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Approximate Diffraction Theory for Transparent
Half-Planes With Application
to Seismic-Wave Diffraction at Coal Seams

J. Fertig* and G. Miiller **

Geophysical Institute, University of Karlsruhe, Hertzstr. 16, D-7500 Karlsruhe,
Federal Republic of Germany

Abstract. Starting with the exact theory of diffraction of plane SH or plane
acoustic P waves at an opaque half-plane, i.e., a rigid screen or a crack, an
approximate theory is given for diffraction at a transparent half-plane, realized,
€.g., by a thin layer in a homogeneous medium. The results are extended for
linesource excitation. The diffraction formula is similar to formulas based on
Kirchhoff diffraction theory, but it includes both a term related to the
reflected wavefield and a term related to the direct plus transmitted field.
Moreover, use is made of the reciprocity principle. A comparison with finite-
difference calculations for SH waves shows that the approximate theory has
a rather broad range of applicability. Results of calculations are presented
which are related to wave-propagation problems encountered in seismic
prospecting for coal: the reflections and diffractions generated by a sequence
of coal seams with an offset along a fault are calculated, and the diffractions
produced by a realistic vertical offset of a horizontal seam are studied in
some detail.

Key words : Diffraction theory - Theoretical seismograms - Seismic prospect-
ing for coal.

Introduction

The seismic reflection response of coal-seam sequences normally has a com-
plicated pattern. The three main reasons for this are: (1) the seams are often
closely grouped such that individual seams cannot be resolved even with high
frequencies, (2) wave conversion upon oblique incidence of the wave from the
source can produce strong additional reflections, (3) seam offsets due to faults
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cause diffractions and offsets in the reflections. We have investigated the first
two effects in an earlier paper (Fertig and Miiller, 1978) with the aid of the
reflectivity method and assumed for these purposes horizontally layered seam
sequences without offsets. In the present paper we are mainly interested in the
effects produced by the interruption and termination of seams due to faulting,
and we present an approximate method for the calculation of theoretical
seismograms in such cases. Such theoretical seismograms can help to clarify the
circumstances under which coal-seam offsets can be detected by seismic
measurements.

Our model of the subsurface is two-dimensional, the source of waves is a line
source, and we consider only the SH-wave and the acoustic P-wave case. This is
a restriction to the simplest conditions of wave propagation which, nevertheless,
are of practical importance; for instance, SH-waves may well become a more
routinely used tool in seismic exploration because of their greater simplicity and
resolving power, compared with P-waves. The seams are assumed to be thin
plane layers of finite width, located horizontally or non-horizontally in an
otherwise homogeneous medium (Fig. 1). The plane-wave reflection and trans-
mission response of an individual seam is calculated with the reflectivity method
and corrected by the geometrical-spreading factor of cylindrical waves. Multiples
between the seams are disregarded; calculations for horizontal seam sequences
with the reflectivity method, which yield also these multiples, show that this
neglection is often permitted, inspite of the large reflection coefficients of coal
seams. The diffractions from the seam ends are calculated with an approximate
theory which is an extension of the exact theory of diffraction of plane SH-waves
at an opaque half-plane. This approximate diffraction theory is described in the
first part of the paper, and its results for a special case are compared with the
results of finite-difference calculations.

Later in this paper we present a few examples of theoretical seismogram
sections. The computations illustrate the reflection and diffraction of P waves at
a single seam, and at a sequence of dipping seams which are separated into two
blocks by a fault. Finally, we investigate the reflection, transmission and
diffraction of P and SH waves at a realistic vertical offset of a horizontal seam.
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Approximate Diffraction Theory for a Transparent Half-Plane

