2,) B(x + &, z=20) =By; By;+ B,; B, , 4.1)
i,j=x,z. Here Bo=F x A, is the mean magnetic variation field, the components
of B, are given in Equation (3.6), and the averaging proceeds along any profile z
=z, parallel to the sheet surface. This profile is for instance given by the plane z
= —0 itself. From the above definition of the correlation tensor it is clear that
K;;(£, 0) represents a measurable quantity. In practice one has to take the full
field components of the magnetic variation field B(w) at fixed frequency w along
any given measuring profile on the earth’s surface, where ¢ is the (possibly
constant) distance between the magnetograph stations, and to perform the cross-
and autocorrelation functions between all the field components of neighbouring
stations spaced by &, to sum up all the contributions along a part of the profile
and to divide by the length L of that part. The full set of the correlations
calculated in this way provides the value of K;; at . Next this procedure has to
be repeated with spacings 2¢, 3¢, ... to get the functional dependence of K;;(¢).
The so far unspecified correlation length L is once restricted by the length of the
profile, on the other hand it is required to be comparable with the characteristic
variation length of the mean conductivity resp. the mean variation field. Hence, L
can be determined from a consideration of the variation field behaviour along
the measuring profile by attributing the mean behaviour of the field to the
mean conductivity structure.

Despite the practical problem of the determination of the variation field
correlation tensor, we are now able to calculate its components theoretically.
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First we observe the following symmetries

my(s)=my(—s),  n(—s)=n*(). (4.2)
The second symmetry follows from the requirement of reality of the stochastic
conductivity.

At the sheet surface z= —0 the magnetic field components are given by

B, (x,O)} € { Is| } n(s)

x Ay | ds sinh (|s| h) e's*~Islh, 43

B 0f = LS i o, @

Inserting these expressions into Equation (4.1) and carrying out the average with
respect to x, one finds for instance

BB ()= lim 2748 ' g I 6P
1x x =

. h2 | h —isé-zlslh. 4.4
L-w LT% -32 * mf@) sinh™(ls{ k) e *4)

Similarly the remaining components B,, B, , (£), B, B;, (&), B, B, (&) are easily
calculated. Additionally, taking into account that

B,,B,; 2 .
By;Bo;=lim =220 | dsd(s)e™'*, (4.5)
L-o —L/2
one gets for the Fourier-transform of the full correlation tensor
1 L2 .
(s)=lim —— K.. iscd .
Ky9)=lim o [ Kif@eede (46)
the following representation
Ol”’( )|2 2 . —2|s|h 2
K;i(s)=Bg; By;d(s)+2n Is]*e sinh?(|s| h) T;(s), 4.7
ml(‘s)
where
_ isgns
T0= (Logns ). @8
From this expression it is easily observed that det T;;=0. Thus T;; has no

inverse, and Equation (4.7) cannot be solved for |5(s)|2. This is however SImply a

consequence of the supposed two-dimensionality of the problem. In that case the
vanishing determinant of T;; reflects the fact that there exists a linear re-
lationship between the transformed field components Equation (4.3) at the sheet

surface. Indeed, from Equation (4.3) we have the relationship
B,.()=a(s)By,(s) a(s)=—isgns. (49)
This suggests that B,,(x,0) can be represented as the Faltung integral of the 2

functions a(x) and B, ,(x,0) according to

[¢9)

B.(x,0)= | a(x—{)B,({0)d(, (4.10)

where a(x —{) is the inverse Fourier-transform of a(s). Taking advantage of the
Dirac identity 8. (x)=(1/2){8(x)+(i/z) P(1/x)}, where P indicates the principal-
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value, a(x—{) can be found to be given by a(x—{)=(1/n) P[1/(x—{)]. The
vertical field component B, ,(x,0) is therefore the Hilbert-transform of the
horizontal field B,,(x,0), and vice versa. Thus we have recovered the well-
known relationships (Weaver, 1964)

e

By.(x,00=(=1/m)P | B, ((,00d{/L~x),

B,.(x,0)=(/0)P | By, 0)dZ/¢ —x). @.11)

