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A Characteristic Method for Numerical Solution

of the Inverse Kinematic Seismic Problems *

M.E. Romanov and A.S. Alekseev

Computing Center, Siberian Branch, Academy of Sciences of the USSR, Prospect Nauki 6, 630090 Novosibirsk, USSR

Abstract. The problem of determination of a multi-dimensional
velocity function, supposed smoothly dependent on coordinates,
from the observed travel-times is considered. An accurate math-
ematical formulation of this problem is obtained by formulating
an inverse problem for a Hamilton-Jacobi-type differential equa-
tion. A numerical algorithm is constructed for a medium with
velocity increasing monotonically with depth and slightly dif-
ferent from a linear function within any small domain of the
medium.

In seismic investigations a problem arises in correcting the
initial model of the medium, on the basis of comparison of the
model with the observed data. An approach to the solution of
this problem employing a linearized formulation of the inverse
kinematic problem and a numerical method for the solution of
some integral geometry problems are considered.

Questions of solvability, stability and practical applicability
of the methods developed are discussed.

Key words: Hamilton formalism — Ray method — Inverse
problems — Laterally inhomogeneous media — Numerical
solution.

Introduction

At present solution of inverse kinematic problems with the
assumption of a one-dimensional law of velocity-distribution in
the medium is widely used. Such models of real geological media
are, from the present-day viewpoint, imperfect. Some progress
has been made in the application of mathematical modelling
methods to seismic wave-propagation in complicated media.
Inverse problems are solved by many of these methods in two
steps:

(a) determination of an initial approximation to the me-
dium,;

(b) refinement of the model by optimization methods.
The paper deals with formulations and a numerical method for
the solution of these problems in the multidimensional case.
Although the problems and the method of solution considered
here are of interest in themselves, they are presented under the

* Contributed to the Workshop of the Commission on Con-

trolled Source Seismology (International Association of Seis-
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Republic of Germany, August 1-6, 1977

assumption that the procedures proposed can be applied to
seismic investigations’.

An algorithm is described for the determination of a two
dimensional velocity-function, supposed smoothly dependent on
coordinates, from the observed travel-times of refracted waves.
An accurate mathematical formulation of this problem is
equivalent to the problem of the determination of unknown
functions in a Hamilton-Jacobi-type differential equation, de-
scribing the propagation of refracted waves in an inhomo-
geneous medium, on the basis of information available about
this equation.

In the multidimensional case, the mathematical study of the
inverse kinematic problem is one of the basic problems in the
theory of improperly-posed problems of mathematical physics
(Lavrentiev 1967; Lavrentiev et al. 1970; Romanov 1974a). The
accurate mathematical formulation of the inverse kinematic
problem considered here was first presented by Belonosova and
Alekseev (1967). This paper presents a generalized statement of
this problem including the case of three-dimensional medium
with smooth interfaces.

Inverse Problems for Refracted Waves

Let us consider a two-dimensional medium, where the travel-
velocity distribution for seismic waves is described by the func-
tion v(&, n) depending continuously on the horizontal variable ¢
and monotonically increasing with the vertical variable #, which
characterizes the depth (Fig. 1). Let us assume that, within any
small domain of the medium, the velocity function v(&, #) differs
slightly from the linear function #(¢, n)=v,+v, £+v,n, where
vy, Uy, U, are constants dependent on the size of the domain and
on the properties of the medium in this domain. In other words,
the assumption of a sufficiently-smooth change of the medium
properties is introduced.

1. As is generally well-known, the travel-time of a refracted
wave between the points 4 and B in the medium equals the
integral value

as
v(& )

B
I=] 1)

! Space does not allow presentation of all mathematical calcu-

lations and proofs, therefore presentation of some ideas is sche-
matic. But we hope that this will not present difficulties for
advanced readers
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Fig.1. Orientation of axes and labelling of ray-path in for-
mulation of the inverse problem
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Fig. 2. Travel-time curves and their representation ¢(x, y), x and
y are source and receiver coordinates. D is the lightened domain.
D* is the domain of stability of the inverse-problem solution

taken along the seismic ray-path connecting these points. Let 4
and B lie on some straight line n =z parallel to the axis O¢ and
have the coordinates (x, z), (y, z) respectively. Different points 4
and B on different lines correspond to different values of the
travel-time between them, or, in other words, the value of
integral (1) is a function of the coordinates of the ends of the
ray-path:

I=1(x,y, 2).

