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Wave Propagation in Stratified Anisotropic Media

An Algorithm for the Computation of the Reflection
and Transmission Coefficients as Well as of the Fields*

L. Bossy

Université Catholique de Louvain, B-1348 Louvain-la-Neuve and
Institut Royal Météorologique, B-1180 Bruxelles, Belgium

Abstract. An algorithm based on the accurate computation of the matrizants
of elementary slabs of a stratified medium and also on the properties of the
propagation matrix is developed. It leads to the step by step computation of
the reflection and transmission matrices of the medium and to the com-
putation of the independent solutions of the differential equation. The
multiplication of the matrizants and thus the swamping of the solutions are
avoided.

The algorithm is explained in the scope of the special problem of the
propagation of E.M. waves in the ionosphere; it works also provided the
transmission matrix has the required properties.

Key words: Wave propagation — Anisotropic media — Reflection coef-
ficient — Transmission coefficient.

Introduction

There are numerous studies devoted to the propagation of light and of radio
waves through stratified media. Bibliographical references can be found in the
textbook of Born and Wolf (1970) and in the review paper of Budden (1969)®.

The main goal of these studies is either the determination of the coefficients
of reflection and transmission of the medium or the determination of the fields
with respect to the altitude or both.

The mathematical problem to be solved is the integration of a vectorial
differential equation of the form:

d ., .
ik, Ti=0

*  Dedicated to Professor Dr. K. Rawer on the occasion of his 65th birthday

' Among the more recent papers, it is worth mentioning those of: Altman and Cory (1969a and

b); Altman et al. (1970); Altman and Fijalkow (1970); Altman and Postan (1971); Berreman (1972);
Honig and den Engelsen (1977); Nagano et al. (1975); Teitler and Henvis (1970)

0340-062X/79/0046/0001/$02.80



2 L. Bossy

where

f is a vector with an even number (2p) of components;

k, is a wave number of reference;

T is a square matrix (2p x 2p) which depends on k,, on the direction of the
wave normal in the vacuum and on the physical parameters of the medium at
each height. Moreover, this matrix has the property that one half of its
eigenvalues have a negative imaginary part and the other half have a positive
imaginary part. Such matrices will be named matrices of class t,,.

For instance, the matrix T is of class 7, for isotropic media; it is at least of
class 7, for anisotropic ones.

The purpose of this study is to develop an algorithm based on the matrizants
(or transfer matrices) of elementary layers on which the matrix T is approxi-
mated by means of a matrix polynomial and on the use of the fact that the
matrix T is of class t,, in order to avoid the numerical swamping of the
solutions during the integration.

The statement of the method will be made in the frame of the propagation of
E.M. waves in an horizontally stratified ionosphere, using the language familiar
in the field.?

An important part of the algorithm has already been stated in an earlier
paper (Bossy and Claes, 1974).

1. Vectorial Differential Equation

The differential equation governing the propagation of E.M. waves in a stratified
medium is derived from the Maxwell equations

0 1 0
IE=——B=——u—H
et a M
0 1 0
curlH=5D or curl%-—c—sEE (1.1)
with

ko 1
Jf=]/—H, B=pu,pH=-p#
€0 c

1
D =¢,:E, VED=—3E (1.2)
& c

where the tensors ¢ and u depend only on the height variable z.

2 The basic formulation for non horizontal stratifications can be found in Rawer and Suchy (1967,
p. 147)
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Expressing the fields in the form:

E =e(z)expilwt—ko(n;x+n,y)]

A =h(z)expilwt—ky(n;x+n,y)] (1.3)
where

ko=w/c

n,=n;e;=sinf,cos P,e, +sinbf,sin P,e,+cos 0 e, (1.4)

are defined with respect to the vacuum, one can transform (1.1) in a system of 6
equations; namely in a matricial form:

[0 ][]+, o] []-0 (19)

where the matrix D represents the operator

0 E —ik0n2
D= . 1.6
S 19
z

ikon, —ikgn, O

The third and sixth equations are algebraic; they allow the elimination of e, and
h,, so that finally the fourvector

f=(e,,e,,hy,h)" (1.7)

is the solution of the homogeneous differential equation (Clemmow and Head-
ing, 1954)

d .
d—zf+lk0Tf=0 (1.8)
where
T, T
T=! 2] 1.
- (19)
with3
Tl,jk=_”jask/533+(_1)j+k+l”3—kﬂ3-j,3/#33
T, =3 h;m/ess+ (=1 (s a3 —Ha_j 3 Hai)/Has
T3,jk=—53klnjnl/:u33+(_l)j(83—j,k833_83—j,383k)/833
T4,jk=_njiu3k/:u33+(_1)j+kn3—k83—j,3/833'

>  The indices j,k and I are equal to 1 or 2 and the elements &,,,, are such that Epnp =

o= " Eamp= " Epnm with £,,;=1

npm pmn
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As can be seen, the matrix T depends only on the pulsation w, on the direction
parameters n; and n, and on the constitutive tensors of the medium. One
remarks that trace T=0 for every medium where & and u are diagonal tensors;
this is for instance the case for any isotropic medium.

