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Damped and Constrained Least Squares Method
With Application to Gravity Interpretation

J.L. Vigneresse

Centre Armoricain d’Etude Structurale des Socles, Universite de Rennes I, Avenue du Général
Leclerc, F-35042 Rennes Cedex, France

Abstract. Many geophysical problems are solved through linear system
inversion techniques. Optimization routines are the usual schemes and
among them the least-squares method is the most common. Some refine-
ments as matrix decomposition, elimination of insignificant eigenvalues are
considered and tapering of small eigenvalues is proposed. The introduction
of an upper and a lower limit for the solution vector is presented. This
reduces the usual instability encountered when using classical least squares
techniques.

An application to gravity profile inversion shows how this method can be
used as an intermediate between the direct problem (model construction)
and the inverse problem (search for ideal bodies).

Key words: Constrained least squares — Inverse problems — Gravity.

I. Introduction

Provided an appropriate choice of the parameters, a lot of geophysical problems
may be reduced to a linear combination of relationships between the measure-
ments b of physical quantities and a set of unknown parameters x. The problem
is to solve the linear system

Ax=b (1)

in order to find the solution vector x representing the unknown parameters x;.
Since the number m of observation points b; does not need to be equal to the
number n of the different physical parameters to be determinated, the system A x
=b must be solved using an approximation theory. A good solution is

b'=b+e Ax (2)

with e being the residuals between computed and observed values. The problem
is then to reduce the values of the residuals, that is to say to minimize the
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8 J.L. Vigneresse

quantity ||[Ax—b||. Several criteria are available, dealing mainly with the power
used to calculate the norm. Some of them have been examined in a previous
paper (Vigneresse, 1977). Here only least-squares approximations are presented.

2. Theory
2.1. Classical Least Squares

Resolution of the system can be obtained by the usual Gauss method. Normal
equations can be written

ATAx=A"b. ©)
The solution is given by
x=(ATA)"1ATb. 4

Troubles arise from the computation of the inverse of AT A. Instabilities
occur when the 4 matrix is badly conditioned, since the condition number of
ATA is the square of the condition number of A. This may cause serious
problems during the inversion (Anderssen, 1969).

2.2. Matrix Decomposition and Damped Least Squares

Lanczos (1961) proposed an improvement by using an eigenvalues-eigenvectors
decomposition of the matrix

A=USVT, 5
Solution is now obtained by
x=VS 'UTh. (6)

U and V are orthogonal matrices whose columns are the eigenvectors
associated with the columns and rows of A respectively. S is in this case a
diagonal matrix, the elements of which are the eigenvalues of the full rank
matrix. If degeneracy occurs some eigenvalues are equal to zero. In the numeri-
cal application, the existence of small eigenvalues comes from irrelevant and
unimportant parameters.

It can be desirable to keep these low eigenvalues during the inversion for
instance when the effects of several parameters are very similar and are hardly
distinguishable from the data. (Levenberg, 1944; Marquardt, 1963, 1970). The
method is also known as ridge regression (Hoerl and Kennard, 1970).

The normal Eq. (3) are modified to

(ATA+0N)x=A4"b (7
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where O is a diagonal matrix with positive elements. When using the same type
of matrix decomposition as previously (5) the normal equations are written

(VS2UT+O0NHx=VSUTb (8)
and a solution is
x=V|§?+60*1)"1S|UTbh. )

The effect has been the introduction of a perturbation factor @* which
tapers the spectrum of the eingenvalues (Fig. 1). A scheme of calculations is
provided in Table 1.

The choice of a convenient value for @ is essential. A good estimate is given
by weighting the residuals by one over the variances of the observations
(Crosson, 1976). This leads to a normally distributed random variable with unit
variance. Aki and Lee (1976) use a weight inversely proportional to the variance,
namely the ratio of the variance of the data over the variance of the estimated
solution. The same choice had been proposed by Franklin (1970) in the method
of the stochastic inverse.

2.3. Constrained Least Squares Approximation

In spite of these improvements, the least-squares problem does not have unique
solution in the overdetermined case, and the solution may be optimum only in
the mathematical sense, i.e.: it can be physically out of range even if the criterion
of minimizing the sum of squares of the residuals is fully satisfied. From a
geophysical point of view, it would be better to choose a solution within an
average range of physically meaningful values.
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Table 1. Scheme of resolution of overdetermined system through classical and improved least
squares minimization

System Ax = b
CLASSICAL LEAST SQUARES LEVENBERG _ MARQUARDT
DECOMPOSITION
Minimization of (Ax-b)7T (Ax-b) (Ax-b)" (Ax-b)+ 6% X x
Normal équations ATA x = ATb (ATA+0%T) x = ATb
Solution x= (ATA) AT D x+ (ATA+e1) AT b
MATRIX DECOMPOSITION
A= usv’ A=Uus VT
Normal équations vs?uTx = vsuTo (vs?uT+el1)x = vsuTb
Solutions x=vs'uTp x= Vfis%81)"s ) U
1\, 0 '_2_17
st - A (stelrytss | A0t A
2., A3+9
0 A/ N A
AZ+e?

