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Interpretation of Magnetic Anomalies
With Fourier Transforms, Employing End Corrections

B.S.R. Rao, I.V. Radhakrishna Murthy, and
D. Bhaskara Rao

Department of Geophysics, Andhra University, Waltair (India)

Abstract. The method of Fourier transforms has been extended to interpret
the magnetic anomalies of arbitrarily magnetised horizontal circular cylin-
ders, dykes and faults. The Fourier transforms of the magnetic anomalies are
derived without any apriori assumption of the position of the source and its
magnetisation. They are usually evaluated by numerical integration of the
available anomalies along the finite length of the profile. ‘End corrections’,
which account for the contributions of the unknown anomalies outside the
length of the profile, have been suggested to improve the reliability of these
functions. It is also shown that without these corrections, the derived
functions tend to be highly oscillatory and no useful interpretation can be
arrived at.

Formulae useful in actual interpretation are derived for the three models
mentioned above, making use of the amplitude spectrum and some auxilary
functions derived from them. These new functions are found to be dependent
on the shape of the body.

Key words: Fourier transforms —Magnetic interpretation — End corrections.

Introduction

Many articles have appeared in the recent literature on the use of Fourier
transforms for interpreting gravity and magnetic anomalies. In this method, the
anomalies in the space domain are transformed into the frequency domain and
the various body parameters of the model are derived from the characteristic
properties of the amplitude spectrum. Odegard and Berg (1965) derived ex-
pressions for the amplitude spectrum of the gravity anomalies of spheres,
horizontal circular cylinders and vertical steps. Bhattacharya (1966), and Spector
and Grant (1970) studied the continuous spectrum of the total field anomalies of
prismatic bodies. Sharma and Geldart (1968) applied the method of Fourier
transforms to interpret the gravity anomalies of two-dimensional faults. Rao and
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Avasthi (1973) could determine all the body parameters of a symmetrical
anticline from the amplitude spectrum of its gravity anomalies for a given
density contrast.

Many authors (eg. Collins et al., 1974; Regan and Hinze, 1976) have
recognised that the calculated spectra from the gravity and magnetic anomalies
differ substantially from the true spectra so as to arrive at useful interpretation.
The basic reason is that the anomalies are available only on a finite length of the
profile, whereas the numerical integrations involved in the transformation
require the data from —oo to + oo on the profile. During the course of the
calculations, it is assumed or taken for granted that the data beyond the
available length of the profile take zero values. In the present paper, corrections
known as ‘end corrections’ are suggested for anomalies of two-dimensional
bodies to improve the reliability of the spectrum calculated from them, when
available over a finite length of the profile. The discussion is with special
reference to the vertical magnetic anomalies of arbitrarily magnetised and
arbitrarily striking cylinders, dykes and thick faults, but the same rules will
apply to their total field anomalies also.

In the majority of papers published to date in this field it is assumed that the
magnetisation is caused by induction. It is also assumed that the origin, with
respect to which the anomaly expression is written, is known. In practice, the
origin is not known and the magnetisation is not always caused by induction.
Thus, in this paper, the anomaly expressions are written with reference to an
arbitrary reference and methods are suggested to determine not only the body
parameters of the model under question, but also the direction of magnetisation
and the exact position of the body. Both the sine and cosine transforms are
derived and used in interpretation. It is also found out that the shape of the
body can be decided directly from the spectrum.

Derivation of Analytical Expressions

The Fourier transform f*(w) of a function f(x) is defined by the relation
f*@)= | f(x) exp(~iwx)dx

which is a complex quantity. f(x) is the known geophysical data, and can be
numerically integrated to give f*(w) for any given value of the spatial wave
number w. But the Fourier cosine and Fourier sine transforms are real quan-
tities defined by the relations,

FCOS(w)= }of(x)cos wxdx and FSIN(w)= Ojof(x) sinwxdx.