Plane-Wave Excitation. Our starting point is the exact theory of diffraction of a
plane SH wave with unit-step function time behavior at an opaque half-plane
(either a rigid screen or a crack), as given, e.g., by Pao and Mow (1973, pp. 572~
586). In a first step, we introduce into their formulas (5.15) for a rigid screen and
(5.22) for a crack the diffraction angles « and f with respect to the shadow
boundaries in reflection and transmission (see Fig. 2). Then, we observe that Pao
and Mow’s formulas give the total displacement field for distances R from the
edge of the half-plane less than or equal to ct, where c is the S-wave velocity of
the medium and ¢ the time relative to the arrival of the incident plane wave at
the edge. In order to obtain the diffracted displacement field alone we have to
subtract the direct wave for receivers with «>0 and >0, and the direct plus the
reflected wave for receivers with « <0 and f>0. The result is:

Gela)] el-9)]
%3} :; rarctan ——O?c&— arctan __ch H (T _?) (1)

sin — sin —
2 2

The coefficient r is —1 for a rigid screen and +1 for a crack, and H(t) is the
unit-step function.

The first term in (1) dominates close to the shadow boundary in reflection,
where it is discontinuous and jumps from rH(t—R/c)/2 for «a>0 to —rH(t
—R/c)/2 for a<0. If for a <0 the reflection rH(t — R/c) is superposed, the total
wave field is continuous at the shadow boundary in reflection, as it should be.
Similarly, the second term in (1) dominates close to the shadow boundary in
transmission (f=0). Its discontinuity is removed by adding, for >0, the direct
wave.

The generalization of the first term of (1) for a transparent half-plane is
straightforward, if one considers the fact that r in (1) is just the plane-wave
reflection coefficient of the half-plane. As in usual Kirchhoff diffraction theory,
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one obtains a convolution of the plane-wave reflection response r(t) of the half-
plane [or more precisely of its derivative r'(t)] with a diffraction operator which
here is the first arc tan function in (1). The second term in (1) has to be
interpreted as the contribution to diffraction from the direct wave. In order to
generalize this term for a transparent half-plane we have to include additionally
a contribution from the transmitted wave on the underside of the half-plane. If
the direct wave is d(t) [not necessarily equal to H(t)] and the plane-wave
transmission response of the half-plane b(t), we arrive at the convolution of the
difference b’(t)—d'(t) and the second arc tan function in (1). The total diffraction

[ (<))

Lo
sin —
-5
2R c

2
sin>

1 R
P — (¢ —H(t——)ar tan
diff ’”()*n c C

+[b'(t)—d'(1)] * % H (t —%) arctan

This formula has the disadvantage that it does not satisfy the reciprocity principle
which in the present case requires unchanged displacements, when (Fig.2) the
receiver is shifted to P’ and the ray of the incident plane wave passes through P.
In an ad-hoc procedure we enforce reciprocity by averaging the two diffractions;
this step, of course, needs justification which will be given later. Averaging the
diffractions is equivalent to averaging the plane-wave reflection and trans-
mission responses, since the diffraction operators are the same. If we define

7(t)[b(t)] =arithmetic mean of the half-plane reflection (transmission) responses
to a plane wave d(t) with angle of incidence ¢’ and ¢, respectively
(see Fig. 2),

we obtain the final diffraction formula for plane-wave excitation:

[ (=)

@) _3 1 R
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Discussion of Formula (2). For an opaque half-plane and the direct wave d(t)
=H(t), we have 7(r)= + H(t) and b(1)=0, and (2) reduces to (1). Moreover, ¥
satisfies all continuity requirements of the total field at the wavefront of the
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Fig. 3. Wave fronts for reflection, transmission and diffraction of a plane SH wave at a transparent

half-plane. The total displacement in six different domains is indicated. For details see text

diffraction and at the shadow boundaries. In order to show this, we consider the
wavefront picture for a fixed time in Fig. 3; it is subdivided into six different
domains in each of which the total displacement field is indicated. The displace-
ments at the wavefront of the diffraction are continuous, since ¥{3} starts from
zero at t=R/c. The continuity of the displacements at the shadow boundaries
OK and OL will now be demonstrated in the case of OK. The first term of (2) is
continuous across OK. The second term in domain @) close to OK (ie., for

small negative f3) is

_ i R\ —
[5/(6)—d (o)) +—H (a—?) Tia-

N\'—

R R
b (t——) +5d (I——),
c c
and in domain @, also close to OK, it is
5 , 1 R\~n ol R i R
[b'()—d'(t)] *EH (t—;) szb (I—C)—zd(t C).
The total field in Q) close to OK is (addition of the transmitted wave)
R R
1p (z—?)%d (t—?)+first term of (2),
and in @), also close to OK, it is (addition of the direct wave)

R R
iy (r—?) dot (t—?)+ﬁrst term of (2),
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i.e., the total field is continuous across OK. Similar results hold for the shadow
boundary OL.

