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Abstract. During the first leg of the ‘METEOR-Expedition 45°,
July 1977, crustal seismic refraction measurements were obtained
in the vicinity of the Reykjanes Ridge, south of Iceland. Profile I
was located approximately along magnetic lineation anomaly 5
(8.34-9.74 Ma) and was a part of an 800-km-long land-sea seismic
experiment. The purpose of the overall experiment was to study
the changes in crustal structure of the Ridge near Iceland and
to resolve the seismic structure at greater depth than was previ-
ously possible by extending the seismic line south of Iceland.
At the Mohorovi¢i¢ discontinuity the velocity increases to 7.7 km/
s, a ‘typical’ low mantle velocity observed frequently in oceanic
refraction profiles near ridge crests. A normal upper mantle velo-
city of 8.2 km/s is observed at a depth greater than 16 km. Reflec-
tion profiles show a rough basement topography in the south,
becoming smooth towards the north. The results indicate: (i) that
a normal oceanic crust is in place within 100 km of an active
ridge crest; (ii) that the presence of Iceland has only a second-order
effect on the oceanic crust to the south; (iii) that a normal upper-
mantle velocity is present underneath a low (7.7 km/s) velocity
at the Mohorovi¢i¢ transition zone; and (iv) that velocity gradients
in the lower crust and the upper mantle are consistent with the
results of the inversion of time-distance data, but should be
confirmed by synthetic seismogram modelling.

Key words: Reykjanes Ridge ~ Iceland — Seismic structure — Hot
spots — Explosion seismology — Anisotropy — Anomalous mantle
— Upper mantle — Asthenosphere flow — Mantle plume — Extremal
inversion.

1. Introduction

Iceland has fascinated explorers and travellers since the first Norse-
men settled there, more than [,000 years ago. Its rugged volcanic
terrain, majestic glaciers and waterfalls, mysterious hot springs
and often violent erruptions of lava, all seemed to hold a key
to the better understanding of the Earth as a dynamic engine.
It is not surprising that the modern research into the nature and
structure of the outer rock layers of the Earth, often returned
to Iceland and the surrounding ocean for more insight and under-
standing. The evidence from many directions is presented in this
issue. Our paper describes the contribution of the marine program
to the Reykjanes Ridge Iceland Seismic Project (RRISP).

Iceland is located astride the Mid-Atlantic Ridge, between lati-
tudes 63° N and 67° N. The edge of Eurasian and North American
lithospheric plates (LePichon et al., 1973) is exposed in the neovol-
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canic zone of Iceland and offers an unparalelled opportunity for
study. As a geological feature, Iceland is young: the outpouring
of some half a million cubic kilometers of lava occurred within
the last 18 Ma (Jakobsson, 1972; Moorbath et al., 1968; Everts
et al., 1972). Although Iceland is a part of the Mid-Ocean Ridge
system, it differs from a typical cross-section in many important
ways: (i) the extensive volcanic activity has created an excess
of mass so that it outcrops above the sea surface and forms a
‘blister” on the crest of the Mid-Atlantic Ridge; (ii) it is an area
of active seismicity and tectonic development; (iii) it is a centre
of convective heat flow from the mantel as a postulated ‘hot
spot’; (iv) the seismic structure indicates a depression of the Moho
discontinuity and/or unusually low upper mantle P-wave velocity;
(v) geochemistry of Icelandic basalts differs from the average com-
position of mid-ocean ridge basalts (Brooks and Jakobsson 1974).
For these and other reasons, Iceland is considered a ‘hot spot’
(Morgan, 1971) and complicated convection patterns have been
postulated to explain its origin (Vogt, 1974).