The amplitude spectrum of f(x) is defined as

FT(w)=1/FCOS?(w)+FSIN?(w).
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Fig. 1. Illustration of the various parameters. (4) Horizontal circular cylinder (B) Inclined dyke, and
(C) Fault

i) Horizontal Circular Cylinder

The vertical magnetic anomaly over a horizontal circular cylinder is given by
AV(x)=C(Isin & —1I, cos P) 1)
where I, =[Z%—(x—D)*]/[(x—D)*+Z*]?
1,=2Z(x—D)/[(x—D)*+ Z?]?
C,=2nR?]

and the other parameters are as shown in Figure 1(A). Since the exact position
of the cylinder is not known, the magnetic anomalies may be plotted from an
arbitrary reference O on the profile. Thus C,, D, @ and Z are the parameters to
be obtained from the Fourier amplitude spectrum. To evaluate the transform of
Equarion (1), we may first evaluate the transforms of I, and I, separately, letting
D=0 and finally employing the translation theorem. Accordingly I, and I,
exhibit even and odd symmetry respectively, so that the sine transform of I, and
cosine transform of I, are zero. Following from the Tables of integrals by
Erdelyi et al. (1954), we have

ojo [1/(x*+Z?%)] cos wx dx=(n/Z) exp(— Zw)
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and

| [x/(x*+Z*»]sinwx dx=mn exp(—Zw).
Differentiating the above with respect to Z we can deduce that

Oj? [(Z?=x?)/(x*+Z?*?] coswx dx=nw exp(—Z w)

and
[ [2Zx/(x*+Z**]sinwx dx=nw exp(—Zw).

— ®©

Using the translation theorem i.e., the Fourier transform of f(x—D) is
f*(w) exp(—iDw), we can finally obtain that

FCOS(w)=7 C, w exp(—Zw) sin(P + D w)
and )
FSIN(w)= —=n C, w exp(— Zw) cos(® + Dw)

ii) Dipping Dyke

Measuring the distance x from an arbitrary reference point O on the profile, the
expression for the vertical magnetic anomaly of a dipping dyke can be written as

AV(x)=C,(I5 cos Q+1,sin Q) 3)
where C,=2IsinQ Q=¢—60
I;=arctan(x —D+ T/Z)—arctan(x—D—T/Z)
I,=3{ln[(x—D+T)*+Z*]—In[(x—D—T)*+Z*]}

and the various other parameters are defined as in Figure 1(B). When D=0, I,
and I, show even and odd symmetry respectively. To obtain the transforms of
these functions, we may start from the following equations (Erdelyi et al., 1954)

© T T—- 1
j‘ [ +Xx X ]Coswxdx=-—27tslnTwexp(_zw)

_|_
Z2+(T+x)* Z?>+(T—x)?

and

® Z Z . .
] [Zz+(T+x)2 _ZZ+(T—x)2] sinwx dx= —2nsin Tw exp(—Z ).

Integrating the above with respect to Z, we have

| [arctan(x+ T/Z)—arctan(x— T /Z)] cos w x dx

=2x(sin T w/w) exp(—Z w)+ 4,
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and
1 T [In((x+T)*+Z*)—In((x—T)*+Z?)] sinwx dx
i 00=2n(sin Tw/w) exp(—Zw)+ 4,
where 1, and A, are integration constants. The quantity
arctan (m—/Z) —arctan (x_—?/Z )

is actually the angle subtended by the top of the dyke at the point of
observation. If T=0, the above quantity is zero for all values of x, so that the
transform is also zero. Thus A, is zero. Similarly it can be shown that 4, is also
zero. Using translation theorem we can finally show that

FCOS(w)=(27n C,/w) exp(—Zw) sin Tw cos(Q + D w)
and 4
FSIN(w)=(27 C,/w) exp(— Zw) sin Tw sin(Q + D w)

for an infinite dyke.

iii) Fault

The vertical magnetic anomaly due to an arbitrarily magnetised fault model is
given by

24(x—D+T)?

AV(x)=C, [%sinQ InZ

Z?+(x—D)?
x—D+T x—D
+cos Q (arctan —————arctan )] (5)

where C;=2Isin0, Q=& +6, and the other parameters carry the meanings
shown in Figure 1(C). Following the analysis similar to that of the dyke, we can
finally deduce that

FCOS(w)=(n C;/w) [exp(—Z, w) sin(Q + D w)

—exp(—Z, w)sin(Q+D—Tw)]
and (6)

FSIN(w)= —(n C5/w) [exp(—Z, w) cos(Q + D w)
—exp(—Z,w)cos(Q+D—Tw)]

when the distances are measured from an arbitrary reference point.