A limitation of the simple diffraction formula (2) is that ¥{3} for transparent
half-planes does not satisfy the boundary conditions at points on the half-plane
between O and M (Fig. 3). There is no direct way to determine the degree of
disagreement, since in the framework of the simple theory presented only the
plane-wave reflection and transmission responses of the half-plane are needed;
the field inside the half-plane does not enter. All that can be done is to test (2)
against exact results, calculated, e.g., with finite-difference methods. This will be
discussed later.

In geophysical applications of (2) the transparent half-plane will be a
homogeneous layer (e.g., a coal seam) or even a layer with internal layering. It is
clear that (2) can only be used, if the dominant wavelength is at least several
times the layer thickness. Furthermore, the S velocity in the layer should be less
than in the surrounding medium, since otherwise refraction along the layer
would occur and diffraction at the edge would start before the direct wave
arrives there. Probably this contribution is small, but a more detailed in-
vestigation is necessary before one can conclude that (2) is a useful approxima-
tion also in the case of a high-velocity layer.

Line-Source Excitation. In a final step we derive from (2) the diffracted field due
to excitation by a line source whose distance from the diffracting edge is R". The
incident wave at the edge is assumed to be

y 1 d(t_ﬁ), 3)

ll’lC=R/% c

i.e., the line source radiates isotropically, beginning at t=0, and geometrical
spreading is that for cylindrical waves. The corresponding formula for ¥
should satisfy the following plausible requirements [see (2) for reference]:

(a) The first term should be, for sufficiently small o,

sign o

= 53—t s
SR +RE T

i.e., half the reflection response at the shadow boundary (apart from the sign).
Likewise for small § the second term should be

sign 8

———— [b(t—t,)—d(t—t,)].

Here and in the following, t,=(R’+ R)/c is the arrival time of the diffraction.
(b) For larger values of « the first term of ¥, should be 1/R'* times the first

term of (2), i.e.,

c £
i —(r—a»]
7)1 [212
i * o Hit—rgarctan ===, )
Sin —
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and similarly the second term of ¥, for larger f should be

Bk
b()—d() 1 2R _d]
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sin —
2

The following form of ¥, satisfies these requirements:

c 2
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c - 3
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The first of the above conditions is fulfilled, since for small « or f§ the additional
term in the argument of the arc tan functions, [R’/(R’+R)]%, does not change
the step-function behavior of the diffraction operators. The second condition is
approximately satisfied, since for larger o« and f the arc tan functions in (4), (5)
and (6) can be expanded into Taylor series with restriction to the first term. In
this approximation, which actually is a high-frequency or wavefront approxima-
tion, (4) and the first term of (6) agree, and likewise (5) and the second term.

Formula (6) was derived for SH waves, and ¥, is the out-of-plane displace-
ment of the diffracted wave. This formula can also be used for acoustic P waves.
In this case ¥, in (3) or ¥, in (6) can be either the displacement potential, the
pressure or the displacement along the ray, and 7(t) and b(f) are the averaged
compressional reflection and transmission responses. In the applications, given
later in this paper, mainly the acoustic case is treated. Formula (6) can, in
principle, also be applied in the case of P-SV waves in solid media; a few
corresponding remarks are made at the end of this paper.