More precisely, for such isotropic media one has

e=el, pu=ul (1.10)

B 0 0 n,n, M_l_a_f
e e
n% nin,
0 0 —,u+? e
£
T= 5 . (1.11)
mey, om o
u !
n3 ngn,
e——= 0 0
| M u _

On account of the particular structure of T, (1.8) can be put in the form of the
differential equation

d [exii ule hx]

dz eyii]/ﬂhy

e LU —
) n + n exii /,L/S hx

+lk0 2_ 2 [ . :IZO

P LI e, i)/ weh, (1.12)
n n
where
ep=n’=(M—iy)*. (1.13)

The secular equation corresponding to the matrix T in (1.12) is
At=n*—(n?+n3)

its eigenvalues have the property required by the matrices of class 7,.

In the general case, the matrix T of (1.8) is of class 7,. As a matter of fact, if
one considers the propagation in a homogeneous medium having the physical
characteristics of the medium at the level z, one has to solve the equation with
constant coefficients

d
Tk TE1+0 (1.14)
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the solution of which is (Gantmacher, 1966, p. 119)
f=1(z) e~ koT® -2 (1.15)

Quite generally, this solution can be expressed in terms of linear combinations of
the exponential functions

e-ikodalz=2)  (y=1 .. 4)

where the g are the eigenvalues of the matrix T. Booker (1936) has shown that
in the present case two eigenvalues have a negative imaginary part and that the
two corresponding eigenvectors represent waves the energy-flow of which is
directed upwards and that the two other eigenvalues have positive imaginary
parts with corresponding waves carrying energy downwards.

This specific property of the matrices T will be systematically used in the
development of the algorithm.

2. Matrizant of an Elementary Layer

It is supposed that the medium considered is situated between the levels z, and
z(zo<z,) and that the integration domain is divided into s sub-domains or
elementary layers through intermediary levels situated at z,z,,...,z,_,.

On the nth elementary layer ze[z,_ ,,z,], one defines the matrizant
M(z z) through the relation (Volland, 1962b)

n—1»
f(z,_)=M(z,_,,2)1(2) (2.1)
so that, introducing in (1.8), one gets

d
EM—ikOMT=0 with M(z,_,,z,_,) =L (2.2)

One knows (Rawer and Suchy, 1967, p. 162) that if a polynomial development of
Ton [z, ,,z,] is used such that

T=) T)(z—z,_,) (2.3)
j=0
then, the corresponding potential development of M can be written as
M=) M, (z—z,_)" My=I (2.4)
k=0

where the matrices M, are obtained through the recurrence relation

ik Kt
Msz ZOMk—m—le; M, _,=0. (2.5)

The matrizant ,M related to the nth slab is the matrix defined by

M=M(z,_,.z)= Y M(z,—z,_.)" (2.6)
k=0
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One could verify (Bossy, 1971) that with an approximative representation of T
by a polynomial of the fifth order it is possible for electronic distributions like
those of the D region of the ionosphere to work with slabs of 1km. thickness
and to obtain ,M with a relative precision better than 10~7. One could also
ascertain that the number of terms needed for the development of ,M did
practically not depend on the degree of the polynomial representation of T.

These remarks are no longer true in the neighbourhood of the levels where T
diverges; it is then necessary to consider that z varies along a path distorted in
the complex z-plane and that, after the circuit around the singularity, the
integration proceeds again along the real axis (Budden, 1969). Proceeding in this
way, the set of matrizants which can be computed corresponds either to a
continuous profile (with some discontinuities in the first derivatives at the
subdivision levels) or to a profile with discontinuities at some subdivision levels.
Apart the fact that it needs the representation of the matrix T by the develop-
ment (2.3), the volume of computation required exceeds not very much those
needed in the method of Inoue and Horowitz (1966) but, for identical slab
thicknesses, the approximation of the matrizants is much better.