End Corrections

Evaluation of the sine and cosine transformation is essentially a technique of
numerical integration, and many methods exist in this direction. But the method
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used in evaluation of the integrals in the various examples cited in this paper is
based on the method of Filon (1928-29). In any method, the integration is
performed on the anomalies available on the finite length of the profile by
writing, for example,

FCOS(w)= §+ f(x) coswx dx,

X1

where x; and x,y,, are the initial and final values of x in the profile containing
2N +1 observations. The arbitrary reference with which the values of x are
measured may be anywhere, but can be selected as close to the origin as
possible.

We will observe at a later stage that these ‘finite transforms’ tend to be
highly oscillatory and that correct interpretation can not be obtained from
them. These transforms can however be improved by applying corrections by
calculating the contributions of the missing anomalies outside the length of the
profile. The basis of this correction is as follows: A simple analytical expression
can be fitted to the last few anomaly points, showing the trend or variation of
the anomaly over this distance. This trend is assumed to prevail from the last
anomaly point to infinity also. Knowing these expressions, one for each end of
the profile, their Fourier transforms can be arrived at in a closed form. These
may be called the correction terms and will represent the effects of the missing
anomalies from — oo to x; and from x,y,; to co. They may be added to finite
FCOS(w) and finite FSIN(w) worked out above.

i) Horizontal Circular Cylinder

At sufficiently large values of x, we can neglect D and Z? in comparison with x
and x? respectively in Equation (1). Thus,

AV(x)= C(—sin ®/x?)—(2C, Z cos ®/x?3)

and the magnetic anomaly may be assumed to obey the equation 4V(x)=A4,/x>
+A,/x® from x=—00 to x=x,, and AV(x)=A,/x>+ A,/x> from x=x,y to x
=00. A; and A, can be solved from the magnetic anomalies 4V(1) and A4V (2),
and A; and A, from AV(2N) and AV(2N +1). Knowing A;, A,, A5 and A4,, the
correction can be worked out as follows:

Crcos =correction for Fourier cosine transform

= [ (Ay/x*+A,/x*) coswxdx+ [ (As/x*+A4/x) coswxdx

=A;[C(1)+SI(D)]+ A3 [C(N)+SIN)]+ A, [ — C(1)/2 |x4]
+08(1)/2—(w/2) CI(1)] +4 4 [C(N)/2x;5 11 —@S(N)/2
+(w/2) CI(N)]



End Corrections in Magnetic Interpretation 263
Crsiny=correction for Fourier sine transform

= [ (A/x*+A,/x*) sinoxdx+ [ (As/x*+A4,/x%) sinwxdx

=A;[-S()+CI(1)]+ A3[S(N)—CI(N)] + A, [S(1)/2 | x,|
+ o C(1)/2+(w/2) SL) ]+ AL[S(N)/2%,x + ; + & C(N)/2

+(w/2) SI(N)]
where  S(1)=sin(w |x,[)/|x,] C(1)=cos(® [x[)/|x,]
S(N)=sin(® X,54 1)/Xan+1 C(N)=cos(®w X,y 41)/Xan+1
SI(1)=w Si(w |x,]) CI(l)=w Ci(w |x,])
SI(N)=w Si(®w X,541) CI(N)=w Ci(w X554 1)-

ii) Dipping Dyke
At large values of x, we can write that,
arctan[(x —D+ T)/Z] —arctan[(x —D —T)/Z]
=arctan[2TZ/(Z*+(x—D)*+ T?)]

=arctan(2TZ/x?)=2TZ/x>
and
_ 2 2
(x=D+T)P+2Z> __ (x+T)_, (/T+1)_4T

"x—D-T)+Z22 (x—T) oT—1) x

Substituting these in Equation (3), we may show that the magnetic anomaly due
to a dyke varies according to the equation

AV(X)=A;/x+A,/x* from x=—00 to x=x,,
and
AV(x)=A3/x+A,/x* from x=x,y to x=00.