The treatment of diffraction at a half-plane with Kirchhoff diffraction theory
(Berryhill, 1977; Trorey, 1977) so far has given results similar to the first term in
(6). No contribution similar to the second term has been found. The reason is
that only backward diffraction was of interest and hence only the reflected field
at the topside of the half-plane was continued upwards by Kirchhoffs formula.
However, depending on the parameter contrasts between the half-plane and the
surrounding medium and hence on the difference between the direct wave d(z)
and the averaged transmission response b(t), the second term in (6) which
dominates the forward diffraction can also be of importance for backward
diffraction. Another difference to Kirchhoff diffraction theory is the incorpo-
ration of reciprocity in (6) which gives a considerably broader range of applica-
bility, as will be seen later.
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Comparison of the Approximate Diffraction Theory
With Finite-Difference Calculations

To test formula (6) we computed synthetic seismograms, both with (6) and with
a finite-difference method, for vertical incidence of an SH wave on a transparent
half-plane which is represented by a thin homogeneous layer.

Plane-Wave Response of a Homogeneous Layer. In the following we summarize
the formulas which describe the reflection and transmission of a plane wave d(t)
by a homogeneous layer of infinite extent in all directions, embedded in a
full-space. Besides the SH-wave case we consider also the acoustic P-wave case.
The full-space is characterized by the P velocity «,, the S velocity f, and the
density p,. The corresponding parameters of the layer are «,, f, and p,; its
thickness is h. The plane-wave reflection and transmission coefficients, 7, or r,,
and by, or b,,, for monochromatic waves of circular frequency w are (j
=imaginary unit):

SH waves Acoustic P waves
ro(1—E) ro(1—E)
ss T 1 _2E T 2 (7
—roE 1—-riE
1—r2 1—#2
ssTq Y P 2 ®)
—r3E 1-rgE
o h
E=exp (—2]w—cos<p2)
v
v =p, v =0,
, =P151 cos @, —p, B, cos @, po _P2%2COS P TP, COS Py )
® pyBicos@,+p,B,cos p, py%,c08 ¢y +py 0y COS P,

@, is the angle of incidence, and ¢, the angle of refraction in the layer, related to
¢, by Snell’s law. r, is the plane-wave reflection coefficient of the upper
boundary of the layer.

The reflection and transmission responses of the layer, r(¢) and b(t), which
are needed in the diffraction formula (6), follow from (7) and (8) by multiplication
with the spectrum of the incident wave d(¢) and by an inverse Fourier transform;
both the angle ¢’ and ¢, defined in Fig. 2, enters as the angle of incidence.

For wavelengths much longer than the layer thickness h the following low-
frequency approximations are useful [they are obtained from (7) and (8) by
power-series expansions in ]:

_ T,
0= 0
BT,
b(t)—d(t)=—1 5 d'(t)= —ryr(t) (10)
2h
T=-—COS @,.
v
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The error of these approximations is less than 109, if the wavelength in the
layer is greater than 15 to 20 times h.

With these results the diffraction for line-source excitation is readily obtained
from (6). To obtain the complete wavefield we have to add the direct, reflected
or transmitted wave, depending on where the receiver is located. These contri-
butions are L% times d(t— L/c), r(t— L/c) or b(t— L/c), where L is the length of
the wavepath from the line source to the receiver and c is either o, or f,. r(t)
and b(t) are determined for the corresponding angle of incidence which normally
is different from the angles ¢’ and .

Finite-Difference Method. When finite-difference methods are applied to the
wave propagation in heterogeneous media, one has the choice to use either the
equation of motion for homogeneous media, combined with a formulation of the
boundary conditions at the boundaries between different homogeneous parts of
the medium, or to use the equation of motion for heterogeneous media. We
chose the second method (Kelly et al., 1976), mainly because it allows also the
modelling of complicated structures. The two-dimensional equation of motion
for SH waves in this case and for spatially constant density is

Pv [ ,0v\ 0 [,,00
at? ox (B 6x)+02 (ﬁ 62)' (1
Here, x and z are the two spatial coordinates, v(x,z,t) is the out-of-plane
displacement, and f(x, z) the S velocity. The density was kept constant in order
to save computer storage and time; including an inhomogeneous density distri-
bution into (11) would pose no problems.

