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Calculation of the Effect of the Oceans
on Geomagnetic Variations With an Application
to the Sq Field During the IGY

B.A. Hobbs and G.J.K. Dawes

Department of Geophysics, University of Edinburgh, James Clerk Maxwell Building, Mayfield
Road, Edinburgh EH9 3JZ, Great Britain

Abstract. A thin non-uniformly conducting shell at the Earth’s surface is
taken to represent the distribution of the world’s oceans. The continents are
represented by zero conductance. The Earth model is completed by a
perfectly conducting conductosphere electrically insulated from the surface
shell. The theory for electromagnetic induction in such a model has been
given by Hobbs and Brignall (1976); this paper presents the detailed method
of calculating solutions, using that theory. Examples of induction by various
spherical harmonic terms are presented. A synthesis of such solutions is
used to approximate the observed external Sq field during the IGY, and the
corresponding calculated induced field in the model Earth is compared to
that observed.

Key words: Electromagnetic induction - Oceans - Sq - Analytic con-
tinuation - Numerical calculations - Vertical component induction.

Introduction

The classical paper of Lahiri and Price (1939) showed that to model the
response of the Earth to Sq and Dst variations requires the presence of a
conductosphere, in which the conductivity increases steeply with depth, together
with a thin conducting shell at the Earth’s surface. One possibility is that this
shell, taken to be uniform in their model, represents an approximation to the
effect of the oceans. However, the oceans are distributed irregularly over the
Earth’s surface. To obtain a more detailed analysis of their effect on geomagnetic
variations therefore requires solution to the problem of electromagnetic in-
duction in a non-uniformly conducting thin shell. Price (1949) gave the appro-
priate theory and a slight extension, involving analytic continuation (Hobbs and
Brignall, 1976) enables his basic theory to be used for general problems. The
next step is to make numerical calculations for a conductosphere and oceanic
shell in which the conductance of the shell is more representative of the
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274 B.A. Hobbs and G.J.K. Dawes

ocean/continent distribution. That is the task of this paper. The model for the
surface shell is shown in Fig. 1, and is described below. In this first investigation
the conductosphere is assumed perfectly conducting. The region between the
shell and conductosphere has zero conductivity.

The general method of solution and details of the numerical calculations are
described in this paper and examples are given of induction by elementary
spherical harmonic terms. Such harmonic terms can be superposed to obtain
any inducing field and the corresponding solution may be determined. As an
example, a study is made of induction by the Sq field during the IGY, as
determined by Malin and Gupta (1977).

Mathematical Method

Since the surface shell is assumed infinitesimally thin the currents induced
therein may be described by a current streamline function . The boundary
condition to be satisfied at the surface r=a (Price, 1949) is

div(p grad y) = — u(0Z°/0t)— p(0Z'/ot) (D

where p is the reciprocal of the conductance of the shell, u is the freespace
permeability and (0/0¢) denotes differentiation w.r.t. time. For a conductosphere-
shell model, Z° and Z', both vertical fields measured positive down, have the
following significance. A primary magnetic field external to the shell may be
written as the gradient

H=grad Q*

where QF is the scalar magnetic potential. Only the radial component of this
field has any induction effect since the model confines induced current flow to
concentric shells. The vertical component of this primary inducing field is

Z0 = (007 or). 2

This primary field induces current flow directly in the conductosphere and the
magnetic field of these currents has a vertical component at r=a which we
denote by Z¢. The initial vertical field causing induction in the shell is then

Ze=ZP+Z". (3)

Currents induced in the surface shell (and described by ) have a magnetic field
the vertical component of which causes further induction in the shell (the self
induction effect). In addition, the magnetic field due to ¥ induces currents in the
conductosphere, the magnetic field of these currents induces further current flow
in the shell (the mutual induction effect). The vertical component of the
magnetic field at the surface r=a due to both self and mutual induction is
denoted by Z'. Thus the total vertical component at r=a is

Z9=Z7+7, @)
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the induced vertical component is
Zmn=7+7\ %)

For time-harmonic fields varying as exp(iwt) the operator (6/0t) may be
replaced by iw where w is angular frequency. Price (1949), shows that Eq. (1)
may be solved by iteration, where for the first step Z' is ignored, and for
subsequent steps successive approximations to Z' are used. This method yields a
series solution for Y of the form

l//:‘//0+l//1+l//2+"' (6)
which depends on frequency w and converges for @ small.