It is thus accepted that Iceland is an ‘anomalous’ section of
the Mid-Atlantic Ridge but it is not known how far this anomaly
extends along the length of the ridge crest. Two transform faults,
Tjorness Fracture Zone to the North and Reykjanes Fracture
Zone to the south displace the ridge crest through Iceland east-
wards. These zones seem to confine the Iceland eruptives but
the hot-spot may affect the ridge beyond the fracture zones. The
southward extension of the mid-ocean ridge is called Reykjanes
Ridge; it is an atypical ridge, probably because of its slow spread-
ing rate (Talwani et al., 1971) and possibly because of the proxim-
ity of the hot-spot to the north. Based on an analysis of V-shaped
magnetic anomalies (Vogt and Avery 1974) and the distribution
of trace elements revealed by geochemical analysis (Schilling,
1973), it has been proposed that some of the lava brought up
by the mantle plume under Iceland, finds its way southwards
along the ridge axis through hydraulic channeling (Vogt, 1974).
In studying the deeper structure of Iceland, it is therefore of great
interest to investigate the seismic structure of the surrounding
sub-oceanic crust (Bott et al.,, 1971). The marine seismic experi-
ment, described here, was designed to supplement the land investi-
gations and additionally, to study the uppermost structure of the
oceanic lithosphere by extending the length of the seismic refrac-
tion Profile I. Data collected along other profiles shown in Fig. 1
will be reported elsewhere.

Long seismic lines at sea are difficult to carry out and only
four had been performed prior to the RRISP experiment- two
in the Pacific (Asada and Shimamura, 1976, 1979; Orcutt and
Dorman, 1977), one in the Atlantic (Steinmetz et al., 1977), and
one in the Mediterranean (Hirn et al., 1977). Among the questions
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posed by these experiments and RRISP were: is there a high-
velocity layer 3 B at the base of the crust as shown by Sutton
in the Pacific (Sutton et al., 1971) or is there a low velocity zone
near the crust-mantel interface (Lewis and Snydsman, 1977); is
P-wave velocity in the mantle ‘normal’, ie., in the
range 8.2 +0.2 km/s or is there any anomalously low-velocity man-
tle away from the axial spreading zone? Is there a velocity gradient
in the crustal layers or is a horizontally layered crust an adequate
approximation?

The topography of the Reykjanes Ridge is rough in the crestal
region and becomes smoother towards the flanks and southwards.
The considerable thickness of sediments near the bottom of the
continental slope and away from the ridge crest represent an accu-
mulation of erosional material transported from the Iceland
Plateau, perhaps by turbidity currents (Fleischer, 1974). The volca-
nic basement is hidden by a blanket of these sediments and it
is not known whether the basement under the flanks is block-
faulted and broken up as much as it is near the crest. The structure
of the ridge is nearly symmetrical with respect to its axis, and
so are the magnetic lineations. The clear correlation of the mag-
netic stripes in this area confirmed the hypothesis of sea-floor
spreading (Vine and Matthews, 1963; Heirtzler et al., 1968). Be-
cause of the nature of development of plate boundaries in the
North Atlantic, Iceland and Reykjanes Ridge have been the subject
of extensive exploration. Gravity and magnetic measurements rep-
resent a dense net of observations (Heirtzler et al., 1966; Talwani
etal., 1971; Talwani and Eldholm, 1972; Fleischer et al., 1973;
Fleischer 1974; Gronlie and Talwani 1978) and reveal a notice-
able Bouguer gravity minimum and a high axial magnetic anomaly
of over 1,000 nT. There is also a substantial body of information
regarding the heat flow in the vicinity of the ridge (Talwani and
Eldholm, 1977; Grenlie and Talwani, 1978; Bram, 1980; Sclater
and Crow, 1979).