2. Now let a complete system of travel time curves of
refracted waves be given for the profile of observations of length
L (or within the interval [0, L] of the medium surface), i.e., the
function 7(x,y,0)=¢(x, y) is known (Fig.2). The principle of
reciprocity of the receiver-point and the shotpoint gives ¢(x, y)
=@(y, x), so one can limit oneself to the case x=<y. So, in
consideration of the travel time-curve system, if (x,0) are the
shotpoint coordinates, then (y, 0) are the receiver coordinates.
Assuming monotonic velocity increase with depth for the obser-
vational system considered, the seismic rays fill-in the domain D
within the medium, limited by the boundary interval [0, L] and
the seismic ray joining the boundary points of the profile with
the coordinates (0, 0) and (0, L). This domain is often called the
domain “lightened” by the given system of travel-time-curves.

The Gaussian curvature of a manifold whose metric is given
in the form ds?=0v"2(&, n)(d¢% +dn?) equals K=0v?>4Inv. Sup-
pose that everywhere in D, K<0. Then, making use of the
Gauss-Bonnet theorem, one can easily show the absence of
adjoint points (i.e., intersections of geodesics coming from the
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same point or caustics of rays). Condition dv/0n >0 provides the
return of the ray to the line n=0.

3. Let us set the inverse kinematic problem, i.e., determine
the velocity function v(¢, ) in the domain D using the observed
travel times @(x, y) of refracted waves.

If the point A in (1) has the coordinates (x, z,), the point B
has the coordinates (y, z,), then I=T(x, z,, y, z,) is a function of
coordinates of 4 and B. With A or B fixed, one finds eikonal
equations

aT\ (9T _, oT \? (6T2_ L
(E) +(a_) =070 22) (a) + a_) —o iz

Consider the functions z,(z)=z, z,(z)=z 1(X,),2)
=TI[x, z,(2), y, z,(z)]. Evidently, 0t/0x=0T/0x, 0t/0y=0T/0y,
01/0z=0T/0z,+0T/0z,.

Now, expressing the right-hand side of the latter equality from
the eikonal equations, having made the necessary substitutions
and taken dt/0z<0 into consideration, with x <y, we arrive at
the equation satisfied by the function t(x, y, z):

%+]/flz(x, z)— (-g—;)z +Vf22(y, z)— (Z_;)z —0. )

Here f, and f, are related to the slowness at the points (x, z),
. 2):

fit,2)=—-v"'x,2),  f,0n2)=0""(1,2).
An accurate mathematical formulation of the inverse kinematic
problem is given as the problem of determining the unknown
functions f,, f, in the Hamilton-Jacobi-type Eq. (2), if
(%, 5, 0=0(x,y), 0=x=ysL<oo. (3
4. With the above assumptions about the velocity, the char-
acteristic method is applied for the numerical solution of the
inverse problem as formulated, whose essence is as follows: with
f, and f, given [that is, given the function v(&, )], the solution
of Cauchy problem (2)-(3) is equivalent to the solution of the
characteristic system of ordinary differential equations

dx___»p dy___ 4
dz fE-p* dz i
o A
dp ' ox dq 2 9y @
dz f12_P2’ dz fzz_qz
with the initial conditions
x(0)=x% y(0)=)°, 0=x°<y°<L<oo,
do 0¢p

0)=p0=—" , 0)=¢°=— ) 5

p(O)=p ko q(0)=¢ 39 bemro ©)

;:;f’ y=»°

A pair of functions x(z), y(z) defines a seismic ray (its ascending
and descending branches respectively) joining the points (x, 2),
(y, z). The travel-time t [x(z), y(z), z] is found from the equation

d_‘l::_ flz _ f22 (6)
dz l/f12"1’2 szz_qz




with the initial condition
1(0)=1"=(x° »°). (7

Therefore the inverse problem is to determine the functions
f1(x, 2), f2(y, z), which are part of the right-hand sides of system
(4), (6), using the data (5), (7). The domain B, will be determined
in the form of a band, cut out of the domain D by the straight
lines n=kh and n=(k+ 1) h, where h is the value of the numeri-
cal integration-step of system (4), (6), k=0,1,2,...