It is convenient to define
V_$
plw)=—= 3 o’'¢; (7)
w o

where w’*!'¢,=y; and ¢, is independent of frequency. For a given con-
figuration of conductors, (7) is a Taylor series having a certain radius of
convergence. Hobbs and Brignall (1976) show that analytic continuation may be
used to determine a series for ¢ convergent for all real w. The transformation
required is

p=w/y—w) (8)

for some constant y. This yields the solution

P(@)=0/(y — ) ZO P O
l=
where the y/’s are the linear combinations
A
n=3 ()7 (10
j=0

The constant y has an optimum value given by

y=114Q,i (11)

where Q,, the smallest eigenvvalue of (1), is

Q,=lim [¢,_,|/|¢,. (12)
Jj—o00
|¢;| is some norm of ¢; (Hobbs and Bringall, 1976, p. 535). With the functions
{¢;} known, series (9) is the solution of Eq. (1) for any real frequency w.
The frequency independent functions ¢; are determined by the following 2-
part iterative procedure. The first part of the j’th iterative step is the solution of

div(p grad ¢;) =R, (13)
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for ¢;, where R; is known. The second part is the determination of R;, from
¢;. We define
Rj=—ipzs j=0
——inzZ, jzI1 (14)
where
Zi=Y o'Z,. (15)
j=1

This second part is then accomplished by surface integral formulae for Z; in
terms of ¢;_, given by Hobbs and Price (1970) representing both self and
mutual induction. Methods of numerical quadrature for these integrals is given
in Hobbs (1971). It remains to solve, at each step, the differential Eq. (13).

A Finite Difference Approximation and Method of Solution

Equation (13) can be solved readily only for very simple distributions of p. We
determine a numerical solution by replacing the differential equation with a
finite difference form and solving the resulting linear system of equations. The
discrete points at which values of ¢; are to be determined are defined as the
intersections (nodes) of latitude and longitude lines, with some given spacing, on
the surface r=a. In the present application, lines spaced every 5° in latitude and
longitude are used, giving 2522 nodes. Each node of this grid is specified as an
oceanic or a continental point, these being chosen by reference to world maps
(taking into account continental shelves) with the constraint that, apart from
Antarctica, there should be one continuous land mass. The conductance at the
nodes corresponding to this land mass, and to Antarctica, are set to zero.
Figure 1 is a Plate Carré projection of the surface shell in which adjacent nodes
corresponding to zero conductance at the edge of land masses have been joined
by straight lines. It roughly approximates the distribution of continents and
oceans. Nodes for oceanic points are assigned an appropriate value of p.

In order to evaluate the r.hs. of Eq.(12) and to measure the accuracy of
solutions, a norm |¢;| has to be defined. For any function f having numerical
values at the oceanic nodes, we choose

|f1=£2"(f(0, 1)*}* (16)

where 0 and 4 are the co-latitude and longitude of a node respectively, and the
sum 2’ extends over the 20 nodes indicated by circles in Fig. 1.

For each iteration, ¢; is chosen as zero on the continental mass and is a
prescribed constant on Antarctica. (The method of determining this constant is
given below under ‘the island condition.’) To find the remaining values of ¢;,
Eq.(13) has to be discretized at each oceanic point and this is achieved by
replacing 1st and 2nd derivatives of ¢;, and st derivatives of p, by their 3-point
finite-difference approximations. For points adjacent to a boundary, these



Electromagnetic Induction in the Oceans 277

(EEEEEEEEENE

Fig. 1. Plate Carré projection of the surface shell representing the oceans and continents on a 5° x 5°
grid. Latitude span is from North to South poles. Longitude span is from 75°W (left margin) to
70°W (right margin), an overlap of 5°. Full circles indicate nodes from which norms of solutions are
calculated. The surface shell contains one mainland and one island

formulae apply directly to ¢;, whereas one-sided differences are used for the
derivatives of p.

