C‘ U q NIEDERSACHSISCHE STAATS- UND
-~ L UNIVERSITATSBIBLIOTHEK GOTTINGEN

Werk

Jahr: 1977

Kollektion: fid.geo

Signatur: 8 Z NAT 2148:

Digitalisiert: Niedersachsische Staats- und Universitatsbibliothek Géttingen
Werk Id: PPN1015067948_0043

PURL: http://resolver.sub.uni-goettingen.de/purl?PPN1015067948_0043

LOG Id: LOG_0121
LOG Titel: Thermoelastic deformations of a half-space - A Green's function approach
LOG Typ: article

Ubergeordnetes Werk

Werk Id: PPN1015067948
PURL: http://resolver.sub.uni-goettingen.de/purl?PPN1015067948
OPAC: http://opac.sub.uni-goettingen.de/DB=1/PPN?PPN=1015067948

Terms and Conditions

The Goettingen State and University Library provides access to digitized documents strictly for noncommercial educational,
research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections
are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission
from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's online
system to access or download a digitized document you accept the Terms and Conditions.

Reproductions of material on the web site may not be made for or donated to other repositories, nor may be further
reproduced without written permission from the Goettingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the
source.

Contact

Niedersachsische Staats- und Universitatsbibliothek Gottingen
Georg-August-Universitat Gottingen

Platz der Gottinger Sieben 1

37073 Géttingen

Germany

Email: gdz@sub.uni-goettingen.de


mailto:gdz@sub.uni-goettingen.de

Journal of

J. Geophys. 43, 761 1769, 1977 Geophysics

Thermoelastic Deformations of a Half-Space —
A Green’s Function Approach*

G. Miiller
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Federal Republic of Germany

Abstract. Thermoelastic displacements of a homogeneous half-space are
calculated for a point source of harmonic temperature variations at the
surface. For distances from the source which are much larger than the skin
depth of the temperature wave simple far-field approximations are derived.
From these, Green’s functions for the strains and tilts are calculated, and the
generalization for arbitrary temperature variation at the surface is performed
by superposition. The results are given in the form of integrals over the
temperature variation in which the Green’s functions are influence functions.
They strongly decay with distance from the vertical axis through the point of
observation, thus showing that thermoelastic strains and tilts normally are
due to very localized temperature anomalies. Numerical calculations for a
simple example indicate that thermoelastic effects can seriously disturb
measurements of earth tides with strainmeters and tiltmeters.
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Introduction

Strains and tilts in the earth’s crust due to earth tides are intensively studied
since many years, and the number of extensometers and horizontal or vertical
pendulums installed for that purpose in tunnels, mines and boreholes is still
increasing. Only in recent years scientists working in this field became fully
aware of the many disturbing effects that are seen in the measurements in
addition to earth tides, such as strains and tilts due to air pressure variations
and rain fall, or modifications of strain and tilt due to the topography of the
earth’s surface and the form of the underground cavity in which the measure-
ment is made (see, e.g., Harrison (1976)). Thermal and thermoelastic strains and
tilts are another disturbing effect. Of major interest are strains and tilts due to
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the diurnal temperature variation because its dominant period is close to the
tidal periods in the diurnal period range. Both theoretical and experimental
studies are necessary for a better understanding of the magnitude and spatial
distribution of these disturbances.

This paper treats theoretically a simple case, namely a homogeneous half-
space with a surface temperature distribution T(x, y) exp(iwt), where T(x, y) is the
(real) temperature amplitude depending on the horizontal coordinates x and y,
o is the circular frequency of the temperature variation, and t is time. This
model is an idealized approximation of reality where the diurnal temperature
variation varies over the earth’s surface, depending on local soil properties,
vegetation cover and ground slopes. The approach used in this paper is to
calculate at first Green’s functions for the displacements in the half-space due to
a point source of temperature variations, i.e., it is assumed that T(x,y)=
T, 6(x) 6(y) where d(x) and S(y) are delta functions. For distances from the
point source which are much larger than the w-dependent skin depth of the
temperature wave, d, simple far-field expressions are derived and from these the
strains and tilts. Then, the strains and tilts at depths much larger than d,
corresponding to an arbitrary T(x,y), are given as superposition integrals. In
these, the Green’s functions for strains and tilts represent influence functions
which give an instructive picture of how the different parts of the surface
contribute to the deformations at depth. Earlier investigations of the same
model (Matuzawa, 1942; Jobert, 1960; Popov, 1960; Berger, 1975; Shirokov and
Anokhina, 1976) did not include this aspect, but treated mostly the case of
temperature variations which are harmonic in one of the horizontal coordinates
and independent of the other.

Thermoelastic Green’s Functions of a Half-Space

We consider a homogeneous isotropic half-space which occupies the region
z20; the z axis is pointing downwards. The thermoelastic point-source problem
is solved in cylindrical coordinates r, ¢, z; ¢ does not appear in the equations
because of cylindrical symmetry. The generalization to arbitrary temperature
distribution over the surface of the half-space is made in Cartesian coordinates
X, Y, z.