In the finite-difference approximation of (11) we use standard central differ-
ences. If the time step is 4¢ and the grid spacings are 4x and A4z, and if v ; and
Pk . are the discrete approximations of v(K4x, LAz, M At) and B(K Ax, LAz),
we obtain:

% 1
W:ﬁ(v%zl_zv%L+vll\({z1)
1
(BZ ax) 2sz [ﬁK—f—l L+BK L) UK+1 L UK,L)

—(Br L+ Bx_ 1. DK L=k D]
1
(BZ az) =557 [Pk a H PR DK Ly — VK 1)

_(BZK.L+BIZ<,L—1)(U?<{L—U%L—1)]
Then (11) yields for Az=Ax:

M+1 M—1
Uk.L _2DKL UKL

At
+ (H) HGH 1,L_U1I\(/I,L)—BIZ‘V(UJI‘({,L_U¥— 1)

+B§(U%,L+1_UII‘(/I,L)_B)%I(U%L_U%L—I)] (12)
ﬁ}23=%(ﬁ12(+1,L+ﬁ12(,L) B$V=%(ﬁ12(,L+:BIZ(—I,L)
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Fig.4a and b. Reflection and diffraction of plane, vertically travelling SH waves at a transparent

half-plane: a analytical calculation; b finite-difference calculation

To keep the explicit scheme (12) stable we use the relation At=A4x/(f .« 1/5)
between the time step and the grid spacing, where f_,, is the maximum S
velocity of the model (Boore, 1972). Grid dispersion is reduced by choosing A4x
equal to about 1/12 of the dominant wavelength in those parts of the model with
the minimum S velocity, B,

The scheme (12) is supplemented by prescribed displacements at the source,
by the boundary condition of vanishing stress at the boundaries of the rect-
angular model, and by initial conditions corresponding to vanishing displace-
ments and particle velocities for t=0.

First-order discontinuities parallel to the x or z axis are modelled by a jump
in  over one grid spacing and are thus located approximately in the middle
between two neighbouring grid lines. In our numerical study of the reflection
and diffraction of SH waves at a thin layer the layer velocity is assigned to two
grid lines. Hence, if we want to calculate the response of a layer of thickness A,
Ax is approximately h/2, and this value is used in our calculations. This is an
approximation which can be wrong perhaps by 10 to 209;; only within these
limits the finite-difference seismograms can be considered as exact and thus as a
reference for analytically calculated seismograms.

Results. The model and the receiver geometry are illustrated in Fig. 4. A
vertically travelling plane SH wave leaves the receiver level at =0 and is
reflected and diffracted at a thin layer with thickness A, velocity ,=0.5f, and
density p,=p,. For the analytical calculation (Fig. 4a) formula (6) is used with a
line source at large distance R’ vertically above the diffracting edge, and
corresponding time shifts and amplitude corrections are applied. The input
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Fig. 5. Peak-to-peak amplitudes of the reflection and diffraction as a function of distance for the case
shown in Fig. 4

signal has a simple bell-shaped form and unit maximum amplitude (see arrival I
in Fig. 4b). The pulse duration corresponds to a length in the medium surround-
ing the layer of about 13 h and therefore is much larger than h. The distribution
of receivers is symmetric with respect to the shadow boundary in reflection at x
=0. To the left of the shadow boundary one observes the reflection and the
diffraction, to the right we have the diffraction alone. The finite-difference
seismograms (Fig. 4b) display also the direct wave and the first multiple between
the layer and the free surface, including the corresponding diffraction; the pulse
forms of all three arrivals in Fig. 4b demonstrate nicely the differentiating effect
of the reflection at thin layers. In the analytical calculation the receivers are
assumed within the medium, whereas in the finite-difference calculation they are
at the free surface which doubles the amplitudes of the reflections and diffrac-
tions. To correct for this difference the finite-difference seismograms were
multiplied by 0.5. Hence, the reflections and diffractions in Fig. 4a and b
are directly comparable.