There are 1406 oceanic points in the approximation given by Fig. 1. A direct
solution therefore requires inversion of a 1406 x 1406 matrix. The matrix is
sparse, may be partitioned, and the partitioned matrices are either zero or
striped. It is possible to invert such a matrix, but it is also amenable to iterative
methods of solution. An adaptation of the block iterative method of Cuthill and
Varga (1959) was used. A natural method of defining blocks is to consider them
composed of all points on a given line of latitude between two coastlines.
Inspection of Fig. 1 shows that the oceanic points may be represented by 76 such
blocks, ranging in length from 1 to 72. To update the values of ¢; in a given
block, the finite-difference approximation is applied, with the values of ¢; on
adjacent lines of latitude and boundaries assumed known. The only inversion
required is that of a simple tri-diagonal matrix. To avoid bias, the iterations
commence with ¢;=0 in all blocks. Updating the 76 blocks in prescribed order
corresponds to 1 iteration. The process is repeated until a given accuracy is
achieved. In our numerical examples, the iterations were terminated when the
norm |¢,;| changed from one iteration to the next by less than 0.1 7. (In some
cases of slow convergence, 0.25 % was used as the terminating value).

The Island Condition

The current streamline function Y is arbitrary to within a constant. We are at
liberty therefore to choose the value of  on one coastline (and it will be the
same value over that land mass). We choose the value =0 on the joined
continents, but have to determine the constant value of i on Antarctica. For
each 1st part of our 2-part iterative scheme, this means finding the constant
value of ¢;=¢9 on Antarctica and on its boundary. The value ¢ must be such
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that the corresponding solution ¢; satisfies Faraday’s law (in our frequency
independent form)

$pinVe;-dl—i[[B, dS=0 (17)
r N

where S is a surface that includes Antarctica and which is bounded by a curve I’
lying within the ocean. B;-dS is the flux of magnetic induction passing through
an element of the surface dS at the j’'th iterative step. If S is part of the surface
r=a then

B,=uZ,i (18)

To find ¢ we solve Eq. (13) twice with two different boundary values ¢ and
5’, and use the resulting solutions to determine #(¢9), L”(q,’)”) where Z is the

value of the Lh.s. of Eq.(17). The value ¢ such that ff(d)) 0 is found by the
linear interpolation

05 ={$5L(d) — ] AP L(9) —ZL (D)} (19)

In the following calculations the boundary values ¢?=1, ¢%= —1 were used.
Solutions for the many island problem may be similarly constructed as outlined
by Bullard and Parker (1970).

Final Solution and Accuracy

For a given configuration of conductors and for a given inducing field (usually
in the form of a spherical harmonic of degree n, order m) the functions {¢;} may
be determined and stored. The solution for any frequency is then obtained using
the series (9).

To measure the accuracy of a solution for a given inducing field and
frequency, and thereby to determine the number of terms required in the sum
(9), we re-write Eq. (1) as

L=R (20)
where

L=div(p grady)+iwpZ’ (21)
and

R=—-iouZz°. (22

R is given whereas L is determined by the solution. A measure of the accuracy
of the solution is afforded by calculating

=(L—RI/IR])x 1007, (23)

where the norms are defined by Eq. (16). We continued adding terms in the sum
(9) until ¢ no longer decreased (presumably because of round-off errors). The
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solutions were generally accurate to 1% or less in about 8 iterations, although
the last 3 or 4 of these iterations produced little improvement. The ratio of
successive norms |¢;_,|/|¢;| had reached a fairly steady value by this stage, so
that y (Eq. 11) was well determined. (In any case, the value of y is not critical).
Thus, as in the simple example considered by Hobbs and Brignall (1976), the
series (9) is rapidly convergent and only a few terms, say 4 or 5, need be
calculated for accurate solutions. Some examples of convergence are shown in
Table 1 for the cases described below.