The multiplicative property of the matrizants such that

f(ZO):M(ZO’Zn) f(Zn): IM 2M 3M an(Zn) (27)

is well known; one knows also (Rawer and Suchy, 1967, p. 158) that the
matrizants are nothing else than particular wronskians of the differential equa-
tion. Noting the fact that, for the matrices T of class t,,, the particular solutions
of the differential equation show extremely important relative variations; one
knows that the solutions, the modulus of which grow, tend to mix with the
solutions the modulus of which decrease with the effect that the independence of
the solutions is destroyed as well as the significance and the usefulness of the
wronskian. Therefore, it is fundamental that the integration algorithm avoids the
product of matrizants if one needs to be safe from the swamping of the
solutions.

3. Propagator and Diffusion Matrix

One considers an elementary slab ze[a, b], situated between two semi-infinite
uniform media. The matrizant M related to this slab and the propagation
matrices T; and Ty of the uniform media I(z<a) and S(z=b) are known; are
also known the matrices Q,; and Qg the columns of which are the eigenvectors
respectively of T; and Tj.

One knows that the relations

f(a)=Q,c(a);  f(b)=Qsc(b) (3.1)

define the decomposition of the vectors f with respect to the eigenvectors of T as
they appear in Q. If the media I and S have been selected in such a way that
there exist two upgoing and two downgoing waves, then the components of the
vectors ¢ are the amplitudes of these waves.
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The relation between these amplitudes at the levels a and b is

c(@=Q; f(a)=Q; ' Mf(b)=Q; ' M Qs c(b)=Pc(b) (3.2)

where (Lacoume, 1967) the matrix P is called the propagator related to the slab
[a, b] situated between the two uniform media I and S.

If one classes the eigenvectors in such a way that the two first columns of Q
contain the upgoing waves and the two last the downgoing waves; then the
fourvectors ¢ can be split in two bivectors namely the bivector u for the upgoing
waves and the bivector d for the downgoing waves. For instance, at the levels a
and b, one has

cla)= [:] c(b)= [::] (3.3)

The diffusion matrix S (Volland, 1962a) connects the amplitudes of the waves
leaving a slab with the amplitudes of the waves entering this slab in the form

[]=s[al-[5 wills] 4
“b— db—Dg R; db. G4
The reflection matrices R and the transmission matrices D are 2 x 2 matrices;

they are related to the 2 x 2 P. matrices obtained when partitioning P according
to

S

through the relations (Volland, 1968)
R:=P,P[!, D'=P;/', Di{=P,—P,P['P,, Ri=—P 'P,. (3.6)

It appears that as well the propagator as the diffusion matrix depend on the
structure of the medium through the matrizant and on the choice of the
contiguous uniform media through the eigenvectors of their propagation mat-
rices. It is worth remembering that the choice of these contiguous media is
arbitrary as far as their eigenvectors correspond to an equal number of ascend-
ing and descending waves.

4. Diffusion Matrix of Two Contiguous Slabs

Starting with the diffusion matrices of two contiguous slabs, one looks for the
expression of the diffusion matrix of the sum of the slabs in terms of those of the
individual slabs. More precisely, one considers the slab [a,b] situated between
the uniform media I and S and the slab [b, c] situated between the media I*=S
and S* for which one has

d,] [R® D1[u, d,] [R, D’]u,
Ll=lot wellal Lal=lo; el @
ub Da Rg db uc Dg Rc dc
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and one looks for the expression of

[wl-lo: 1G] @

in terms of the known diffusion matrices with the condition that the slab [a,c]
be situated between the uniform media I and S*.
One starts from the two equations

u,—Rid, =D’u,

—RSu,+d,=D"d,
eliminating d,, one obtains

(I_RgRi)uszZua—‘ngD?dc
or

u,=(I—R;R;)~" (D’u, +R;Dd,
introducing u, in

u,=Dju,+Rd,
one has

u,=Dj(I—RR;)~" (D}u,+R;D’d)+R%d,

=D’u,+R%d,

so that

R? =R?+Dg(I—R¢RS)~! RZ D’

=R+ D;Ri(I-R;R})~'D*

D:=D;(I1—R¢R;)~' D2, (4.3)
One gets in a similar way

R =R.+Dj(I—R;RY)~' R; D}

=R}+DR; (I-R{R;)~' D

D¢ =D;(I-R;R;)~ " Dy. (4.4)
With the aid of these relations, it is possible to determine step by step the
submatrices of the diffusion matrices using operations which avoid the multipli-

cation of matrizants, and which, except for the inverses, use only matrices the
terms of which have modulus less than unity.