Based on the first two and the last two anomalies on the profile, 4, to A, can be
solved. Then,

Creos=A1 CI(1)/w — A5 CI(N)/w + A, [ C(1)+SI(1)]+ A, [C(N) +SI(N)]
Cren = — Ay SI(1)/o — A5 SIN)/w + A, [ —S(1)+CI(1)] + A, [S(N)
—CI(N)]

iii) Fault
For the fault model, it can be shown that the anomaly varies according to the
equation

AV(x)=A,/x+A,/x* from x=—o to x=x,, and

AV(X)=As/x+Ay/x> from x=x,y to x=00.
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The corrections can be finally worked out as:
Crcos =4, CI(1)/o —A4; CI(N)/w
+A4,[ = C(1)/2|x4|+w S(1)/2—(w/2) CI(1)]
+A4[C(N)/2x;5 41 — @ S(N)/2+(w/2) CI(N)]
Crsin = — A1 SI(1)/w — A3 SI(N)/w
+A4,[—S1)/2 x|+ C(1)/2+(w/2) SI(1)]
+A4[S(N)/2x3y 4 1 +@ C(N)/2+(w/2) SI(N)]

Method of Analysis and Examples
For any given magnetic profile, the Fourier transforms FCOS(w) and FSIN(w)

can be calculated by numerical integration for different values of w. From these
data we can determine the various parameters of the model.

i) Horizontal Circular Cylinder

The amplitude spectrum for this model can be obtained from Equation (2) as

FT(w)=1/FCOS?(w)+FSIN?(w) =7 C; w exp(—Z w). (7

The amplitude spectrum FT(w) shows a maximum at w=w,,, given by Z
=1/wp,, from which the depth can be found out. If w is expressed in radians per
station spacing, Z is obtained in units of station spacing. The value of C, is then
solved from any one value of FT(w) by substituting the value of Z thus obtained
in Equation (7). Alternatively, a new function F(w) can be worked out from the
amplitude spectrum as defined below:

F(w)=FT(w)/wo=n C, exp(—Zw).

This, when drawn on a semi-logarithmic paper, appears as a straight line having
a slope of —Z and cutting the ordinate at = C,. ¢ may be determined from the
relation, @ =arctan[ — FCOS(0)/FSIN(0)]. An alternative procedure may also
be followed to calculate D and &. The ratio — FCOS(w)/FSIN(w) is calculated
for different values of w. Then the quantity arctan[ — FCOS(w)/FSIN(w)] when
plotted against w gives a straight line defined by @ + Dw. This straight line has a
slope of D and cuts the ordinate at @. @ in the correct quadrant may be finally
worked out from the signs of FCOS(w) and FSIN(w).

Figure 2 shows as an example the interpretation of magnetic anomalies over
a cylinder. The magnetic profile, the transforms FCOS(w) and FSIN(w) along
with the Fourier spectrum FT(w) and the function F(w) are also indicated in the
figure. The theoretical values of these functions over the range of w considered,
coincide with the corrected transforms and consequently are not shown. The
various parameters calculated from these functions are as follows: Depth=35
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Fig. 2. Interpretation of a theoretical vertical magnetic anomaly profile over an arbitrarily magne-
tised horizontal circular cylinder. (4) Magnetic profile (B) Variation of FSIN(w), FCOS(w) and F(w)
against w, and (C) Diagram for calculation of ¢ and D

units (assumed value=35 units), $ =199 degrees (assumed value=200 degrees)
origin = 1.98 units (assumed value =2.00 units).
ii) Dipping Dyke
For the dyke model, the amplitude spectrum is given by

FT(w)=(2n C,/w) exp(—Z w) |sin(Tw)|. (8)
A new function F(w) can be calculated as follows:

F)=FT(w)xw=2n C, exp(—Z w) |sin(Tw)|. )
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The function F(w) is zero at points defined by Tw,=nn(n=0,1,2,...). In
practice the zero points will not be brought out on the F(w) curve because this
function can never be negative and thus has no cross-overs. However, the zero-
points will appear as ‘sharp minima’ on the F(w) curve and can therefore be
easily identified. Figure 3 shows the functions F(w), FCOS (w) and FSIN(w)
calculated for a theoretical anomaly profile over a dyke having 2T=4 times the
station spacing and Z =2 times the station spacing. The anomaly profile used
for numerical integration is shown in Figure 3(A). In Figure 3(B), the functions
F(w), FCOS(w) and FSIN(w) for this profile are shown. The function F(w) is
calculated both from the corrected and uncorrected values of FCOS(w) and
FSIN(w) and is plotted separately. The function F(w) is also calculated theoreti-
cally by substituting Z=2 and T=2 in Equation (9), and shown as open circles
in the same figure. It can be observed from this figure that the F(w)—w curve as
derived from the uncorrected values of FCOS(w) and FSIN(w) is highly oscil-
latory and does not give any useful information. Also the uncorrected values of
F(w) deviate too much from the theoretical values for all values of w greater
than one radian per station spacing. In contrast to this, the corrected values of
F(w) show a consistent trend. They also agree closely in magnitude to the
theoretical values upto w = 3.2 radians per grid spacing. Figure 3 thus brings out
the importance and need of applying the correction to the numerically evaluated
transforms, and shows the extent to which the evaluated transforms are
improved.