In contrast to these extensive geophysical observations, seismic
information about the deeper structure of the crust is sparse.
The results of early refraction seismic experiments were presented
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in a compilation by Ewing and Ewing (1959). In this early work
usual procedures involved two surface ships. The signal-to-noise
ratio was relatively poor and the seismic lines were often too
short to detect deeper refractors. About 60 km west of the axis,
these authors found a consolidated layer with a compressional
wave velocity of 5.7 km/s under local sedimentary troughs of small
thickness, and below 6 km depth an anomalous mantle P-velocity
of about 7.4 km/s. These results only roughly agree with those
of Talwani et al. (1971) farther north who found a rise of the
material with a similar P-velocity (7.4 km/s) from the flank to-
wards the ridge axis. For the crestal area these results correspond
to those obtained from earthquake surface wave dispersion obser-
vations (Trygvason, 1962). Arig (1972) presented a crustal section
of the west flank of the Reykjanes Ridge from deep reflection
seismic results. His depth calculation is based mainly on the P-
wave velocity structure from the mid-Atlantic Ridge between 0°
and 30° N given by Ewing and Ewing (1959) and LePichon et al.
(1968). The model calculated shows an extensive body with P-velo-
cities varying from 7.3 to 7.7 km/s, underlain by a layer with
a velocity of 8.1 km/s. This low-velocity body reaches a depth
of 40 km under the crest, and extends about 200 km from the
axis. At a distance of about 600 km, this anomalous mantle zone
melds into a normal oceanic crust. This interpretation is analogous
to the results obtained under Iceland by Zverev et al. (1976). As
part of the IPOD/DSDP site surveys (Leg 49, site 409), Snoek
and Goldflam (1978) found, at a distance of 18 km from the
axis, a high P-velocity of 7.9 km/s at a depth of 7 km, a slightly
higher velocity than found by Talwani and Eldholm (1977), though
still classified an ‘anomalous’ mantle.

The concept of a mantle plug of lower density and lower
P-velocity (‘anomalous mantle’) was introduced by Talwani et al.
(1965) as a possible model to explain the observed gravity ano-
malies across the Mid-Atlantic Ridge. This body extended about
400 km on either side of the median valley and the model was
based on the earlier compilation of seismic observations by Ewing
and Ewing (1959). From the study of surface wave propagation
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Table 1. Type and locations of seismic systems used

System Latitude Longitude Depth Sensor
(Degree) N (Degree) W (km)

M45/IN
DB2N 63°7.8 21°3.0° 0.366 GHG
BIOI 63° 1.5 21°14.1 0.819 GHG
ABIN 62°49.8’ 21°40.2 1.124 GH
AB2N 62°28.2’ 22°25.2 1.385 GH
DBIN 62°2.8 23°18.7 1.542 GH
BIO2 61°55.0’ 23°34.2 1.544 GHG

M45/1S
BIO1 63° 1.5 21°14.1 0.819 GHG
DBIS 62°2.8 23°33.5 1.439 GH
BIO2 61°55.0 23°34.2 1.544 GHG
AB2S 61°35.3’ 24°14.3’ 1.605 GH

DB,AB=Digital and analog buoy system, BIO=0Ocean bottom
seismographs, GH=Ground hydrophones, GHG =Ground hy-
drophones and geophones

and teleseimic P-delay times (Tryggvason, 1962, 1964; Francis,
1969a, Long and Mitchell, 1970), it was suggested that low-velo-
city mantle in the vicinity of Iceland may extend to a depth of
150 to 250 km. An examination of the relationship of terrain-
corrected Bouguer anomaly to bathymetry within the detailed
survey area of the Mid-Atlantic Ridge near 45° N, led Woodside
(1972) to suggest that a density deficiency or buoyant forces in
the upper mantle are responsible for the overall elevation of the
crestal mountain region and that the topography of the high-
fractured plateau may be partially compensated by undulations
of the crust-mantle interface. The search for the low-density, low
P-velocity mantle under the crestal region and the delineation
of the extent of this ‘anomalous mantle’ away from the ridge
has been an objective of much research during the last decade.

Working on Mid-Atlantic Ridge near 45° N, Keen and Tra-
montini (1970) found the Mohorovi¢i¢ discontinuity at a mean
depth of 7.5 km with a mean velocity of 7.9 km/s for the underlying
material. No evidence was found for anomalous mantle material
except within the immediate vicinity of the median valley and
low P-velocities were interpreted as a result of anisotropy. Later
work of Fowler (1978) within the same area, re-interpretation
of Keen and Tramontini (1970) data by Fowler and Keen (1979),
work of Whitmarsh (1975) and Fowler (1976) on the Mid-Atlantic
Ridge near 37° N (FAMOUS area), and work of Whitmarsh (1978)
and others on the ridge flanks north of the Azores, all confirmed
that the crustal structure is more complicated than that described
by the standard oceanic model (Raitt, 1963), that a low-density,
low P-velocity mantle is confined to a narrow axial zone, perhaps
not more than a few kilometres wide, and that away from the
axis a ‘normal’ oceanic crust is formed within a few million years.