The overall agreement of the pulse forms and amplitudes in this figure is
quite good even to the largest distances x, i.e., to diffraction angles o up to 67°.
A quantitative comparison of peak-to-peak amplitudes is given in Fig. 5. Taking
into account the remarks made before on the accuracy of the finite-difference
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%
ror N 7 b A sequence of coal seams which are
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0z 04 06 08 10 1.2 (km)  Palp =082

calculations, we conclude that the approximate diffraction formula (6) has a
broad range of applicability and that the inclusion of reciprocity is a definite
improvement. The limits of this formula are, however, reached when for fixed
source position, i.e., for fixed angle of incidence ¢" at the diffracting edge, and for
variable receiver position, ie., for variable angle ¢, the averaged reflection
response ¥(t) of the half-plane becomes zero or even changes its sign. [This
cannot occur with the averaged transmission response b(¢).] If the half-plane is a
homogeneous layer whose P- and S-wave impedances are less than those of the
surrounding medium, this can only happen in the case of SH waves. Here, the
reflection coefficient ry in (9) changes its sign at the Brewster angle, and
according to (7) or (10) r, determines the sign of the reflection response of the
layer. The Brewster angle is

p1B1—p3B1 B3
piBi—pif3
In cases of practical interest, ¢’ is normally less than @, If then ¢ increases and
exceeds @g, 7(¢) will eventually drop to zero and change its sign. This trend is
evident in Fig. 5 at the largest distances. Therefore, as a rule, ¢ should not exceed

- No such basic limitation exists for acoustic P waves, since here r, has the
same (negative) sign for all angles of incidence.

3
@g=arcsin ( ) (=63° in our example).
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Fig.7. a Acoustic diffraction response (vertical component) for the one-layer model of Fig. 6a. b The
same as (a), but with the reflection response included

Applications

The first (purely synthetic) example is the diffraction and reflection response of a
horizontal layer of finite width, excited by acoustic P waves from an explosive
line source. The dimensions of the model, its parameters and the source and
receiver geometry are given in Fig. 6a, and the seismograms for the vertical
component in Fig.7. The source pulse is one sine oscillation with smooth
beginning and end. The dominant frequency is 2.5 Hz, corresponding to a ratio
of wavelength (in the layer) to layer thickness of 240, i.e., the reflection from the
layer is very well described by r(¢) in (10). Fig. 7a shows the two diffractions
from the edges of the layer alone. The diffraction from the left edge is clearly
visible, and, as expected, it changes its sign at the shadow boundary in reflection
which is located at a horizontal distance of 2.0 km. The diffraction from the
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right edge is rather weak, and its shadow boundary is beyond the profile section
shown. Superposition of the reflection from the layer at distances greater than
2.0km (Fig. 7b) makes the diffracted-reflected arrival continuous at the shadow
boundary.

The model of the second example consists of 20 coal seams, each 1 m thick,
which are offset by a fault (Fig. 6b). Such a model has been investigated by
Dresen and Ullrich (1978) and Kerner (1978) with methods of model seismology.
The dominant frequency is about 66 Hz, and the ratio of dominant wavelength
to seam thickness is 43. The theoretical seismograms (Fig. 8) were again calculat-
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Fig. 8. a Acoustic reflection response (vertical component) for the model of faulted seams shown in
Fig.6b. b The same as (a), but with the diffractions from the seam ends at the fault included
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located 3 km above the offset, i.e., the incident wave is effectively plane
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Fig.10a and b. Acoustic reflection and diffraction response of the model in Fig.9: a vertical
component, b horizontal component. The amplitude scales in both sections are the same
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Fig. 11a and b. Acoustic transmission and diffraction response of the model in Fig.9: a vertical
component, b horizontal component. The amplitude scales in both sections are the same

ed for the acoustic case and the vertical component. Only primary reflections
from the seams and primary diffractions from the seam ends were taken into
account, and transmission effects at the seams were neglected. These approxi-
mations are justified for many cases of practical interest. In Fig.8a the re-
flections are shown alone. They form a complicated interference pattern, consist-
ing mainly of three wavegroups. The fault is very clear in this seismogram
section. Including the diffractions from the seam ends at the fault masks the
fault considerably (Fig. 8b), mainly because the reflections from the right block
of seams are now weakened by the corresponding diffractions and do not stand
out clearly against the diffractions from the left block which arrive earlier.