Because of these relations between the field components B,,(x,0), B,,(x,0), it
suffices to restrict oneself on one of the four components of K;{s) for a unique
determination of |n(s)|2. Without violating generality we choose the (xx)-
component

1 _1 A G
7 K8 =5 BOXS(S)+T% "2s) Is|*. (4.12)

Taking the real part of the LHS and rearranging this expression, the spatial
power spectrum

In(s)|>=(to Bo,/27|s| Ao)* | Re {mi(s)[8(s) — K ..(s)/(B,)1}| (4.13)

of the fluctuating conductivity 7,(x) is obtained.

Equation (4.13) represents the main result of the present paper. It connects
the spatial power spectrum of the stochastic conductivity distribution with the
auto-correlation function K, (s) of the horizontal induction field at the surface
of the sheet. The latter, however, is a measurable quantity. Thus, |5(s)|*> can be
determined uniquely from suitable measurements along the sheet surface, if only
a mean conductivity of the sheet 7, has been determined previously, for which
the appropriate global field B, needed in Equation (4.13), can be calculated for
any primary inducing field from Equation (2.10), and A, is given by (2.10) itself.
It has been mentioned previously that at this stage the dependence of A4,, B,
(and eventually t,) on space becomes appreciable, so that |5(s)|> becomes space-
dependent on a scale larger than L both via K. (s) and 4,, B, (and eventually
To)-

The remaining last step is from the spectrum |#(s)|*> to the ms conductivity
72. This can easily be done through integrating

@)= [ n(s)n(s)ecr*dsds’ (4.14)

with respect to x over the appropriate scale length L of the conductivity
fluctuation:

12=2n °j° n(s)1 ds. (4.15)

— 0

Inserting |n(s)|?> from Equation (4.13) into this expression, we get finally

— 1 © dq :
7= (0Bos/Ao) [ 7 IRe(mi[5(0) ~K (/B3I (4.16)
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Equation (4.16) represents a measure of the validity of the mean conductivity
model at any measuring point along the profile. It depends firstly on 7,, but
secondly on the auto-correlation function of the horizontal field K., and can
therefore be calculated if only a mean model of the sheet conductivity can be
extracted and the auto-correlation function K,, can be determined from the
measured field components.

5. Influence on the Boundary Condition

The presence of a fluctuating part of the conductivity within the sheet changes
the boundary condition in second order due to the second term on the LHS of
Equation (2.7). Knowing as the solution for 4,(x,0) (Equation (3.5)) as |5(s)|?
(Equation (4.13)) this term can be expressed explicitly through the average fields
and the auto-correlation function K,:
~2mdy § o WOP

To — 00 ml(s)

B, = d
=0 e IREMHOBO) - K/ B3 (5.1

— 00

71(x) 4;(x, 0) =

On the other hand, introducing this into Equation (2.7) we get

: ° ds n(s)” 04, (x, 2)

1-2 0)=—2"7
lwuoto(x){ n_joo ml(s) T%(x) O(X’ ) az
as the new boundary condition for the average field. Here the slow space
dependence of 7,(x) has been indicated explicitly. Comparison with Equation
(2.4) shows that the presence of the stochastic part of the conductivity changes
the sheet conductivity 7,(x) to the effective onductivity

1eff(x)=fo(x){1 -2z }0 ds M}

z=0

(5.2)

z=-0

R
B B .(x) ® ds K. .(s,x)
“"’("){I_A?)(x) 1 sFmem Béx(x)]}‘ (:3)

From this expression it becomes obvious that when |t,/7,/<1 the correction
term becomes of second order in this parameter, a posteriori justifying our
initial assumption of neglecting this term in a first-order calculation of the
fluctuating fields. Equation (5.3) suggests a decrease of the effective conductivity
when compared with t, due to the stochastic part. Thus, neglecting the latter, an
effective conductivity is obtained from a matching procedure of theoretical and
measured field values which is lower than the real conductivity of the sheet.