On the basis of all these results it appeared that Reykjanes
Ridge may be different compared to the rest of the Mid-Atlantic
Ridge. The question of how it is related to Iceland could only
be answered by the knowledge of the deep crustal structure of
both Iceland and Reykjanes Ridge. This was the reason for carry-
ing out an 800-km-long refraction profile with 53 mobile and
37 permanent stations on Iceland and 8 stations at sea (consult
RRISP Working Group 1980, Gebrande et al., 1980). This com-
bined land/sea profile runs along the eastern flank of the Reykjanes
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Fig. 2. Sonic log measurements in water at two positions on profile
MA45/1

Ridge parallel to the bathymetry contours and somewhat obliquely
to magnetic anomaly 5 (8.34-9.74 Ma; LaBrecque et al., 1977),
crosses Surtsey and Vestmannaeyjar and continues into the young
volcanic zone of Iceland. We present in this paper the results
from the sea end of this profile.

2. Description of the Experiment

The seismic refraction experiment along the seaward extension
of the land profile, called profile M45/1 (Fig. 1) was carried out
in two parts. Along the 187 km northern section, Profile M45/IN,
six seismic receiving systems were launched (Table 1). Four of these
were anchored telemetering buoy systems of the Institut fiir Geo-
physik, Hamburg (Kebe, 1971, Weigel et al., 1978) and the other
two were ocean bottom seismometers (BOBS) of the Bedford
Institute of Oceanography, Dartmouth, N.S. (Heffler and Barrett,
1979). All systems included a hydrophone near the sea floor. In
addition, BOBS had two geophones (one vertical, one horizontal)
but the records from these were too noisy for detailed analysis.
The two ocean bottom seismometers, BIO 1 and BIO 2 (Table 1),
stayed on the bottom for 14 days and were also used for measure-
ments along the 80-km-long southern section — Profile M45/IS.
Along this section, two additional telemetering buoys were
anchored, again with sea-floor hydrophones. During the whole
seismic experiment, all systems worked satisfactorily except for the
buoy DBIS. This buoy drifted 8 km due to unknown reasons, so
the results can be used only for qualitative purposes. For the
combined land/sea experiment, charges of high explosive
GEOSIT 1I from 25 to 4,000 kg were detonated electrically. In
total 141 shots, about 1.8 km apart were fired.

For the determination of the shot and seismic-system coordi-
nates, Loran C and integrated satellite navigation were used, and
the raw data were corrected by the method described by Goldflam
and Goldflam (1979). Sound velocity in water measurements were
carried out at two stations (Fig.2) and were used to calculate
shot to receiver distances. A very weak low-velocity channel ap-
pears within the first 100 to 200 m. The mean sound velocity
of the sea water remains constant at 1.486 km/s and this value
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was used for all calculations. Comparisons of geodetic distances
with distances calculated from water-wave arrivals indicate an
accuracy of geographical position determination of 200 to 300 m.

To obtain the fine structure of the upper sediments, seismic
reflection data using a sparker system were collected along the
profile. Over most of the profile we observed smooth acoustic
basement and sediment thicknesses up to about 400 m which thin
from north to south. In the southern part of the profile, close
to shot A, the basement becomes rough (Fig. 4) and the sediments
are concentrated only in local depressions between the outcropping
basement highs. These features of the basement topography are
important for tectonic interpretation of the refraction data (see
also RRISP Working Group 1980).