To determine T, we can use any one of the values of w,, at which the
function F(w) vanishes. If w, is the position of the first zero-point, then,

T=n/w,. (10)

If w, is expressed in radians per station spacing, T will be given in station
spacings. Alternatively, two consecutive values of w,(=wq; and wg, say) can be
located to find out T by the formula, T=7n/(wy, —wq,). The use of this formula
may however be avoided because F(w) cannot be calculated very accurately at
higher values of w. Either of the two formulae determines T independent of Z, D
and C,. Z can be determined from the position of the maximum value of F(w).
This is maximum or minimum if

Z=Tcot(Tw,,). (11)

Actually F(w) shows many turning points and any value of w,,,, corresponding
to any one of these turning points may be used in the above equation to find out
Z. Because the function F(w) is obtained more accurately at lower values of o, it
is preferable to use the location of the first turning point only for more accurate
values of Z. Z is thus determined independent of C,, D and Q.

C, may be determined by substituting the values of T and Z thus obtained
in Equation (9), knowing F(w) for any given value of w. Q and C, may also
be determined from the values of FCOS(0) and FSIN(0) because, from Equation
(4) it can be shown that, FCOS(0)=2n C, T cosQ and FSIN(0)=27n C, T'sin Q.
Alternatively, the relation arctan[FSIN(w)/FCOS(w)]=Q+Dw is a straight
line having a slope D and intersecting the ordinate at Q. Although this prop-
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Fig. 3. Interpretation of a theoretical vertical magnetic anomaly profile over an arbitrarily magne-
tised dyke. (4) Magnetic profile (B) Variation of FSIN(w), FCOS(w) and F(w) against w, and (C)
Diagram for calculation of Q and D

erty is valid for all values of w, calculation of the quantity
arctan [ FSIN(w)/FCOS(w)] shall be limited to small values of w, particularly in
the interpretation of field profiles. This is because the functions FSIN(w) and
FCOS(w) are not very accurate at higher values of w, as we have already noted
above. Also geological bodies do not fit perfectly to a dyke model and do not
have a uniform magnetisation throughout their volume.

The values of Z, T, Q and D as calculated from the above rules of
interpretation for the profile shown in Figure 3(A) are as follows: Thickness
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Fig. 4. Interpretation of a vertical magnetic anomaly profile over an outcropping quartz-magnetite
dyke-like body, Karimnagar area, Andhra Pradesh. (4) Magnetic Profile (B) Variation of FSIN(w),
FCOS(w) and F(w) against w, and (C) Diagram for calculation of Q and D

=4.0 units (assumed value =4.0 units), Depth =1.94 units (assumed value =2.00
units), Q=120 degrees (assumed value=120 degrees), and D=2.01 units (as-
sumed value =2.00 units).

Figure 4 shows the interpretation of a field example of vertical magnetic
anomalies observed over a dyke-like body by the method of Fourier transforms.
Figure 4(A) is a magnetic anomaly profile taken over an outcropping quartz-
magnetite dyke-like body of thickness 80 ft in Karimnagar area, Andhra Pra-
desh (Subba Rao, 1974). The transformed anomalies of this profile, both
corrected and uncorrected, and the function F(w) are also shown in the figure.
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The corrected transforms are interpreted by the application of the rules cited
above. The profile is also interpreted on the computer by the method of
iteration of Rao and Radhakrishna Murthy (1973). The values obtained for
various parameters are as follows: Thickness=74ft (by iteration 75 ft), Depth
=6 ft (by iteration 9 ft), Q =86 degrees (by iteration 85 degrees), and D= —1.8 ft
(by iteration —2.3ft). It may be observed that the results obtained by Fourier
transformation and also by the method of iteration mentioned above are close
to each other.

iii) Fault

The expressions for the Fourier cosine and sine transforms of the magnetic
anomalies over faults are given in Equation (6). To calculate the various
parameters, we evolve a new function F(w) defined as
F(w)=w FT(w)=w [FCOS?(w)+ FSIN?(w)]'/?
=1 Ci[exp(—2Z, w)+exp(—27Z; w)
—2exp(—Z,+Z, w) cos(Tw)]*2.