(a) Theory. The introduction of such limits for the solutions can be for-
mulated as the following Constrained Least-Squares problem (CLS problem):

Minimize |Ax—b| subject to Cx>d (10)

with the m x n matrix 4, equivalent to the above notation, and the p x n» matrix C
of the relations between the constraints vector d and the solution vector x.
Two particular cases of this problem are evident:

Problem LDP (Least Distance Programming):
Minimize ||x|| subject to Cx>d

(11)

Problems NNLS (Non Negative Least Squares)

Minimize ||Ax —b| subject to x>0. (12)

An algorithm for NNLS problem has been dealt with, and solved, in linear
and non-linear programming. Basic theorems are found in the original paper by
Kuhn and Tucker (1951) and in books dealing with optimization (Laurent, 1972;
Fiacco and McCormick, 1968). Applications and practical use have been devel-
oped by Lawson and Hanson (1974), and by Gill and Murray (1974).

Kuhn and Tucker (1951) solved the CLS problem by introducing slack or
surplus variables (r) in order to reduce the inequalities in Cx>d to the
equalities Cx —r=d with the condition x, r>0. The problem of minimizing |4 x
—b| can be treated using the objective function ¢=3|Ax—b|*. Saddle-point
theory applied to ¢ then provides a set of necessary conditions. Kuhn and
Tucker (1951) derived from it what they referred to as “constraint qualification”,
which places very important restrictive conditions on the nature of the set of
feasible solutions in the vicinity of the computed solution x*. It requires that the
negative gradient vector of ¢ at x* must be expressed as a non-negative linear
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combination of outward pointing normals to the constraint hyperplanes on
which x* lies. That is to say, that it lies in the convex cone based at the point x*
and generated by the outward pointing normals. More recent works on func-
tional analysis have developed this point and stress the optimization problem
through the intersection of cones of displacement (Laurent, 1972).

For the CLS problem, a solution is then characterized by the following
conditions (Lawson and Hanson, 1974): An n vector x* is a solution of the CLS
problem if and only if there exists an m vector y and a partitioning of the
integers 1 to m into subsets E (equality) and S (slack) such that

CTy=AT(Ax—-b)
r,=0; y,>0 i¢E
r,>0; y,=0 ieS where r=Cx—d. (13)

The quantity —|4T(Ax—b)| is then the negative gradient of the objective
function ¢=|Ax—b|> and the lines of (—CT) represent outward pointing
normals to the constraint hyperplanes.

If the NNLS problem may be solved, the point is now to reduce the CLS
problem to the NNLS problem. This is done in two steps: reduction of the CLS
problem to the LPD problem, and then change of the LDP problem to the
NNLS problem.

(b) Practice. The reduction is carried out with the help of matrix decom-
positions as described in the first part of the present paper. An advantage of this
procedure is a single singular-values analysis in the first step of the computation.

The first step is done through a change of basis for the vector x. The matrix
decomposition which leads to A=USV7T Eq. (5) can be written

S 0
0 0

4

=108l ol |

(14)

Then by a change of variables x=V,y, the problem of minimizing the
quantity ||Ax —b] reduces to:

minimize ¢=|b—Ax|*=|—Sy+b,||+ b, (15)
with b, =UTb
b,=UTb

A further change of variables z=Sy—b, reduces the function to
o =z[2+[b,l|*. (16)

The problem is now reduced to the LDP problem, except for the additive
constant |b,|*:

Minimize |z|| subject to Cz>d (19)

with C=cv,s1
d=d—CV,S 1b,.
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The second step is the transformation from the LDP to the NNLS problem.
This can be done through the following change: compute a vector u solving the
NNLS conditions:

Minimize ||[Eu— f|| subject to u>o (18)

Vodd
dr

and f an n+ 1 vector with all elements

ith E=
b equal to zero except (n+1) th.

The gradient vector of the objective function % z|? in the LDP is simply z.
The Kuhn-Tucker conditions require z to be expressible as a nonlinear com-
bination of the row of C”. Then z is expressed as

z=CTu|r|~2 with |r|?=rTr=rT|Eu—f]. (19)

3. Application to Gravity Data

Gravity profile interpretation may be aided through linear system inversion
techniques. Two-dimensional density distributions can be selected to represent
geological structures. The gravitational attraction due to simple sources repre-
sented by polygons is easily calculated by the now classical formula of Talwani
et al. (1959). Since the formula is linear with respect to density, a linear system of
equations can be constructed yielding a theoretical gravity value at any point.
Provided that observed gravity values are available at these points, density
contrasts can be adjusted in order to minimize the residuals between observed
and computed values of the field.