3. The Results

Out of a total of 15 seismogram sections compiled for the interpre-
tation of the refraction observations on Profile M45/1, only four
representative examples are presented in this paper in order to
save space. The ranges of observations of each system are discussed
in RRISP Working Group 1980, (see Fig. 2). All Hamburg seismo-
grams were filtered with a band-pass of 2 to 20 Hz which roughly
corresponds to the frequency response of BOBS. The sections
are not corrected nor are the arrivals normalized for variations
in shot charges. Only the BIO | record section is corrected for
the attenuation with distance. According to the theory of propaga-
tion of head waves (Cerveny and Ravindra, 1971), at long ranges

253



1

ot

N TT R TPy Y
T

L
8

| 1
|
|

| PP AN

1

RECEIVER POSITION = [ B3.125 21.235 ) JEPTH B19.0 H.

Fig. 5. Seismogram section of the northernmost ocean bottom seismograph BIO 1

{ luniversity
RE: | {4 Ll { {  hamburg -2

~50 -40 30 =20 -10
DISTANCE IN KM

ABIN

Fig. 6. ABIN seismogram section. Very good phase correlation
(supported by clear multiple refraction arrivals)

the first arrival separates from the interference packet by more
then the pulse length and so the amplitude decays as r~!. This
relationship was used and the constants of proportionality so
adjusted that a signal at 120 km range is corrected by a factor
of two (i.w., an attenuation of 50% is assumed at that range).

In the illustrations given, the time axis corresponds to the
reduced time with a reduction velocity of 6 km/s except for BIO 1
(Fig. 5). Because of long range of observations — almost the whole
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length of profile M45 I - a reduction velocity of 8 km/s was used
for this section. In this seismogram section we can recognize the
main horizons which are here characterized by the apparent veloci-
ties: V,_=4.6,V,_=6.6,V, =7.5;and V,_=8.3km/s. Similar
results were obtained in the remaining sections, as for example
in the reversal part between the buoys ABIN and AB2N (Fig. 6)
except that no upper-mantle velocity was observed. The absence
of any arrivals indicating the presence of this velocity (V) is
due to the shorter range of observations on these buoys as com-
pared to the results obtained by BIO 1. Figures 7 and 8 show
the seismogram sections of the buoy AB2S which is of importance
bacause the apparent velocities V, . and V, _ indicate an increase
of the true P-velocity for this particular layer southwards. This
indicates a different crustal constitution in the south as already
suggested by the changes in basement morphology.

In Table 2 we have summarized the observed apparent velo-
cities for comparision of the results of all seismic systems. We
designate with V;, the apparent velocities of the arrivals originat-
ing from shots northeast of the seismic receivers and with V;_
those fired southeast of the receiver (Fig. 1). With regard to the
horizontal nature of the sediment layer (Fig. 3) and taking into
account all the calculated apparent velocities (Table 2), a model
was developed to fit the observed travel times on Profile M45/IN
by ray-tracing. The velocities at the upper boundaries of the model
are as follows: V, =149, V,=16, V,=22, V,=44, V=67,
Ve=7.7, and V;=8.2km/s. The algorithm used in calculating
the ray tracing model required a small velocity gradient in the
layers (Gebrande 1976). Similar model calculations along the
southern section of this profile (M45/IS) — northeast and southwest
of the position of AB2S — show slightly different V, values for
layers 4 to 6 namely: V,=4.9, V;=6.5, and Vo=7.7 km.

The extremal inversion of travel time data by the tau-p method
(Bessonova et al. 1974; Bessonova et al. 1976; Kennett, 1976) was
applied to the data recorded at BIO 1. We find that the model
velocities calculated by conventional methods are within the extre-
mal bounds on possible velocity-depth distributions obtained by
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Fig. 7. Results of the observation of the Buoy AB2S on the southern section M45/IS (NNE direction)

