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Ray Amplitudes of Compressional, Shear,
and Converted Seismic Body Waves in 3D Laterally
Inhomogeneous Media With Curved Interfaces

I. PSencik

Geophysical Institute, Czechosl. Acad. Sci. Bo¢ni II, 141 31 Praha 4 — Spofilov, Czechoslovakia

Abstract. A compact formula for the leading term of the ray series for the
displacement vector of an arbitrary compressional, shear or converted mul-
tiply reflected wave in an inhomogeneous medium with curved interfaces is
derived. The components of the vector are expressed with respect to a special
system of three mutually perpendicular unit vectors moving along the
investigated ray. A method of determination of these vectors at any point of
the ray is suggested.

Key words: Leading term of the ray series — Compressional, shear, and
converted multiply reflected waves — Laterally inhomogeneous media with
curved interfaces.

1. Introduction

It is well-known from the study of propagation of high frequency waves or
discontinuities in laterally inhomogeneous isotropic media that there are two
wave fronts which propagate independently. One of them corresponds to the
compressional (P) wave, the other to the shear (S) wave.

The complex-valued leading term of the ray series for the displacement
vector of the P wave, ﬁp, is tangent to the ray (i.e., both real-valued vectors
forming real and imaginary parts of U, are tangent to the ray) and can be
expressed as follows (Cerveny et al., 1977, p.23)

U,=UpF(t—1p)t. (1)

Complex quantity U, is usually called the principal component of the P wave in
the zero approximation of the ray theory. Complex function F describes in a
certain sense the form of the signal of the investigated wave, t is the time, t
denotes a unit vector tangent to the ray, 7, is the phase function (eikonal) of the
P wave. Function 7, is a solution of the eikonal equation (Vr,)*=0"2, where

a(x;) is the P wave velocity.
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382 1. PSencik

The complex-valued leading term of the ray series for the displacement
vector of the S wave, fjs, lies in the plane perpendicular to the ray (both the
real-valued vectors forming Ug can have different directions in this case).
Usually, vector Us is expressed in terms of the principal components Ug, and
Us, in the zero approximation of the ray theory. The components Uy, and Uy,
are taken with respect to the vectors of unit normal i and binormal b to the ray
(Cerveny et al., 1977, p.23):

Uy =(Us, i+ Us, b) F(t — ). )

Here g is the eikonal of the S wave, (Vzg)>=p"2, where B(x;) is the S wave
velocity.

The formulae for the determination of the components of the leading term of
the ray series for a displacement vector along a ray in a 3D continuous
inhomogeneous medium as well as formulae determining the behaviour of these
components at an interface in the medium are presented in Sect. (2). The
determination of the leading term at any point of an arbitrary multiply reflected
wave can then be performed by successively applying the formulae of Sect. (2),
following the ray from one interface to another. It would be more desirable,
however, to have a compact formula for this purpose. Compact formulae are
known for some special types of waves, such as pure P waves in 3D media or P-
SV waves in 2D media (Cerveny et al., 1977, pp. 36-39). An alternative compact
formula for the determination of the leading term of a general multiply reflected
wave is suggested in Sect. (3). In Sect. (2) it is shown that it is useful to express
the components of the leading term of the ray series for a displacement vector
with respect to a special system of three mutually perpendicular unit vectors
moving along the ray. A method of determining these vectors at any point of the
ray is suggested in Sect. (4).

2. Formulae for a Successive Determination
of the Leading Term of the Ray Series

In an inhomogeneous isotropic medium the principal components Uy, Us,, Us,
can be given by the following expressions

UP =(a pJ)_ 12 TP(})l’ Y2)5

Us,=(BpJ) [ ¥, (71,7,) c0s O + W5 (7,,7,) sin O],

Us,=(BpJ)~ [ — ¥,(v1,72)sIn O + ¥ (1, 7,) cos O]. 3)
In (3) symbol J denotes a measure of the cross-sectional area of the ray tube, y,,
y, are ray parameters, p denotes density. Functions ¥, ¥,, ¥, are arbitrary

functions of y, and y,, being constant along the whole ray. Quantity @ is given
by the formula

0= j BTdg, (4)

70
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where T denotes the torsion of the ray (for details see Cerveny et al., 1977, p.23).