Numerical Values

The value of p for each oceanic point was taken as 0.625 10~*ohm. This
corresponds to an ocean of conductivity 4Sm~' and of depth 4km. The
conductosphere was assumed perfectly conducting and of radius 0.9a, the
Earth’s radius a being 6.37 10° km.

A General Inducing Field

Under the usual geomagnetic assumptions, an external varying magnetic field
may be represented as the gradient of a scalar magnetic potential function Q7
satisfying Laplace’s equation. The general solution for Q7 therefore consists of
an infinite sum of spherical harmonics each of the form

Q"(w)=a (5) {C.Os i ’1} P (cos 0) exp(i o ). (24)
al |sinmi

Here the sphere of reference is the Earth’s surface r=a, (r, 0, 1) are spherical
polar coordinates and P™(cos 6) is the Schmidt partially normalised associated
Lengendre polynomial of degree n, oder m. Any inducing field may be
synthesised by an appropriate sum of functions (24) over n, m, and . As in
Hobbs (1971) the normal component Z° of the initial inducing field for the
oceanic shell corresponding to the harmonic (24) is

cosmi

Z“=n(1—C2”“){ }Pn"‘(cos 0) exp(iwt) (25)

sinm i
where {=b/a and b is the radius of the conductosphere.

We have solved the induction equation, and stored the solutions, for a large
number of harmonics and are thus able to synthesise many inducing fields. For
the Sq field, which is considered below, we have determined solutions cor-
responding to 16 harmonics, each solution having an in-phase and a quadrature
part. The solutions are best displayed by contours on the surface r=a of the
current streamline function y, the vertical component Z' and the total vertical
component Z¢+ Z'. A complete description would thus require 80 diagrams. We
give a few representative examples from this set. As the order n of the spherical
harmonic increases, so does the value of Z¢ in Eq.(25). The relevant coefficient
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Fig. 2a-c, The in-phase part of the solution for induction by the unit amplitude harmonic
cos A B! (cos 0) of period 24h. a Streamline function. S00A flows between adjacent contours, positive
values indicate anti-clockwise flow. b Induced vertical field (positive down) in units of 0.125nT.
Contour intervals are 0.25nT. ¢ Total vertical field, units and intervals as in (b)

being n(1—{*"*!) times the normalisation coefficient for the harmonic. This
increase is due partly to the spatial variation of the harmonic and partly to the
influence of the conductosphere. The increase is notable in Figs.2, 4, and 5. In
specifying an inducing field, care must therefore be taken to ensure that all
relevant harmonic terms, especially in the sum for Z¢, are accounted for.
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Table 1. Details of the intermediate calculations for 3 spherical harmonic inducing fields

Harmonic cos AR, (cos 6) sin 24 P2(cos ) cos 34 P2 (cos 0)
Period 24h 12h 8h

(a) The ratio of successive norms |¢;_,|/|¢}| in units of 10-*Hz

Iteration No.

3 1.045 1.048 1.073
4 1.044 1.040 1.072
5 1.049 1.038 1.070
6 1.056 1.041 1.068
7 1.066 1.050 1.067
8 1.079 1.062 1.066
9 1.089 1.075 1.068

(b) The parameter ¢ (an indication of %, accuracy achieved )

Iteration No.