the tau-p inversion (Fig. 9). The upper boundary of possible V(z)
functions indicates that the transition from 6.7 to 7.7 km/s and
from 7.7 to 8.2 km/s layers may be step like. The absence of
velocity gradients (i.e., a layered solution) and a presumed absence
of ‘interference head waves’ (Kennett 1977) may account for the
low amplitudes of first arrivals at BIO 1 (Fig. 5). The larger ampli-
tudes between 90 and 120 km may be due to a slight positive
velocity gradient in the upper mantle. Another explanation for
the increased amplitude at greater range is the possible arrival
of wide-angle reflections from the mantle boundary (PnP), as
observed by Lewis and Snydsman (1977) in the Pacific. For strong
reflections, the boundary would have to be sharp and this has
implications for petrologic models which may explain our observa-
tions as discussed later. These speculations are quite qualitative,
however, and should be verified by calculation of synthetic seismo-
grams.

4. Interpretation and Discussion

The main part of the RRISP experiment (see RRISP Working
Group 1980; Gebrande et al. 1980) has confirmed the findings
of many earlier investigators that the crust under Iceland is *anom-
alous’. In contrast, we find under the flanks of the Reykjanes
Ridge south of Iceland nearly normal crust, though of greater

thickness than elsewhere on mid-ocean ridges. Two aspects of
our results deserve further discussion: (i) the absence of strong
along-strike changes in crustal thickness as Iceland is approached;
and (ii) the nature of 7.7 km/s layer and the transition from 7.7
to 8.2 km/s at a depth of 16 km.

The uppermost (unconsolidated sediment) layer decreases in
thickness with distance from the Iceland plateau as is to be
expected. This is a surficial phenomenon due to erosion and re-
distribution of sediments and is not important for understanding
deeper structure and tectonic development of the region. Of more
interest is the slight increase in the velocity of layer 2 from 4.4
to 4.9 km/s (north to south) and perhaps some thickening south-
wards. This result needs confirmation from the other seismic lines
in the area. These velocities are identical to those of wide-spread
basaltic nappes on and around Iceland. Because of the oblique
crossing of anomaly 5 by our profile the rocks under the southern
portion of Profile M45/1 are older and get progressively younger
towards the north. Our results would thus suggest an increase
in velocity of layer 2 with age. The change (of about 10%) is
too large to be explained by compression of basalts and closure
of cracks and, if real, may be due to a slight compositional varia-
tions in the chemistry of the rocks away from the Iceland plume.
Of greater interest, however, is the almost horizontal layering
of deeper crustal layers.
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The main crustal layer under Iceland of velocity 6.35 km/s
(Palmason, 1971) to 6.8 km/s (RRISP Working Group 1980) corre-
sponds to the 6.7 km/s layer observed under Profile M45/1 (Fig. 9).
The base of this layer under Iceland is at a depth of 8 to 18 km
and is underlain by a layer of velocity 7.0 km/s which has a slight
positive velocity gradient and may extend to a depth of 150 to
200 km (Tryggvason, 196°, 1964; Long and Mitchell, 1970). This
is at complete variance with sea observations. The oceanic struc-
ture determined under M45/I must come to an abrupt termination
just south of the mainland of Iceland, perhaps along the walls
of the Reykjanes Fracture Zone. This result places a constraint
on the depth of asthenosphere flow outwards from a mantle plume
as proposed by Vogt (1974; Vogt and Avery, 1974). This has
further implications for search for ‘archeo-plumes’. If the anoma-
lous crustal structure is confined to the immediate vicinity of

Table 2. Observed apparent P-velocities in km/s

RRISP/M45 - 1977

) - Inversion : OBS1
velocity (km/s)

depth (km)

20

25

Fig. 9. Extremal bounds for the possible velocity-depth function
V(z) obtained by the tau-P inversion applied to the travel time
data of the BIO 1

the mantle plume, then traces of ancient plumes will be found
only by studying anomalous crustal structures over small areas.
Systematic search for ancient or exhausted mantle plumes by seis-
mic refraction techniques is not a practical project at the present
time.