It follows from (3) that the components Ug, and Uy, are mutually coupled
unless T=0. It also follows from (3) that as the wave progresses, vector Ug
rotates in the plane perpendicular to the ray with respect to vectors i and b. The
velocity of the rotation is d®@/dt=T.

To determine the vector Ug at an arbitrary point of a ray, it is necessary to
know the unit vectors of the normal and binormal to the ray. They could be
determined from Frenet’s formulae, which, however, represent an additional
system of differential equations to be solved. Moreover, it is necessary to know
the torsion and curvature of the ray at any of its points. This can be connected
with certain difficulties, e.g. in models containing both homogeneous and
inhomogeneous regions (see Cerveny et al., 1977, pp. 89-90). To avoid these
difficulties, the following procedure is suggested.

In the plane perpendicular to the ray, let us introduce two mutually
perpendicular unit vectors é,, €, on the ray (see Fig. 1) by the following relations

dé,/dt=—vK cos9t, dé,/dt=—vKsindt, 0
where K denotes the curvature of the ray and v is the velocity, v=a along the

rays of the P wave, v=f along the rays of the S wave. The angle 3 is given by
the formula

9=§de€+90, (6)
thus
9=0+9,. (6)
Us
—r‘. —
€
—e: —
t
.’: Yoy
/ °
/

Fig. 1. Introduction of vectors &,,¢, in a plane perpendicular to the ray. Unit vector f, tangent to the
ray, and vectors é,, ¢, form a right-handed system of orthonormal vectors. As the wave progresses,
the vector Uy rotates in the plane perpendicular to the ray with respect to normal i and binormal b,
see 2, and X,. The vector U, however, does not rotate with respect to vectors &,,8,, the angle w is
constant along the ray. For details see text
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The vectors é,, €, change according to relations (5) along the ray. The initial
orientation of the vectors €,, é, (for t=1,) in the plane perpendicular to the ray
can be chosen arbitrarily by a choice of the additive constant 3.

Using Frenet’s formulae, we easily obtain

-

¢, =hcos9—bsing, é,=nsind+bcosd. )

It follows from (7) that in the plane perpendicular to the ray, vectors é,, &,
rotate with respect to vectors it and b as the wave progresses. The velocity of the
rotation is d9/dr=vT Thus, in the case of an S wave, the velocity of the rotation
of vectors &,,€, is the same as the velocity of the rotation of the vector Ug. It
means that vector Ug does not rotate with respect to _vectors €, é,, see F1g 1.
Therefore it seems quite natural to express the vector Uy with respect to vectors
é,, é, (instead of i and b)

US=(USIE'1+USZEZ)F(t—rS_). (8)
Comparing (2) and (8) and taking into account the formulae (7), we obtain

Us, = U, cos3—Ug,sind, U, =Us,sin9+ Uy, cos 3. )
Let us further denote

¥51(v1,72) =P, 089 — P sindy,  ¥s,(v1,7,) = ¥s,5in8o + ¥, cos . (10)

After substituting (3) into (9) and taking into account (10), we arrive at final
formulae

s1=BpD) 2 W (71,72, Us,=(BpJ)~ 1> ¥, (7,,7,)- (11)

Thus, in the medium without interfaces, components Uy, and U, are not
coupled to each other and they both change along the ray in the same way.
However, this will not hold true after a reflection (transmission) at an interface.

To determine the vector fjs at an arbitrary point of a ray, vectors €,, é, must
be known at this point. If Egs. (5) or (7) are used for this purpose then the above
mentioned difficulties connected with the determination of vectors i and b arise
again. Fortunately, the vectors €é,, é, can be determined without knowledge of
vectors fi and b, as it is shown in Sect. (4).