In the case of a non-homogeneous conductivity spectrum |5(s)|?, the effective
conductivity appearing in Equation (5.2) becomes a very complicated function of
space which is moreover nonlinear in 4,(x). Hence, the boundary condition for
the average vector potential is in general nonlinear up to second order in |7,/7,|.
Its solution seems to be impossible though a suitable perturbation technique can

Re m2(s, x) [5(s) -
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be applied. In a first-order calculation the solution is, however, not required
since Equation (4.16) opens the possibility to determine a first order rms-
correction to the initially assumed conductivity 7, of the sheet.

6. Conclusions and Summary

In the present paper we have formulated and solved the statistical induction
problem for a thin sheet having a stochastic conductivity distribution t,(x)
superposed over an average sheet conductivity 7,. We have used the boundary
condition for a thin sheet initially derived by Price (1949) and reformulated by
Weidelt (1971). Our solution of the problem, assuming the mean field distri-
bution to be known, enabled us to construct the magnetic field correlation
tensor at the surface of the sheet. We believe the latter to be a measurable
quantity appropriate for measuring conditions of the geomagnetic variation field
on long profiles at the earth’s surface. In our two-dimensional case there exists a
unique relationship between the 2 components B, (x,0), B,,(x,0) at the sheet
surface whose representation could be written in the form of a Hilbert-
transform. Because of this relationship we were led to the restriction on only one
arbitrary component of the correlation tensor, from which the horizontal power
spectrum |#(s)|? of the conductivity fluctuation could be derived. Subsequently

In(s)|* has been used to express the ms conductivity 72, averaged over the
horizontal scale length L of the fluctuation, through the parameters of the
average model of the sheet conductivity and the auto-correlation function of the
horizontal magnetic variation field. We believe that our method provides an
effective statistical inverse mechanism to determine the rms conductivity de-
viation of the sheet.

Two points, however, deserve further discussion. The first is concerned with
the correlation length L; the second belongs to the informational content of the

final result, :r?

The correlation length or characteristic scale length of the conductivity
fluctuation, a terminus which has been used throughout the present paper, can
be defined as the shortest length, over which the conductivity fluctuation
averages out along the profile. It is hence the solution of the equation for L_;,:

Limin/2
[ t.(x)dx=0.

—Lmin/2
Since 7,(x) is a priori unknown, this equation is of little use for the de-
termination of L=L_; . Instead one has to look for practical possibilities of its
determination. Two of its practical limitations are the limited length of the
measuring profile and the finite distance between the measuring points along the
profile. Especially the latter is of crucial importance because it would be of
worth to have many near-neighboured stations to receive high precision in the
lateral distribution of the fields. L has then to be chosen as small as possible to

get some intervals of length L along the profile and hence several values of E,
but simultaneously so large that a mean field can be extracted from the
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observations that can be brought into connection with the plate of constant
conductivity t,.
Concerning the informational content of 13 we remark that it gives a

measure of the rms conductivity fluctuation, (t%)*/2, constant over the length L.

Since (t3)"/? has both positive and negative sign, no conclusion can be drawn
concerning the direction of the deviation of the conductivity from its mean value
7. This, however, would be a deterministic result which has been excluded at
the beginning by our stochastic assumption. Instead the rms conductivity
fluctuation represents a measure of the scattering width of the real sheet

conductivity around t,. High values of (t%)!/? within some of the intervals of
length L signalize that here the real conductivity does appreciately deviate from
7o. Such a situation can be taken to stimulate further considerations about the
reasons for this deviation and, perhaps, to proceed up to a more realistic model
and description of the conductivity distribution. For a more extended appli-
cation of the statistical method proposed in the present paper it would be of
great use to transform the theory to the model of a flat infinite half-space or a
spherical Earth. As to the former we refer to our paper presented at Sopron,
1976 (Treumann, 1976).