3 1.952 1.562 1.613
4 1.313 1.180 0.677
5 0.967 1.021 0.452
6 0.860 1.003 0.399
7 0.824 1.000 0.384
8 0.693 0.983 0.376
9 0.414 0.964 0.373

Example: cos A P (cos 0); In-Phase; Period 24 h

Figure 2a shows the current streamline function ¥ for the above case. The time
origin is at A=180°. In a uniform ocean the above harmonic would induce 4
current vortices with symmetry about A=180° and anti-symmetry about §=90°.
Our model attempts to respond in that way, but the vortices are greatly
distorted by the land masses. The vertical component Z' is shown contoured in
Fig. 2b. The field is practically zero over the continents, is small over oceans and
has its largest values near coastlines. Physically, the induced currents are trying
to flow so as to oppose the magnetic field over the oceans. The current gradient
is steepest near the ocean edges, and this gives rise to large magnetic fields there.
In Fig. 2¢c the induced and inducing fields are combined. Basically the pattern is
that of 4 vortices, but these are somewhat distorted by the presence of the
oceans. The effect of the non-uniform surface shell is to reduce the vertical field
over the oceans and to distort it near ocean/continent boundaries. If the oceans
were perfectly conducting (which is mathematically the same as the limit w — o0)
the total vertical field over the oceans would be zero. For the real oceanic
conductance and for a period of 24h the solution is far from this limit.
(Diagrams 4c and 5c show the effect of increasing frequency, Z'** over the
oceans being successively reduced compared to that over continents. The overall
strength is increased however, owing to the increased spatial variation). It
should be remembered that this simple cylindrical projection gives undue
emphasis to points near the north and south poles, the field distortion near
Antarctica is not as predominant as it appears in the diagrams.
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Fig. 3a and b. The quadrature part of the solution for induction by the unit amplitude harmonic
cos 2B} (cos B) of period 24h. Contour values as in Fig. 2. a Streamline function, b induced vertical
field

This solution was obtained in 9 iterations to within 0.414 % as measured by ¢
in Eq.(23). Details of the intermediate calculations, in the form of the ratio of
successive norms |¢;_,|/|¢;| and the value of ¢ after each iteration are given in
Table 1a and b for this harmonic and for the following examples. This solution
could be obtained to within 1% in only 5 iterations.

In all the examples, the smallest eigenvalue is approximately 1.08 10~* Hz.
The implication is that the low frequency method resulting in series (6) is
convergent for frequencies less than this value. In terms of period P series (6) is
convergent for

P>16.2h.
This result is predicted approximately by the simple formula of Hobbs (1971)

(inequality 20) which is dependent on spherical harmonic order n and which
gives P>18.3, 16.7, 15.2h for orders n=2, 3, 4 respectively.

Example: cos 1 P! (cos 0); Quadrature; Period 24 h

To complete the description of induction by the harmonic cos A B} (cos 0) the 2
diagrams for the imaginary parts of y and Z' are given in Fig. 3a and b. The
induced field in quadrature is seen to be more intense than that in-phase. Again
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Fig. 4a-c. The in-phase part of the solution for induction by the unit amplitude harmonic
sin 24P (cost) of period 12h. Contour values as in Fig. 2. a Streamline function; b induced vertical
field; ¢ total vertical field

this is due to the low frequency of the inducing field and to the finite
conductance of the oceans. It implies that all three terms in Eq. (1) are impor-
tant, For high frequency (and/or high conductance) the term on the Lhs. of
Eq. (1) becomes relatively small and Z¢ (which is real) is balanced by Z! over the
oceans. The part of Z' in quadrature would then be small. Clearly a period of 24 h
is not one of these ‘high frequency’ problems, but we begin to see these effects
for periods of 12 and 8 h.
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Fig. 5a-c. The in-phase part of the solution for induction by the unit amplitude harmonic
cos3AP>2(cos 0) of period 8h. Contour values as in Fig. 2. a Streamline function; b induced vertical
field; ¢ total vertical field