If there are curved interfaces of the first order in the medium, the leading
term of the ray series changes discontinuously across them. This discontinuity
can be expressed by introducing the reflection (transmission) coefficients. In the
zero approximation of the ray theory, the process of reflection (transmission)
at a curved interface can be investigated locally as a reflection (transmis-
sion) of a plane wave at a plane interface. Therefore it is convenient
to introduce the SV and the SH components of the leading term of the
ray series for the S wave in the vicinity of the point of incidence. We
shall denote these components by Us, and USH At the point of incidence the
vector Uy can then be expressed as Ug= Uy, &g, + Uy 85y Here &g, and &gy are
two mutually perpendicular unit vectors both perpendicular to the ray. Vector
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&g, lies in the plane of incidence, i.e., in the plane determined by the normal to
the interface and the tangent to the ray at the point of incidence. Vector &gy is
perpendicular to this plane. Vectors t,&y, &, form a right-handed system.

When a P or SV -wave impinges at an interface, only P and SV reflected and
transmitted waves are generated, when an SH wave impinges at an interface,
only SH reflected and transmitted waves are generated. Thus, there are five
reflection and five transmission coefficients of the types: Rpp, Rpsy, Rsyps Rgysys
Rsush-

If we denote any of the components Up, Uy, Usy corresponding to the
incident wave at the point of incidence by U’ and any component of a reflected
(transmitted) wave at the same point by U, we can write

UR=U'.R, (12)

where R is the appropriate coefficient of reflection (transmission).

In the case of pure P waves, the component U, determined from (3) can be
immediately substituted in formula (12). Thus, without difficulties, it is possible
to get a well-known compact formula for an unconverted multiply reflected
wave [see (19)].

The situation becomes more complicated when there is at least one element
of the ray along which the wave propagates as an S wave. Then, before applying
formula (12) at the point of incidence, it is necessary to transform components
Us,, Us, (or U, Ug,) into Ugy and U, components. Then it is possible to apply
(12) and to use Ugy, Uy, as Ug,, Ug, on the reflected (transmitted) ray at the
point of incidence or return to components Ug,, Ug,. It is evident that it is not
straightforward to get a compact formula for the leading term of the ray series
for a displacement vector of a multiply reflected converted wave similar to that
for pure P waves. Therefore it has often been proposed to determine the
components of this vector following the ray from one interface to another,
successively applying relations (3) [or (11)] and (12). An alternative compact
formula for the determination of the leading term of the ray series for a
displacement vector of a general multiply reflected wave is suggested in the next
section.

3. Compact Formulae for the Determination
of the Leading Term of the Ray Series

Let us introduce a vector UT = (U, Us,, Us,), where the superscript T stands for
transpose. For a P wave only the first component of the vector U7 is non-zero,
for an S wave the second and third components are non-zero, U, being zero. Let
us further introduce the vector Y7 =(%,, ‘PSI, ¥,,) which has similar properties
to those of the vector UT. Then, the first Eq. in (3) and Eq. (11) can be rewritten
as follows

U=(@wpJ)" 2 %(y,,7,), (13)

where v=a along the rays of the P wave (Us, =Us,=%,=%,=0) or v=4
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along the rays of the_ S wave (Up=¥,=0). Relation (12) can be also expressed in
terms of the vector U. It is

['jn — pmn fjm (14)

Index m corresponds to the incident wave: m=1 for the incident P wave, m=
—1 for the incident S wave. Index n corresponds to the generated wave: n=1 for
the generated P wave, n= —1 for the generated S wave. The values —1 and 1
were chosen in accordance with the numerical code of waves suggested in
Cerveny et al. (1977), pp. 88-89. The 3 x 3 matrix P™" has the following form

Rppdy,, 04, Rgyp0 d,,8inQ Rsypd_1,,6;,c08Q

—1m
pPmr= 0 Rgpsu0_1m0_1,€08Q2 —Rgpep0_1m0_,8inQ)]. (15)
Rpsy01mO_1n Rsysy0_1,0_1,810Q  Rgygyd 06 ,c08Q

Here Rpp, Rpsy, Rgyp, Rsysy, Rsusy are standard coefficients of reflection
(transmission), see (12), J;; is Kronecker’s symbol, © is the angle by which it is
necessary to rotate vectors &,, €, at the point of incidence to make them
coincide with the vectors &gy, &g, respectively, see Sect. (4), formula (26). The
matrix P™" includes both the transformation of the components of the leading
term Up, Ug,, Us, into Up, Usy, U g, and the coefficients of reflection (trans-
mission) at an interface.