We first solve the heat-conduction equation

82T+16T 02T_16T
or* "ror 022 k ot’
where « is the thermal diffusivity, and the temperature T(r, z, t) is measured from

a constant average temperature. The solution which satisfies the boundary
condition at z=0,

T(r,0,t)=T,5(r) e'",

P2T= (1)

where &(r) is the two-dimensional delta function &(x)d(y) and T, has the
dimension of the product temperature times area, is

iwt oo

T,
T(r, 2, t)= "2‘; i e7% Jo(kr) kdk. @)
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Here, Jy(kr) is the Bessel function of first kind and order zero, and the radical

has a positive real part. Equation (2) is an integral representation of a spherical
temperature wave in terms of plane waves, similar to the Sommerfeld integral for
a spherical elastic wave.

For later use we introduce at this point as a reference length of the
thermoelastic half-space problem the skin depth of a vertically traveling plane
temperature wave of circular frequency ,

()"

()]

which is defined as the depth at which the temperature amplitude is reduced to
1/e of its surface value.

The thermoelastic stress-strain relations of an isotropic medium are (Love,
1944, p. 108)

where A and p are Lamé’s constants, o is the volume coefficient of thermal
expansion, p;; the stress tensor, ¢;; the strain tensor and 6 its trace, and §;; the
unit tensor. Inserting (4) into the equation of static equilibrium of a deformed
homogeneous medium gives the following equation for the displacement vector
u:

(A+2p)graddivu—purotrotu=(A+%pu)agrad T. %)

For the special case under study T follows from (2). Equation (5) has to be
solved for the boundary conditions of (a) vanishing normal and tangential
stresses at the surface z=0 of the half-space and (b) vanishing displacements for
z— o0. After writing (5) in components, one obtains two coupled inhomogeneous
partial differential equations for the displacement components u in r direction
and w in z direction. Inserting into these equations the integral representations

u=e"" [ A(z,k)Jy(kr)kdk, ~w=e"" [ B(z,k)Jo(kr) kdk,
o 0

which are similar to (2) (J; is the Bessel function of order one), one obtains two
coupled inhomogeneous ordinary differential equations for A and B which are
solved with the boundary conditions for z=0 and z— co. The final results for u
and w are (Green’s functions):

_(I+o)axTie

(1-0)6nw ©)

. T {l(1=20)k—2(1—0)y—k(k—y)z]e **+ke="2} J,(kr) kdk
0
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_(1+0)axTyie™
T (1-o0)6rw
o (7
. 5 {[-2(1—0)k+(1—=20)y—k(k—y)z] e **+ye~ "2} Jo(kr)kdk.
0
Here, o is Poisson’s ratio. In principle these expressions (and likewise the
corresponding Green’s functions for the strains and tilts) can be calculated
numerically. In the following section, however, only an approximate calculation
of these quantities is given, corresponding to a far-field approximation. This
treatment is sufficient for the calculation of thermoelastic strains and tilts at
larger depths.

Far-Field Approximations

For z>0 the curly brackets in (6) and (7) are exponentially decaying functions of
k, and only small values of k contribute essentially to the integrals for suf-
ficiently large z. In the following we assume at first z>d with d according to (3),
i.e., the point of observation is at a depth sufficiently large compared with the
skin-depth of the temperature wave. Then at k=0 |yz|> 1, and the e~7* terms in
(6) and (7) are small compared with the e~** terms and hence can be dropped.
The factors of e** are expanded into Taylor series around k=0 and only terms
up to first order are considered:

(1—-20)k—2(1—0)y—k(k—7)z
~_2(1—0) (’%")”Z [1 20+ (%“’)mz]kw(m

~21—0)k+(1—20)y—k(k—9)z ®)
—(1-20) (i%)l/z+ [—2(1 —o)+ (%)l/zz] k+0(K?)

Because of the decay of e ** essential contributions to the integrals (6) and (7)

come only from k values with kz<35. In this range the linearization in (8) is
permitted if z>50d. As another simplification the first term in the square
brackets can also be dropped. With these approximations closed-form in-
tegration of (6) and (7) is possible:

u}_(l-l—a)aTod ei(wt_%)
_(1_0)67[l/§(r2+22)5/2

For z=0 the integrands in (6) and (7) simplify. Linear approximation of the
curly brackets and closed-form integration as before show that (9) applies also
for z=0. Thus, (9) is valid as soon as the distance R =(r*+z%)"/? from the point
source is larger than about 504, irrespective of z.