The last example deals with a realistic offset of a coal seam and the
corresponding diffraction effects in the forward and backward direction for a
source above the offset (Fig.9). The situation would roughly correspond to an
excitation of waves at the earth’s surface and observations in tunnels close to the
seam. Both the acoustic P wave case and the SH wave case have been treated
for a source signal with a dominant frequency of 100 Hz (Figs. 10-12). As
expected, the seam offset is most clearly seen in the reflected wave where it
produces a time offset; this offset is larger for SH than for P waves because the S
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Fig.12a and b. SH-wave reflection and diffraction response (a) and transmission and diffraction
response (b) of the model in Fig. 9. The amplitude scales in both sections are the same

velocity is lower than the P velocity. Since in practice time offsets can also be
generated by velocity heterogeneities along the whole wavepath and since they
are not always eliminated by static corrections, it is reasonable to explore
whether diffractions can be used, alone or additionally, to localize seam offsets.
The seismograms for the horizontal component in the acoustic case (Figs. 10b
and 11b) show that, indeed, diffractions may be prominent arrivals. Their
prominence over the reflection or transmission in our example is due to the
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large distance of the source above the scam which gives predominantly vertical
polarization of the reflection and transmission. Such conditions would probably
also have to exist in practical cases, but then horizontal-component recordings
of P waves could actually help in identifying scam offscts. Scam depths less than
the 3km assumed in our example would require receiver profiles, which are
correspondingly shorter and closer to the scam than in Fig. 9, and frequencies in
excess of 100 Hz.

The applications ol our computational method for theoretical seismograms
show that it allows the modcelling of subsurface structures typical for coal
deposits; models more complicated than the one in Fig. 60b can casily be treated.
Iixtensions of our method which have not yet been accomplished are the P-SV
casc and the inclusion of a layered overburden on top of the medium with the
scams.

Conclusions

The reason for the relatively broad range of diffraction angles for which formula
(6) 1s a good approximation is that the reciprocity principle has been in-
corporated, but it was shown that for large diffraction angles (0) is no longer
applicable to SH waves. Similar restrictions could exist for other wave types,
although not related to the Brewster angle. To find out where formula (0) really
breaks down is a matter of further investigations and requires eventually finite-
difference calculations also for the acoustic and the P-SV case.

The method for computation of theoretical scismograms presented in this
paper, including both diffractions and reflected waves, allows fast calculations of
the clastic response of relatively complicated structures. Therefore, it is possible
to simulate cffectively with this method the shooting and recording techniques
of scismic prospecting such as the common-depth-point technique. The result-
ing scismogram scctions could then be subjected to inversion procedures such as
migration, and the latter would not just be the inverse operation of the
modeclling method. Thus, migration and other procedures could seriously be
tested.

The generalization of the approximate diffraction theory for transparent
hall-plancs to P-SV waves in solid media is straight-forward. The simplest cases
arc those of incident P waves and P diffractions and of incident SV waves and
SV diffractions. FFormula (60) can dircctly be applied, and the averaged plance-
wave reflection and transmission responsces, F(1) and b(r), are those for the PP
and the SV SV case, respectively. In the case of SV dilfractions due to incident
P waves (and similarly of P dilfractions duc to incident SV waves) the diffraction
operators have to be included in the averaging process, and the geometrical
spreading factors are slightly more complicated than the term (R +R) * in (0).
The term of the averaging formula, which takes account of the P diffraction
upon incidence of an SV wave, has (o be set equal to zero for angles of incidence
at the edge of the half-plane greater than the critical angle arc sin (f8, /o),
since then no planc-wave reflection and transmission response exists.
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