Now it is not difficult to combine relations (13) and (14) and to write a
compact formula for a general converted multiply reflected wave at a point M
on the ray

N N ’ AYT% . J' 0 1/2 .
U(M)=[D(M) p(M) J(M)]—UZ H {[M] Pmn(oj)} g

j=1 p(oj) U(Oj) J(Oj) (16)

The terms [(p" v’ J')/(p vJ)]*/? are introduced to compensate the discontinuities of
the function (pvJ)~ /2 at interfaces. N is the number of reflections and trans-
missions along the ray, O, is the j-th point of incidence of the ray at an interface.
The primed (unprimed) quantities are taken on that side of an interface where
the generated (incident) wave propagates. For m=—1, v=f, m=1 implies v=o.
The same holds for a generated wave.

For a point source with the directional characteristics g7(¢,, J,)
=(gp, gs1, &s2), formula (16) can be rewritten into the form

- _ 1 Po¥, 1z
UM=10 [p(M) v(M)]

N ’ / 1/2
P (0)v'(0)1? | }’
jl=_[l {I: P(Oj) U(Oj) ] p (OJ) g((po’ 5a)> (17)

J(M)\'? N ;

siné,/ ;.5 LJ'(0)
symbols ¢,, d, denote two take off angles of the ray under consideration at the
source.

1/2
] , see Cerveny et al. (1977), p.38. The
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For an unconverted S wave we can again use formulae (16) and (17). The
individual quantities can be however, simplified to have the following meaning:

IjT:(USl’(JSZ)a itT:(q{Sla lIlsz), gTz(gsngSZ)s

P (RSHSH cosQ —Rgysn sinQ) (18)

Rgysysin@  Rgyg, cosQ

5 For an unconverted P wave formula (16) reduces to the wellknown formula
(Cerveny et al,, 1977, p. 38)

/0 ’0 J'O 12
Up=(xpJ)- “2[11{ [—%—ﬁ%] }%(vl,vz). 19)

In (19) R; denotes the appropriate reflection (transmission) coefficient at the j-th
point of incidence O;.

4. Determination of the Vectors t, ¢,, &,

To determine the vector U at an arbitrary point of a ray, it is necessary to know
the vectors t, &, &, at any point of the ray. Let us note that the knowledge of
these vectors is not necessary only for the determination of the vector U. The
vectors t, é,, é, may also play an important role in some methods of com-
putation of geometrical spreading (Cerveny et al, 1977; Popov and Piencik,
1978a; Popov and PSencik, 1978b; Cerveny and Psencik, 1979; Hubral, 1979).
Thus, once determined, the vectors €, &,, &, can serve two purposes: to determine
the geometrical spreading and to determine the components of the vector U
along the ray.

The vectors t, é,, €, can be determined in various ways depending on the
form of the ray-tracing system used for the computation of rays. Here, the
following ray-tracing system will be considered (Cerveny et al., 1977, p. 58)

dx;/dt=v*p,, dpjdt=—v"l'v,. (20)

i

In (20), p; are the components of the slowness vector Vz, v;=0v/0x;, i=1,2,3.
The determination of the vector t is straightforward,

E:(vpl,vpz,vp3). (21)

The vectors &,,e, can be determined in the following way. At an arbitrary point
of the ray, let us define two mutually perpendicular unit vectors