{r[2(1 —0o)r*—(1+20) 2]

w z[20r*—(3—20) %] ©)
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o
; b

Fig. 1. Thermoelastic far-field displacements in a half-space for a
point source at r=:-=0(a0=0.25)

In spherical coordinates R, @, ¢ the displacements are:

i(:ur —i) ] 2
uR} SaTyd e ¢ {{1—3@03 0)
= TRT i
Ug 12;.”/5 R 3526 (10)
u,=0

These formulas apply in the special case ¢=0.25 which we consider in the
remainder of this paper. The R dependence is as expected for point sources in
elastostatics. The diagram of the displacement vector in Figure 1 shows the
dependence on the polar distance &. For & < 52° the particles of the halfl-space
are pulled towards the point source for half a period, whereas for @ > 52° they
are pushed away. In the following half period the signs are opposite to those in
Figure 1. Compared with the temperature variation in the point source the far-
field displacements have a constant delay of n/4, corresponding to one eighth of
a period.

For the diurnal temperature variation d is of the order of 10cm. Hence (9)
and (10) are valid approximations of the thermoclastic displacements at depths
greater than a few meters.

Strains and Tilts for Arbitrary Temperature Variation

We are interested in the horizontal strain ¢, the vertical strain ¢., and the tilt
B. in x direction for a point at depth z>50d on the z axis of a Cartesian
coordinate system (x,),z), caused by an arbitrary temperature variation
T(x,y)e'" at the surface. Decomposing the horizontal radial displacement v in
(9) into its x and y components, u, and u,, the strains and the tilt for the point
source are

o - ~
au, cw cw
Exx = A0 T ) ﬁ‘c= N
UX ¢z X

From these the strains and the tilt for arbitrary temperature variation follow by
superposition (¢ =0.25):
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Fig. 2. Influence function E,(x, y) for the strain ¢, as a function of the normalized
distances x/z and y/z (z is the depth of the point of observation; its x and y coor-

dinates are zero). Contour-line interval is 10
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The influence or weight functions E,, E, and E; are given in Figures 2-4. They
show that thermoelastic strains and tilts depend strongest on variations in
temperature amplitude T(x, y) directly above the point of observation in an area
with linear dimensions approximately twice the depth. Figures 2-4 can easily be
used for estimates of strains and tilts at strainmeters or tiltmeters at a given
depth, provided that some knowledge of T(x, y) is available.
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Example

In order to obtain an idea of the magnitude of thermoelastic strains, we
investigate the case of a circular temperature anomaly of radius p with its center
at x=y=0:

T(xy) T,=const for (x*+y?)'*<p
x’ = .
Y0 otherwise.

In this case (11) can be integrated analytically:

gxx}_ f(’_;’) 5aTyd i(o1-3)

= e
szz p 12 22
«(;)
a(a®—1) 2a*(5—a?)
f(a)=m g(a)=W~

Because of the symmetry properties of E;(x,y) (see Fig. 4), the tilt S, vanishes
everywhere on the z-axis.

For a numerical estimate we assume z=10m, p=5m, T;=1°C, d=10cm
(diurnal temperature wave), a=10"> per °C. Then the strain amplitudes are
3.15-107° for ¢,, and 1.34-1078 for ¢,,. These values are of the order of tidal
strains. At a depth of 50m the strain amplitudes are reduced by factors of 56
and 70, respectively.

Discussion

The numerical results given show that thermoelastic deformations at depth due
to temperature anomalies at the earth’s surface can be quite large. However, this
can only be taken as a general warning, since the underground normally is much
more complicated than the model of this paper. For instance, the wheathered
layer has a strongly insulating effect, and at the same time it supports stresses
only to a little extent. One can use in this case the above model, but only for the
hard rock below the weathered layer. The temperature variation at the surface
of the hard rock is considerably reduced compared with that at the earth’s
surface. As a consequence, thermoelastic strains and tilts at depth will be
reduced. Another important difference between model and reality exists if there
is topography. on the surface of the hard rock. Even in absence of lateral
temperature variations thermoelastic deformations develop in this case.

Due to their complicated nature thermoelastic strains and tilts will not only
contain a diurnal but probably also a semidiurnal period. Therefore, they may
not only disturb the diurnal but also the semidiurnal tides. Thermoelastic
strains and tilts may also have a continuous spectrum due to temperature
changes by wind, rain, cloud coverage etc., which contributes to the noise level
of strainmeters and tiltmeters at periods of interest other than tidal periods.
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Thermoelastic deformations will contribute much less to the noise level of
gravimeters, as follows from estimates by formula (10).

The influence functions for strains and tilts in Figures 2-4 show that
thermoelastic deformations reflect strongest very local temperature anomalies.
In the interpretation of observed thermoelastic strains and tilts, one therefore
should look at first for quite local causes. Berger (1975) has explained observed
anomalous horizontal strains of diurnal period and magnitude 2-10~° by a
spatially harmonic temperature anomaly with a horizontal wavelength of about
50km. This paper shows that such strains can also be caused by temperature
anomalies of much lesser extent. In these cases, installing instruments at greater
depths reduces thermoelastic disturbances significantly.
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