4 Because of the identity

(I—AB) 'A=A(I—BA) .
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From a formal point of view, these relations are analogous to those obtained
by Altman and Cory (1969b) in their application of the thin-film optical method
(Born and Wolf, 1970, p. 51-70).

5. Reflection and Transmission Matrices of a Medium

One considers a stratified medium between the levels z, and z, divided into s
elementary slabs. With each subslab (say the nth), one associates a lower
uniform medium I, and an upper uniform medium S,; the set of these media is
subject to the conditions S,=1I,,, and I, =S, the latter being related to the

vacuum.
If one writes u,=u(z,) and d,=d(z,), one knows that

[wl=loz wlla]-s[3] o

where according to (4.3 and 4) the submatrices of S, are obtained through the
relations
R;=R;"'+D;_,(I-R;_,R;_)~'R;_, D~
=R}~ +D;_,R}_,(I-R;_,R;_)"' D}
D;=D;_,(I-R;_,R;_,)~'D;~"
D;=D;_,(I-R]_,R;_,)~' D"
R;=R;"'+D)_,(I-R;_,R]_,)~'R_, D"’
=R;"'+D; ,R;_,(I-R;_,R;_ )~ 'D;"". (5-2)

Starting with R?=0 and DJ=1I and applying s times the relations (5.2), one gets:

L]l we] 2] =
u, DS RZ1Ld,

where R; and Dj are respectively the reflection and the transmission matrices of
the medium when the source is located in the medium I, while R? and D? are
the corresponding matrices when the emission takes place in the medium S,.
Particularly, if the columnvectors of the matrix Q in the vacuum are put in the

following order: upgoing parallel, upgoing perpendicular, downgoing parallel
and downgoing perpendicular, one gets with the usual notations

R R D D
R = [u T _L]; D= [u o L:|' (5.4)
J_RH J_R_L LDH J_D‘

i

6. Independent Solutions of the Differential Equation

If the application of the algorithm is concerned with the fourvector f (and of
the fields) at the subdivision levels, one has previously (a) to store all the
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submatrices R and D}, (b) to compute the submatrices corresponding to the
integration from the top to the bottom of the medium; namely:

RI=R!"'+D;, (I-R},,R;, )" 'Ry, D"
=RI*'+D; Ry, (I-R;, Ry, )" DI
D'=D;,,(I-R;, R!

-1 n+1
n+1 n+1) Ds

D;=D;,,I-R; R, ,)~'D;*!

R;=R;*'+D;,,(I-R; ,R},)"'R;,,D;*!
=R:+1+D:+1R;+1(I_R:+1Ri+1)_lD:+1 (61)

starting with R{=0 and D=1 and to store all the submatrices R} and D?.
Then, the formation of the two pairs of solutions proceeds as follows:
(a) for the first pair, one admits the limiting condition

d,=0 (6.2)

and then, one looks for solutions corresponding to a source situated under the
level z,. The integration then happens, not with initial conditions, but taking
this limiting condition into account; in this way, the growing of unwanted
solutions is avoided.

Under this condition, one has at the extreme levels:

d,=Rju u,=Dju, (6.3)

and at each intermediate level z,

d,=Ru,+D!d,, u,=Dju,+Rd,
so that

d,=(D;)~"(d,—Rju,)=(D;)" " (R —R))u,=Bju,

u,=Dju,+R;Bju,=Alu,. (6.4)
If one notes that owing to (4.4)

R;—R;=D;R;(I-R;R)~' D;
one obtains for B the expression

B! =R;(I—R:R;)~'D].
Then, one gets

A7=D;+R;B;=[I+R;R; (I-R;R;)"']D;

=(I-R}R;)~'D;° (6.5)

5 According to the identity

I+AB(I—AB)~'=(I—AB)~*
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and

B/=R; A’ (6.6)
(b) for the second pair, one admits the limiting condition

u,=0 (6.7)

corresponding to a source placed above the medium.
Then one has at the extreme levels:

d,=D!d,, u=Rd (6.8)
and at each intermediate level

d,=Ajd,=(I-R;R})~'D}d,
u,=B"d,=R°A"d,. (6.9)