§1=(UD_1P1 p3,vD~'p, ps, —vD), §z=(_D_1P2,D_1P1,O) (22)

where D =(p} +p3)"/?. Vectors fl,fz lie in the plane perpendicular to the ray, see
Fig. 2. Vector i, _is always lying in the vertical plane contalmng the tangent to
the ray f, vector 12 is always horizontal. The vectors t, iy, i, form a right-handed
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Fig. 2. Introduction of auxiliary vectors iy, i, in the plane X, perpendicular to the ray. Vector i, lies
along the intersection of the plane X, and vertical plane X, containing the tangent to the ray t.
Vector i, lies along the intersection of plane X, and horizontal X,. Vectors f, i, i, form an
orthonormal right-handed system. For details see text

system. When the components of the slowness vector p, are known the vectors t,
i,, i, can be simply determined. Let us note that i,, i, cannot be determined
from (22) in the case of the ray parallel with the z-axis, ie., for p,=p,=0. In
such a case, the vectors fl, fz can be defined in another way, e.g., as follows

fl=(—v15,uD_‘1p1p2,015‘1p1p3), iz=(0,—[5'1p3,D_'1p2), (22)

where D=(p2+p?)l2

Since the vectors €,,¢, also lie in the plane perpendicular to the ray, it is
possible to express them as follows (see Fig.2)

€, =1,cos®—1,sin®, &,=1,sin®+i,cosd. (23)

As it was shown above, the vectors i,,1, can be simply determined, thus the
problem of the determination of the vectors &, &, reduces to the problem of the
determination of the angle &.

Taking into account that the relations

vKcos3=—(Iv-¢,), vKsind=—(I-8&,)

hold identically along the considered ray [Popov and P3encik, 1978a, Eq.
(3.18)], Eq. (5) can be rewritten as follows

déjdt=(W-&)t, i=1,2.

Then, differentiating the first equation in (23) with respect to 7 and taking into
account the new form of Eq. (5), we obtain
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(di,/d7) cos @ —i, sin d(dP/d7)
—(di,/d7)sin @ —1i, cos B(dD/d7)=(Vv-&,) .

Considering, e.g., the z-component of this vectorial equation, after some manipu-
lation using relations (20)+23), we get

d®/dt=p,(p?+p3)~ (v, P, — v, py). (24

Let us mention that a similar expression for @ was obtained by Popov and
Pencik (1978b). They, however, used the ray-tracing system in which the polar
angles ¢ and ¢ were used instead of p,, p,,p;.

At each point of incidence O; of a ray at an interface the vectors €,, €, must
be rotated by an angle @, to make them coincide with vectors égy, €y,
respectively. Let us denote the corresponding value of the angle @, which
mcludes Q;, by &(0)). After reflection (transmlsswn) the vectors égy, €, as well
as 1y, 1, transform into vectors €y, €y, 1j, 1, corresponding to the reflected
(transmitted) ray at the point of incidence O}, and it holds &, =®gg,. Let us
choose the vectors &), €, corresponding to the reflected (transmitted) ray at the
point of incidence as follows, &, =&, @, =%¢j,. It corresponds to the choice of
Usy, Usy components as Us, U, [Sect. (2)] at the point of reflection (trans-
mission). Then, it follows from (23) that the angle @ changes discontinuously
across the interface, from the value &(0)) to a value @'(0)). Let us denote the
difference between these values by Q, Q;=®'(0,) — ®(0)).

If we take into account all the above facts, we can integrate (24) to yield

4’(T)=5 p3(p1+p) (v P2~ 0, pl)dé+j§1 (Q;+ Q)+ P(z,). (25)
The angle Q; is determined by the relations

cos Q;=[54(0))-%,(0)], sinQ;= —[s4(0;)-2,(0)]. (26)
The angle £; is determined by the relations

cosQ}=(é'SH-f’l)cosdi(O)—(é'SH 7')sin¢>(0)

sinQ;: — (€5 -1 1)sm<15( ) — (&g 12) cos ®(0), 27

where, as above, the symbol ¢(0;) denotes the value of the angle @ correspond-
ing to the vectors €;4(0)), €,,(0)) (ie., the angle which includes only Q;, not ).
The additive constant &(t,) in (25) can be determined from the following
relations

cos (1) =[e,(10) 1, (to)],  sin d(t,)= —[&,(1,) i,(1)]- (28)

Let us emphasize again that the orientation of vectors &,(t,), ,(r,) can be
chosen arbitrarily, see (6'), (7) and the joined discussion.

Thus formulae (21)«28) make possible the unique determination of the
vectors t, €,, ¢, at an arbitrary point of a multiply reflected wave.
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