5. The numerical method for solution of the inverse problem
uses successive recalculation of initial data (5), (7) along the
characteristics (rays), determined by the system of Eqgs. (4), by
local determination of the functions f;, f, in the domains E,
using the following algorithm.

(a) Take k=0 (i.e., the given band F,, where 0<z=<h). Let us
determine within the domain 0<x<y<L<oo with y=z=0a
set M® of discrete points (x°, y°) rather densely distributed. For
example, let (x° y°) coincide with the values of coordinates of
shotpoints and receivers respectively on the profile; the values
p°, ¢q°, <° for all the points of the set M® are calculated with
regard to (5), (7).

(b) Let us specify a certain number § and take two sets MY and
M®¥ from M® with the condition that the point (x°, y°) belongs
to M if y°—x°<4 and it belongs to MY if y°—x°>6 (9 is
chosen so that the points of M{ are uniformly distributed along
the profile and the above assumption, that [v— 5] is small for all
the points of M, is satisfied.

(c) Let us consider the respective Cauchy problem (4) to (7) for
the points M. With the given assumptions of locality and the
choice of M, in the vicinity of each of (x°,°), v(¢, n) differs
little from (&, ). Therefore, setting v=7 in (4), (6), relations
expressing the parameters v,, v,, v, in terms of p°, ¢°, t°, x°, y°
are found (Romanov 1972), i.e., in the vicinity of each point
(x°, y)eM® on the plane z=kh, parameters vy, v, v, of local
approximations (¢, n) to the unknown velocity function v(&,n)
are determined within the band F,.

(d) Applying a method of smoothing by spline functions we sew
the local approximations #(¢,#) into the smooth function v(&,7)
within the band E,.

A stable solution to the inverse problem can be obtained
only as follows. Within the domain (Fig. 2) where the solution of
the inverse problem is sought, we define the domain D* as
limited by the set of points of maximum depth on each ray on
the given observational profile. The function v(&, n) can be stably
determined [according to items (c), (d)] only on the intersection
of the band B and D*. Therefore we call D* the domain of
stability of the inverse problem solution.

(e) To determine v(&,7) outside the domain D* we use extrapo-
lation or some additional relations for characteristics (see
Sect. 3).

() Substituting the function obtained, v(¢,#), in the right-hand
sides of Egs.(4) and (6), on the band B, the Cauchy problem is
solved numerically, with (5) and (7) determined for each point of
M¥. As a result we have values of the functions x(z), y(z), p(z),
q(2), 7(z) with z=(k+1)h. Now a new set M**+1 is formed by
the points x(z), y(z) of the three-dimensional space {x,y,z}.

When solving the Cauchy problem (4) to (7) some characteristics
cross the plane given by the equation x =y in three-dimensional
space. As a rule these are characteristics originating from points
in M¥. In further calculations those characteristics or rays,
whose depth of maximum penetration does not exceed z=(k
+1)h, do not take part, therefore M**! contains a smaller
number of points than M.

(g) Changing k into k+1, one should come back to item (b) if
M%+1 contains at least one point.

Thus, the algorithm described realizes a recurrent process of
successive determination of v(&,#) within the domain D of un-
iqueness of the solution of the inverse problem. Here a stable
function v(&, n) is generated in the domain D*; the accumulation
of resultant errors is generally caused by the necessity of using
unstable extrapolation procedures beyond the stability domain
D*.

Nevertheless, note that in actual observational systems (es-
pecially in seismic prospecting) the range of observational pro-
files exceeds the maximum distance between the source and
receiver in this system: (g(};iy)é'|y°—x°|<L. Then the domain of

instability D\D* is significant for determination of the velocity
in D*. Therefore the algorithm with linear extrapolation of the
velocity function from D* to D\D* is to be applied, for the
interpretation of the data from such observational systems.

Method of Refinement for Models of the Medium

The inverse kinematic seismic problem is nonlinear, since seis-
mic ray-paths are to be determined along with the velocity
function. In some cases the linear inverse problem can be
formulated.