The linearity of the differential equation allows the grouping of the two pairs in
the form of:

cer[g)- 15 B0

n

with, at the extreme levels,

eo-[g]-le o[a ew=[1-[o Y]
2= do]— R plla )l ““Tlal7 Lo 1] d.
Finally, the fourvectors f(z,) are obtained from

f(z) = Q(z)e(z) = Q(z,) [;; }z] 3] 6.11)

7. Choice of the Media I, and S,. Interpolation

In the present algorithm, the media I, and S, are only introduced in order to
define four eigenvectors corresponding, from a physical point of view, to a pair
of ascending waves and to another pair of descending waves. These eigenvectors
constitute a vectorial basis in terms of which the solution is decomposed at each
intermediate level; these choice of these vectors (and of the media) is largely a
matter of convenience; only physical reasons can restrict this choice. It has
evidently no effect on the final results (6.11) of the integration; only the matrices
of diffusion bear the mark of the adopted choice. In most algorithms (Inoue and
Horowitz, 1966; Altman and Cory, 1969b; Nagano et al., 1975), the media I,
and §, are defined using the values of the physical parameters at the levels z,_,
and z,. Then, the solution is decomposed in terms of the characteristic waves at
the level reached during the integration. These waves are determined starting
from the eigenvalues of the matrix T(z,) (in ionospheric propagation, they are
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the roots of the Booker equation) and then forming the corresponding eigenvec-
tors. This type of decomposition bears interest for the physical interpretation of
the propagation conditions. However, this interest must not be overrated.

In practice, the numerical treatment gains in simplicity and speed when each
of the media I, and S, is the same uniform medium. In the special case of
electromagnetic waves, it is advisable to use the vacuum for which no problem
of normalisation of the eigenvectors arises.

If the fields are decomposed with respect to components linearly polarized in
the plane of incidence (| component) and perpendicular to it (L component),
one uses the matrix:

cosf,cos P, sin@, —cosf,cos P, sin @,
cosf,sin®, —cos®, —cosl, sind, —cos P,
Q=| -—sin®  cosb, cos P, sin®, —cosf,cos P, (7.1)
cos P, cosf, sin P, —cos P, —cosf,sin®,
I 11 I 1l

and one obtains, with

w=[""] and a=[% 12
’ u,, ’ do.L
the matrices
R R D D
Rf,=[“ T J.:| and DZ___I:H T 1] (7.3)
lR” J.R.L J_DH J.Dl

defining respectively the reflection and the transmission of the considered
medium limited from both sides by the vacuum. For circular polarizations
(r=right, I=1left), one gets directly (Budden, 1961)

R. R D, D
Rs= rYr r l]=U_1Rs : DS:[r r 1 r]=U—1DsU 74
o lill{r lRl OU o rDl lDl ° ( )
with
1 1
U=2“”2[i ] (1.5)
—1

Having computed the diffusion matrix related to a medium S, at the level z,, it
is not difficult to obtain the diffusion matrix related to an other medium S/ at
the same level. If Q' is the matrix with the eigenvectors of S/ one forms the
matrix and the partition
V, V

! 2] (7.6)

QQH:[V3 v,
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and one applies the relations
R =R;+D;V,D’}
D';=(V,—R}V;)~'D;
D °=D2(V,;R'2+V,)
R =(V,~R;V;) ' (R;V,—V,). (7.7)

Finally, in regions where the fields vary very fast with height, it can be useful to
compute the fields at closer levels in order to describe or to interpret the results
of the integration. The easiest process for this interpolation consists in the
computation of the matrizants related with the subslabs and to use the relation
(2.1). No swamping has to be feared in this case.

Concluding Remarks

All the parts of the algorithm have been programmed in FORTRAN V and
tested on the UNIVAC 1100/40 of the Institut Royal Météorologique, including
the path distortion around the singularity of T which arises at great height
where the collision frequency is very low.

There arose no numerical difficulties for the ionization profiles (sum of
Chapman functions) used for the D- and E-regions; the only difficulties were met
with the resolution of the Booker equation and the subsequent formation of the
eigenvectors, especially (as is well known) as soon as the roots are not well
separated.

Therefore, the systematic use of the vacuum as uniform medium in the case
of E.M. waves brings advantages as regards speed, usefulness and also accuracy.
Further, if one wants to appeal to characteristic waves at any level, it is sufficient
to use (7.7); this will have no influence on the results of the present algorithm.

Finally, this algorithm is suitable for the numerical treatment of any differen-
tial equation like (1.8) provided T is of class 7,,. Such a case arises, after a
change of variable, in the theory of gravity waves within the atmosphere
(Volland, 1969, p. 500).
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