Example: sin 2 4 P} (cos 6); In-Phase; Period 12 h

The relevant diagrams are shown in Fig. 4a-c. This harmonic has 8 vortices, 4 in
the northern hemisphere and 4 in the southern hemisphere, with anti-symmetry
about §=90° Figure 4a shows how the induced currents attempt to respond.
The induced vertical field, Fig. 4b is more intense over oceans and ocean edges
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Table 2. Spherical harmonic coefficients used to synthesise the external Sg field
(extracted from Malin and Gupta, 1977, Table 2). The units are nT

k n m AA™, BA™, AN™ BB™,

1 1 1 0.49 —296 —4.73 —-093
1 2 1 11.72 —0.53 —-1.29 -9.72
1 4 1 —257 —0.51 —-0.35 233
1 2 0 —-0.17 —430 0.00 0.00
1 3 0 1.30 227 0.00 0.00
2 2 2 1.00 2.07 2.03 —0.69
2 3 2 —523 1.74 2.13 5.09
3 3 3 —1.39 —0.67 —0.61 1.04
3 4 3 1.65 —1.52 —1.68 —1.60

than the preceding two examples, and the result of this is seen in Fig.4c. The
total vertical field consists of the 8 vortices, but their strengths are greatly
reduced over oceans and there is considerable distortion at ocean edges.

Example: cos 3 4 P} (cos 0); In-Phase; Period 8 h

The highest frequency in this set of examples corresponds to a period of 8 h. The
spatial variation of the above harmonic results in 12 vortices, again anti-
symmetric about §=90°. The induced vortices can be seen in Fig. Sa for y, their
strengths being dictated by the ocean distribution. The induced vertical field Z',
Fig. 5b is now quite large over the oceans and their boundaries. Figure 5¢ shows
dramatically the effect on the 12 vortices, their strengths being reduced over the
oceans by about 80 %,. There is a clear progression, seen in Figs. 2¢, 4c¢, and Sc
leading towards the high frequency limit in which the in-phase total Z would be
reduced to zero over the oceans. The boundary between a continent and an
ocean is also that between the unaffected and the reduced vertical field vari-
ations. As the frequency increases, this boundary becomes more marked, hence
the vertical field values there become more intense.

Application to the Sq Field During the IGY

The scalar magnetic potential for the external part of the field of the daily
variations, Sq*, may be written

QgV=Ref{a ) (r/a)'[(AA},—iBAy)cosm i

n,m,k

+(AB™,— i BB™) sin m /] P™(cos 6) exp (i k «t) (26)

where ¢ is universal time in seconds and a=27r/86,400. Many analyses have
derived the coefficients A4, AB, BA, and BB for various data sets. A recent
analysis for the IGY is given by Malin and Gupta (1977) and we have selected
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Fig. 6a and b. Equivalent current function for the internal part of Sg at universal time T=16h. a
From observations analysed by Malin and Gupta (1977). b Calculated, 20kA flows between adjacent
contours

the most important terms to synthesise the Sq‘°*" field, i.e., those with the largest
coefficients bearing in mind the arguments following Eq. (25) concerning Z¢. The
coefficients used, extracted from Malin and Gupta (1977) are given in Table 2.

To determine the response of our Earth/ocean conductivity model, the 16
solutions we have obtained are synthesised, with the Sq‘*V coefficients as
weights, in the manner of Eq. (26). In common with previous descriptions of Sq,
we present results in terms of an equivalent current system (Malin, 1973) at the
surface r=a. For the calculated internal part of Sq, this equivalent current
system has the streamline function

Y =Re(10%/4n) 3 {AA}—iBA) Y,

nk,cos
n,n, k

+(AB,,—iBBy)) ‘ﬁnk,sin} explikot) (27)
where Jm - and ym . are the equivalent current functions for solutions
corresponding to the harmonics in (24). These equivalent current functions are
composed of 3 parts, the streamline function for currents flowing in the oceans
[e.8., Wi coss @ solution to Eq.(1)], the equivalent current function for currents
induced directly in the conductosphere by Z7 [e.g., a((Qn+1)/(n+1))
-(*"*'cosm AR/ (cos0)] and the equivalent current function corresponding
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Fig. 7a and b. Equivalent current function for the internal part of Sq at universal time T=20h.a
From observations analysed by Malin and Gupta (1977). b Calculated, 20kA flows between adjacent
contours

to mutual induction between the oceans and conductosphere. A surface integral
formula for this latter term may be derived using the methods of Hobbs and
Price (1970) and is

LiL~LY

¥ 4 (mutual)= — 2 H (14+2*—=20% cos ©)*

- Yr(oceans) dS (28)

where @ is the angle between radius vectors to some point 4 and the integration
point dS. Similarly, for a sine type harmonic the three terms are

I in =W antal2n+1/n+1)] "+ sinm A B"(cos 6)+ ¢, .. (mutual).
(29)
n (27) we write t=3600 T so that T is universal time in hours.