The assumed structure which underlies the gravity anomaly is divided into
several cells by an automatic partitioning or by a more elaborate method which
can incorporate results from previous geophysical surveys. Each cells is then
represented by a regular polygon.

The gravitational attraction of a k-sided polygon is given by

k
g=2Gp 3 ¥, (20)
=1

Where G is the universal gravitational constant and p the density. Y, is the
kernel function for one side and is a function of x,, z,, corners of the polygon.

The problem reduces to a linear system like Eq. (1) with the solution vector b
=g, the gravity measurements, the unknown vector x=p; the density contrast,
and the matrix 4 =aij, represents the gravitational attraction of the j* prism at
the i point of observation. Details of constructing this system may be found in
a previous paper (Vigneresse, 1977).

4. Discussion

The inverse problem in gravity interpetation has already been examined by
these techniques. To date, several papers have been published, each using
different criteria for the optimization of the residuals.
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In a first stage, most of the authors have assumed density contrasts and
adjusted vertical coordinates of the bodies by means of either iterative processes
(Tanner, 1967; Qureshi and Mula, 1971) or least-squares methods (Corbato,
1965). Later, methods with better convergence have been developed through
least-squares techniques and generalized inversion (Braile et al., 1974; Philips,
1974; Jupp and Vozoff, 1975). The problem of stability has been partially solved
by the Backus and Gilbert (1967, 1968) method (Green, 1975) and by ridge
regression (Inmann, 19795). Different criteria for norm minimization have been
proposed (Claerbout and Muir, 1973) and compared with each other (Vigner-
esse, 1977). As far as errors in the data affect the solution, the problem is better
solved with the introduction of a damping factor in the least-squares approxima-
tion (Crosson, 1976; Aki and Lee, 1976) or using covariance matrix techniques
(Jackson, 1976; Burkhard and Jackson, 1976).

From the point of view of the very recent development of the inverse
problem (Parker, 1975, 1977; Sabatier, 1977a and b), the method described
above may certainly be considered as “old fashionned”. The fact is that Parker’s
philosophy of determining all solutions acceptable for the problem is very
reasonable. Unfortunately, this is very time consuming (Sabatier, 1977a). Anoth-
er point is the basic assumption of a homogenous structure underlying all these
methods. Any geologist will have serious criticisms about this. These are the
main reasons why the present method has been developed.

When inverting real data, both oscillations and smoothing effects occur but
they may be used in order to approach a “better” solution. A solution remains
to be found in which the density contrasts are limited within a physically
acceptable range, taking into account the other available data for the structure.
In that sense the method can be viewed as a compromise between an arbitrary
search through model calculations (direct method) and a mathematical inverse
problem (automatic adjustements of depth parameters).

The method has been tested with several synthetic models. In all cases the
inversion was done in a very short time and gave the previously assumed density
contrasts.

In order to simplify the procedure, the same test has been done for several
runs in the computer with different initial parameters. An ideal structure had
been computed by the usual Talwani et al. (1959) method. It seemed interesting
to take the same test model as used by Braile et al. (1974) in order to compare
the accuracy (Fig. 2).

Furthermore a test has been made by introducing random noise in the
synthetic data. The noise level was progressively raised in order to observe the
failing of the method. Up to a noise level of approximatively 20%,
the results are within an acceptable range. In fact this follows from the implicit
supplementary constraints which result from the location of the geometrical
parameters of the model. If a set of cells has exactly the shape of the test model
then inversion can be done up to high noise levels. When the division into cells
does not approximate the model exactly, however, some differences are found
during the least-squares inversion. With respect to the depth, a lower bottom for
the structure causes the density contrasts to oscillate while they are smoothed
when the top to the structure is higher than that of the model. Such troubles are
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Fig. 2. Test model in the present paper. On the right hand side noise has been added with a noise
level of 20%
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Fig. 3. Test model anomaly inversion. (a) damped least squares method; (b) constrained least squares
method. Upper bound was 1.00 g/cm?® and lower bound —1.00 g/cm?