A P-velocity of 7.7 to 7.9 km/s has been measured frequently
at the base of the oceanic crust and interpreted as the crust-mantle
or Mohorovi¢ié discontinuity (Wyllie 1971). For example, in an
experiment carried out about 200 km southeast from the position
of BIO 1, Whitmarsh (1971) found a deep layer of velocity
7.84 km/s at a depth of about 9.5 km. A layer of similar velocity
(7.74 km/s, depth 7 km) was detected by Steinmetz et al. (1977)
at the eastern flank of the Mid-Atlantic Ridge north of the Azores.
Measurments on the younger crust of faster spreading ridges in
the Pacific have also found similar velocities: 7.3 to 7.9 km/s
near the Explorer Ridge (Malecek and Clowes 1978) and 7.5 to
8.2 km/s (age dependent) on the Cocos Plate (Lewis and Snydsman
1979). None of these experiments reported a further sharp increase
in P-velocity at a greater depth as we observed under M45/1.
This is significant and can be explained in several ways. (i) The
7.7 to 8.2 km/s transition is widespread but has not been observed

Observed to SW Shot Buoy Shot Observed to NE
point point
Uy b5 - 76 - - U3+ Uas Us 4 U6+ D74
T 138-146 DB2 N
4.6 6.6 5 8.3 138-217 BIO |
4.4 6.7 7.7 153-179 ABI N 138-148 4.6 6.8
6.7 7.7 199-220 AB2 N 147-179 4.5 6.8
DBI N 169-219 5.0 6.9 7.4
6.7 252-283 DBI1 S
4.9 7.6 224277 BIO 2 147-278 2.1 4.9 6.7 7.5 8.3
4.8 6.7 77 224-244 AB2 S 249-286 5.1 6.5 7.6
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elsewhere because of insufficient length of profiles (typically less
than 100 km); (ii) this transition is widespread and normally at
a greater depth; peculiar conditions under Reykjanes Ridge (ele-
vated temperatures? asthenosphere flow?) make it possible to ob-
serve the transition there; and (iii) the transition is a special feature
of Reykjanes Ridge. As will be seen from the subsequent discus-
sion, we favour explanation (iii) allowing that (ii) also may be
possible. The correct choice depends on a plausible explanation
of the 7.7 to 8.2 km/s transition. We offer here one explanation
based on anisotropy. We also note that there are other possible
explanations based on phase transitions in different petrologic
models proposed for the composition of the lower crust and the
upper mantle.

The anisotropy in seismic velocity measurements is a measure
of dependence of elastic parameters on the direction of propaga-
tion of P-waves. As was originally shown by Birch (1960, 1961),
the strong variation of compressional wave velocity with propaga-
tion direction in ultramafic rocks is related to prefered orientation
of olivine. At temperatures less then 1,000° C an low strain rates
over a geological time scale, olivine crystals may be aligned in
the direction of maximum compressional velocity (a crystal-
lographic axis) parallel to the principal glide plane (Francis 1969b).
Measurements on single crystals of olivine by Verma (1960)
detected velocities of 9.87, 7.73, and 8.65 km/s in the a, b, and
¢ crystallographic directions, with intermediate velocities possible
in intermediate directions. Recent detailed measurements on field
samples from the ophiolite complex of western Newfoundland
by Christensen and Salisbury (1979) have confirmed this range
of variations on a suit of rocks presumed to represent an upthrust
and exposed section of the oceanic mantle.

In several marine seismic refraction experiments where aniso-
tropy was detected, the variation in velocity is of the order of
5 to 8% with the direction of minimum usually perpendicular
to the direction of spreading (Raitt et al. 1969, 1971; Keen and
Tramontini 1970, Keen and Barrett 1971, Lewis and Snydsman

1979). All of these experiments were performed relatively close
to the spreading axis, on crust less than 12 Ma old. On the flanks
of Reykjanes ridge, on crust 35 Ma old, careful experiment by
Whitmarsh (1971) failed to measure anisotropy. Lewis and Snyds-
man (1979) have shown that on a fast-spreading ridge (4.4 cm/a
half spreading rate on Cocos plate) the anisotropy decreases from
0.6 km/s to 0.3 km/s within the first 10 Ma of lithospheric plate
development. It is thus possible that Whitmarsh’s experiment was
too far from the spreading axis and his results do not preclude
the possibility that our observation of 7.7 km/s layer represents
mantle with low velocity due to anisotropy. [Our additional lines
in the area (Fig. 1) may resolve this question. Unfortunately there
are problems with the data reduction and we cannot report the
results from these lines at the present time.]