At large values of w, this becomes, F(w)=n C; exp(— Z, w), showing that the
F(w) versus w curve, when drawn on a semi-logarithmic paper, degenerates into
a straight line. The slope of this straight line gives —Z,. The intercept of this
straight line on the ordinate is equal to = C5 and hence C; can be calculated.
The relation

arctan [ —FCOS(w)/FSIN(w)]=Q0+Dw

is a straight line at large values of w, corresponding to the straight line portion
of the function F(w). From this straight line, Q and D can be calculated. To find
out the other parameters, we may determine the values of FCOS(0) and
FSIN(0), which are given by

FCOS(0)=n C3[TcosQ+(Z,—Z,)sinQ]=n C5(Z,—Z,) cosec 0 cos &
FSIN(0) =n C3[TsinQ—(Z,—Z,)cos Q=7 C5(Z,—Z,) cosec 0 sin P.
From these, the parameters ¢, 8 and Z, can be worked out by the relations
@ =arctan [FSIN(0)/FCOS(0)], 6=Q0-9
and

Z,=(sin 6/n C)1/FCOS?(0)+ FSINZ(0) + Z,.

Figure 5 shows an actual example of magnetic fault interpretation worked
out by the method of Fourier transforms. The function F(w) as obtained from
the uncorrected values of FCOS(w) and FSIN(w) is also plotted to bring out
again the need of applying the ‘end corrections’. The values of the various
parameters interpreted from the corrected transforms along with the assumed
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Fig. 5. Interpretation of a theoretical vertical magnetic anomaly profile over an arbitrarily magne-
tised fault. (4) Magnetic profile (B) Variation of FSIN(w), FCOS(w) and F(w) against w, and (C)
Diagram for calculation of Q and D

values are as follows: Z; =2.04 units (assumed value =2.00 units), Z, =7.90 units
(assumed value=8.00 units), D=1.92 units (assumed value=2.00 units), @
=149.8 degrees (assumed value=150 degrees), and 0=62.7 degrees (assumed
value =60 degrees).

Discussion

This paper does not advocate any superiority of the method of Fourier trans-
forms over the other methods of interpretation of magnetic anomalies of simple
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geometric models. It only studies the possibility of interpreting these anomalies
in a generalised case where the magnetisation is not by induction and when the
position of the body is not known. By deriving both the sine and cosine
transforms, it is shown that both the direction of magnetisation and the position
of the body can be easily determined. ‘End corrections’ are suggested, probably
for the first time, to improve the sine and cosine transforms obtained by
numerical integration of the anomalies over a limited length of the profile. It is
observed that without application of these corrections, the derived transforms
tend to be highly oscillatory and any information obtained, there from may not
be reliable. It is also observed in this analysis that even the corrected transforms
tend to deviate from true transforms for w >2.0. However, this will not affect the
interpretation because all body parameters are deduced at lower frequencies.
The validity of the expressions, representing the anomalies outside the length of
the profile is verified by calculating a few anomalies from these expressions and
comparing them with those by the exact formulae. Further, the constants 4, to
A, were determined from the edge anomalies, with and without application of
the procedure of least-squares, and it was found that the application of the least-
square procedure does not improve the values of these constants.

The following advantages are usually mentioned for the method of Fourier
transforms: (a) All anomalous field values are taken into consideration during
analysis, (b) calculations of derivatives and continuation to different levels are
easily carried out in the frequency domain than in the space domain. In addition
to the above, we observe in this paper two interesting applications of the
method of Fourier transforms. The first is that the shape of the function F(w)
depends on the shape of the body, and consequently it can be determined. F(w),
when plotted, against w on semi-logarithmic paper is a straight line for the
cylinder, a curve showing a series of maxima for the dyke, and a curve showing
a maximum and then degenerating into a straight line for a fault. The second
relates to the interpretation of magnetic anomalies of faults. We are not aware of
any simple and standardised method of interpreting the magnetic anomalies of
arbitrarily magnetised faults. The difficulty is due to the large number of
parameters to be obtained from the anomalies. In contrast to this, all the
parameters of the model can be solved very easily, at least theoretically, by the
method of Fourier transforms.
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