The calculated part of Sq may be compared to that derived from the
analysis of the observations given by Malin and Gupta (1977). They determine
coefficients for the internal part of Sg, from which we may construct the
equivalent current system

ye()=Re(10%a/dn) 3 [(2n+1)/(n+1)]{(CCp,—iDCp) cosm2
n,m, k

+(CDy, —iDD}) sinm A} P™(cos 0) exp (i ko t). (30)
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The coefficients used are those internal coefficients of Table 2 of Malin and
Gupta (1977) labelled as p=1, p=2 and p=3 [in Eq. (30) above, k=p].

A comparison between our calculations (27) and the observations (30) for
two instants of universal time T=16h and T=20h is shown in Figs.6 and 7. A
numerical way of comparing the solutions is to compute the strengths of the
current vortices. In Fig. 6, where the vortices are centred over America, the
strengths of the main northern and southern hemisphere vortices are seen to be
almost identical, the current flowing betweeen their foci being approximately
140kA. In Fig. 7, when the vortices are centred over the Pacific Ocean, the
strengths are very different and correspond to a current flow betweeen nothern
and southern foci of 220kA for the calculations but only 60kA for the
observations. These represent the best and worse cases, respectively, throughout
the period of 24 h. Even in the best example, T=16h Fig. 6, where the current
strengths are the same, the current distribution is not. At this instant of
universal time, the contribution from induction in the oceans is fairly small, even
so, some influence of the oceans in the calculation (Fig. 6b) is evident from the
displacement of the current foci towards the Pacific. On the other hand, T=20h
(Fig.7) is a time at which the current vortices are centered over the Pacific
Ocean, consequently the oceanic contribution should then be at its maximum.
This is clearly so in the calculation, Fig. 7b, but the observations Fig. 7a, suggest
the opposite effect, that in the presence of a large ocean, the currents decrease.
Such an effect seems to have no physical basis. However the ‘observations’ are
the result of a spherical harmonic analysis of magnetic fields measured pre-
dominantly over European and other continental areas. It seems unlikely that
they could represent an effect seen only over the oceans and coastal regions.
Further work is in progress using also other Sq analyses to see if they can be
used in some way as a test of vertical component oceanic induction.

Conclusions

The main point of this paper is to show that it is now possible to solve,
numerically, problems of electromagnetic induction in a thin non-uniformly
conducting shell surrounding a conductosphere of perfect conductivity. The
solutions are determined iteratively in only a few steps and can be obtained for
any inducing field and frequency. For a 5° grid they are accurate to about 1 %, It
should be noted that these are full solutions to the vertical component oceanic
induction problem, as opposed to the simple outer solution approximation of
Beamish et al. (1979).

Some of the solutions were used to synthesise the effect of induction by Sq,
and a comparison was made between these calculations and observations. The
comparison was poor and cannot be said to support the view that vertical
component induction in the oceans is the important mode. However the
behaviour of the ‘observations’ in oceanic regions seems to imply that Sq
analyses are not useful in testing the appropriateness of thin sheet models.
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It is hoped that the solutions will be useful in other applications. For
example, a knowledge of the response function of the Earth, that is the ratio of
internal to external parts for a given harmonic and frequency, has often been
used to infer the Earth’s conductivity profile with depth. Such analyses assume
the Earth is radially symmetric, so that a given spherical harmonic in the
external field induces only that harmonic of the same form within the Earth.
This is no longer true when we account for the non-uniform oceans and the
solutions we have obtained will be useful in examining the interrelations
between the external and the internal hamonics.
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