Finally we conclude that the use of the concept of field correlations in
electromagnetic induction theory seems to be not only new but also effective in
obtaining an additional information about the conductivity of the Earth from
measuring data of the geomagnetic variation field components. In the literature
there exist some other quantities called geomagnetic transfer functions or
induction tensors. We believe that there exists some close connection between
these quantities and the correlation tensor introduced above. We were however
unable to work this connection out. This will be left as a problem open for
future investigations.
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A. Appendix: The ms Conductivity for a Gaussian Spectrum

Since practical measurements are not available we chose for illustration a
theoretical dependence of K, (s) according to a Gaussian distribution

K, (s)/2n B3, =8(s)+ B(s/45)> exp[ — (s — 50)*/(4 91, (A1)
where f=(b,,/B,,)? with b, the fluctuating field amplitude, s, <wuy1, a fixed

parameter, and 4s a fixed spread of the spectrum. Inserting this into Equation
(4.16), using the expression for m,(s) and carrying out the various integrations
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with respect to s we obtain for the ms conductivity

2 ]/;(——Tob“)z{l+n'”2(—ds )2 lim

1 = —
44s \ A, WHoTo/  2z6-z20

6% [ | dze~*’Intanhy(z +z,)

—zf

+(_]fodze"zz In tanh y(z—zo)]}. (A2)

zH

Here y=hds, zy>z,=s,/4s. In every practical problem however no such simple
form is available in general, and the calculation must be carried out numerically
with K .(s) a (complex) measuring function which in general cannot be repre-
sented in closed form.

References

Ashour, A.A.: Electromagnetic induction in thin finite sheets having conductivity decreasing to zero
at the edge, with geomagnetic applications. Geophys. J. 22, 417443, 1971

Hobbs, B.A.: Analytical solutions to global and local problems of electromagnetic induction in the
earth. Phys. Earth Planet. Interiors 10, 250-261, 1975

Price, A.T.: The induction of electric currents in non-uniform thin sheets and shells. Quart. J. Mech.
Appl. Math. 2, 283-310, 1949

Schifer, K., Treumann, R.: Statistical approach to the geomagnetic induction problem for the
infinite medium. Gerlands Beitr. Geophys. 84, 117-122, 1975

Schmucker, U.: Anomalies of geomagnetic variations in the southwestern United States. Bull.
Scripps Inst. Oceanography, Univ. Calif. 13, 1970

Treumann, R.: On the geomagnetic induction problem. Report ZISTP, Potsdam 1973; to appear in
K APG-Monography on Magnetotellurics, A. Adam, ed., Budapest: Akademia Kiado 1976

Treumann, R., Schifer, K.: Statistical basis for geomagnetic induction theory. Acta Geodaet.
Geophys. Montanist. Acad. Sci. Hungaria in press, 1976

Treumann, R.: Stochastic model of magnetotellurics for inhomogeneous earth. Abstract of paper
presented at 6th IAGA Workshop on Electromagnetic Induction, Sopron, Hungary, July 1976

Weaver, J.T.: On the separation of local geomagnetic field into external and internal parts. Z.
Geophys. 30, 29-36, 1964

Weidelt, P.: The electromagnetic induction in two thin half-sheets. Z. Geophys. 37, 649-665, 1971

Weidelt, P.: The inverse geomagnetic induction problem. Z. Geophys. 38, 257-289, 1972

Received January 27, 1976, Revised Version April 27, November 18, 1976

Note Added in Proof. Recently the theory developed in the present paper has been extended to the
inclusion of an anisotropic sheet conductivity as it is supposed for a thin ionosphere. It has been
found that the ms Cowling conductivity can be determined from the measured field correlation
function at the ground or above the ionosphere (R. Treumann, submitted to Gerlands Beitrige
zur Geophysik).