In the deepest layer observed in this experiment the velocity
increases from 7.7 km/s to 8.2 km/s. This range of the P-velocity
change is of the same magnitude as the change that could be
caused by anisotropy due to a prefered orientation of olivine
crystals. We therefore wish to consider a model in which the
uppermost part of the mantle is composed of petrologically uni-
form material but with a change in P-velocity with depth due
to rheological causes.

We could envisage a couple of forces acting on the uppermost
lithosphere, perhaps over different time scales. The first, and per-
haps dominant, force is the driving force of the ocean-floor spread-
ing. This causes strain and the minimum of P-velocity would
be parallel to the Reykjanes Ridge axis. This would be the 7.7 km/s
velocity observed along our profile M45/1. The orientation of
the crystals which gives this low velocity could be ‘frozen-in’
early in the cooling stage of the lithosphere development.

At depth, another force may be acting according to the hypo-
thesis of outward flow from a mantle plume as developed by
Vogt and Avery (1974). If there is a significant flow at depth
away from Iceland parallel to the direction of, and under, the
Reykjanes Ridge, then the temperature and viscous stress may
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be sufficient to re-orient the olivine crystals along their gliding
planes. The maximum P-velocity in this depth range would be
in the direction of flow, i.e., parallel to the ridge crest. This would
be the observed 8.2 km/s velocity.

The transition between 7.7 km/s and 8.2 km/s could be gradual
or sharp, depending on the actual mechanism of olivine crystal
re-orientation. If the temperature gradient and stress field are
uniform, the crystals may be reoriented gradually and all the
intermediate velocities between 7.7 and 8.2 km/s would be present
along our profile. On the other hand, if there is a ‘stickiness
threshold’ which must be reached before the plastic deformation
begins and the crystals start to re-orient, and if, once this threshold
is reached, the reorientation proceeds until the alignment in the
new direction is completed, then the change from 7.7 to 8.2 km/s
could be quite sharp. Synthetic seismograms may discriminate
between the models with sharp and gradual transitions between
7.7 and 8.2 km/s and we intend to make these calculations in
the near future. Incidentally, the couple produced by the spreading
in the southeasterly direction and the asthenosphere flow in the
southwesterly direction, may explain the highly developed en eche-
lon fracturing of the ridge crest (Laughton et al., 1979).

Finally, we want to comment on the possibility that the de-
crease of velocity from 8.2 to 7.7 km/s is due to petrological
changes in the upper mantle, the most likely candidate being ser-
pentinization of the ultramafics at the base of the crust. Serpentin-
ization was recognized as an important process in the develop-
ment of the lower crust by Hess (1955). Geophysical consequences
of serpentinization are a decrease in seismic velocity (Christensen
1966) and an increase in volume. To explain the observed change
in P-velocity the degree of serpentinization would not have to
be great, perhaps 10 to 15%. This is consistent with observations
that in most ophiolite suites, the lowermost section of ultramafics
is serpentinized (Clague and Straley, 1977). The volume expansion
could provide the upward thrust to maintain the crest of the
Reykjanes Ridge at a high elevation and thus explain the remark-
able absence of an isostatic gravity anomaly compared to other
cross-sections of the Mid-Atlantic Ridge (Cochran, 1979). Serpen-
tinization, however, requires water, and it is difficult to envisage
hydrothermal circulation to the depth of 10 to 16 km (Lister 1974;
Fehn and Cathles 1979). Elevated temperatures at the bottom
of the crust in the neighbourhood of the hot spot would prevent
the serpentinization reaction above 450° C even if water was pres-
ent. For these reasons we reject the serpentinization hypothesis
and suggest vertical anisotropy as an explanation of our observa-
tions.
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