nearly always found during least-squares inversion, but the introduction of
constraints reduces the amplitude of the variations. Smoothed values occur only
when the structure is higher than the source, which is probably due to the
equivalent-layer theorem. Lateral displacement of the cells may affect the result,
though in fact only the edges of the structure are affected. If a cell comprises
part of the model as well as the host rock, a density contrast which combines
their respective densities will be assigned by the procedure. If one cell overlaps
the model, then it will be given a density contrast result of a combination of
both density contrasts of the model and surrounding structures. The introduc-
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tion of constraints upon the solution vector severely reduces the instability during
the inversion. An exemple is presented in Fig. 3. The test model anomaly is
inverted using both techniques of damped least squares and constrained least
squares. The cell structure chosen fits the cell shape, but its lateral extension is
less than the length of the profile. This results in a long wavelength instability
which manifests itself in an ill conditioning of the coefficient matrix (Vigneresse,
1977). In the damped case, the computer tries to fill the lower cells in order to
deal with the long wavelengths. The result is shown in Fig. 3a. The constrained
inversion was done using a density contrast of +1 and —1g/cm?® as upper and
lower bounds, respectively. The instability is reduced as one can see in Fig. 3b.
The introduction of constraints into the solution results in the construction of a
convex hull into which all feasible solutions for the problem fall. In that sense
the problem can be viewed as a convex rather than a linear problem (Sabatier,
1977a).

5. Applications

The present method has been developed for a specific geological problem. For a
long time, geologists have been interested in the determination of the shape of
the roots (bottom) of batholiths.

Gravity data can assist in this problem by calculating the shape of a
batholith. This has been done by several authors using different methods. The
main point is still unsolved because of a dogmatic assignment of the density
contrast; it is generally assumed that the structure is homogenous and does not
show variations in its physical parameters. Though it is quite easy to estimate
the density contrasts existing at the outcrops, only assumptions are available for
depths as great as some ten kilometers as inferred by several authors. Therefore,
the determination of the structure, from a continuity in their density contrasts
could be a less biased approach to the problem of plutonic roots.

Data are taken from the gravimetric anomaly map of Brittany, western
France. Plutons are well known in this area; they consist of leucogranitic rocks
dated from 310 m.y. (Cogné, 1974). They are easily recognisable on the Bouguer
anomaly map as they are delineated by negative anomalies of some —25 mgal.
Density contrast measurements have been carried out on their material (Weber,
1972); an average value for the granite is 2.61 g/cm® while the palaeozoic
formations into which they intruded have a mean density value of 2.69 g/cm?;
this results in a gravity contrast of —0.08 g/cm® between the granite and
surrounding rocks. A profile has been constructed across the Guehenno massif
(Fig. 4). Constraints have been placed upon the solution vector. Density con-
strast is allowed to vary within the range —0.12g/cm® and +0.05g/cm?.
Inversion has been carried out through the above methods. Results have been
compared with other automatic inversion processes (Tanner, 1967; Qureshi and
Mula, 1971) (Fig. 5).

A few comments can be made on the results; since the decomposition into
cells has been very crude. The decomposition presented shows a similar shape to
that of the other methods. It results from several trials with more general
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Fig. 4. Bouguer anomaly profile over a granitic pluton. Outcrops are indicated with hatches and
measured surface density shown

0 5. 10 1'5 2‘0 25 Km. OD ? 1:3 1I5 2:3 25 Km.
Rl -o09f-007 |-008| -012 oz | 0
5k
10
Km. ¢
00 ? 1I0 15 2l0 25 Km.
098 0.08}-0.06 [-0.10 042 009 1040
5k
10
Km d

15 20 25 Km.

-0.09 | *-0.00

Km.

Fig. 5. Diagram showing the results of different methods of inverting gravity data. (a) Tanner’s (1967)
method; (b) Qureshi and Mula’s (1971) method; (c) the classical least squares inversion; (d) a damped
least squares inversion using Levenberg Marquardt’s algorithm; (e) results from the constrained least
squares optimization. Constraints have been choosen as —0.12 g/cm® and +0.05 g/cm

divisions. After two runs, convergence of the results leads to this structure. A
first comment is the similarity of the results between all the three methods
concerning the shape of the batholith. No problem is encountered here. Howev-
er a significant difference occurs with respect to the depth of structure. Classical
inversion methods for a structure having constant density throughout the body
(i.e., homogeneity in its density contrast) indicate a greater depth for the root
than the one computed through our inverse method. But the density contrasts
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calculated by our method change with depth, thus, the batholith may be
homogeneous from the point of view of the petrologist, but not for geophysicist.
This may result from a density contrast between the body and the host rock
which changes gradually from the surface (at the outcrop) to deeper levels in the
upper crust.

Conclusions

A method has been developed which solves the gravimetric inverse problem by
a linear least-squares approximation. Refinements to the classical method of
matrix decomposition have been incorporated. The principal feature is the
tapering of the eigenvalue spectrum, avoiding the effect of redundancy in the
data. A supplementary and powerful condition is used assigning the convexity to
the solution. Assuming that other available data allows a restricted range for the
density contrasts, the solution is constrained to lie within that range. The
introduction of such constraints during the computation severely stabilizes the
method of matrix inversion and allows reasonable solution with limited time
consumption. Tests upon synthetic models are significant even when noise is
introduced into the data. When used upon real data the method shows good
performances compared to other iterative methods of gravity interpretation.
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