In seismic studies an approximate model of the inhomo-
geneous medium investigated, or some velocity function vy(&, #)
can be given on the basis of some a priori data or by approxi-
mate methods employing different information in the observed
wave field. In particular, the inverse kinematic problem of the
determination of the velocity function v,(&,n) making use of the
observed travel time curves of refracted waves ¢(x, y) has been
considered (see Sect. 1).

Application of the characteristic method results in the func-
tion vy(& n)=v(&n)—4v(&n) where Adv(é,n) is a velocity
variation — smaller than vy(&,7).

Now consider the problem of determination of 4v(¢,#) from
the difference 4¢(x, y) of the observed travel time curves ¢(x, y)
and calculated travel time curves ¢,(x,y). This problem was
considered in Romanov (1974a) and in Lavrentiev and Ro-
manov (1966) and is reduced to the so-called “problem of
integral geometry”, if the velocity function v,(&,#) is such that
the seismic ray y(x°,y°)=7° connecting the points (x°,0) and
(¥°,0) is strictly inside that part of the medium that is limited by
the ray connecting (x',0) and (y',0) with the condition
0=<x'<x®<y®<y' < L. This is a linear inverse problem since y°
is given. It can be solved numerically by the characteristic
method (Romanov 1975).

In fact, let us (similarly to Sect. 1) introduce the function

Av

l/l(x,y,Z)=§‘;An(6,r])dS, An=—m

where y° is the seismic ray in the medium with the velocity
vo(&,m) connecting the points with the coordinates (x,z), (y,2).
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Then we arrive at Hamilton-Jacobi equation (see Romanov
1975).

W, o w__f S,

P ™ )]

satisfied by the function ¥(x,y,z). Here @, @, are the angles
formed by the axis O¢ and the tangents at the points (x, ), (,2)
of the ray y°.

The functions

fl(X,Z)= —An(x,z), fz(y,z)=An(y,z)

are to be determined by the given function

Y(x,y,0)=40¢(x,y) (10)
and the rays y° determining the angles @,, @,.

Thus we have an inverse problem similar to that considered
in Sect.1 with the only difference being that the rays in (8) for
the model v, are given. Hence one can apply the above charac-
teristic method for determination of the velocity model cor-
rection 4v(¢&, n).

Note that initial condition (10) of this problem is approxi-
mate if Y(x, y, z) is introduced in accordance with (8). Condition
(10) is determined to within small values of the order of (4v)?
(Romanov 1974a). Therefore, considering v,(&1n)=v,(&n)
+4v(, 1) as a new approach to the real velocity function, a new
correction can be determined. In other words the method of
refinement described for the model of the medium can become
the basis of the method of successive approximations for the
solution of a multidimensional inverse kinematic problem.

Discussion of the Results

1. The investigation of the multidimensional inverse kinematic
problem is closely connected to that of inverse problems for
differential equations and a number of papers of theoretical
character have been devoted to the determination of conditions
for the uniqueness of solutions. From the point of view of
practical applications, the statement of the inverse kinematic
problem with initial data on that part of the boundary of the
domain where solutions are being sought is most important. It is
in this problem that there are some principal difficulties, since
the inverse problem here belongs to the class of improperly-
posed problems.

In a case where the initial data are given on the whole
boundary of the domain of solution, as recent investigations
have shown (Mukhometov 1975), the inverse problem appears
correct. Geophysical interpretation of this result is that, if the
travel-times of a seismic wave between any pairs of points of the
boundary of domain, where solution is being sought, are known,
the velocity function is determined, stable and unique if it is
such that the corresponding family of rays have no caustics,
AInv=0.

First results on the multidimensional inverse kinematic seis-
mic problem were obtained (Lavrentiev and Romanov 1966;
Romanov 1974a) making use of a linearized method. The ve-
locity distribution of seismic waves on the Pamir-Baikal profile
was investigated on this basis (Alekseev et al. 1971). Uniqueness
of the solution in the class of analytic functions was proved in
Anikonov (1969, 1971). In Romanov (1974b) a fairly wide class
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Fig.3a and b. TestI. a Isolines of the velocity function v(x,z)
=1.140.2 cos (x) + z (solid lines) and regenerated function (dashed
lines). b Isolines of the error function (in %) show the domain D*
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Fig.4. Test I11: Isolines of test functions

of functions with unique solutions has been presented, that is the
class of functions n(x,y)e C3(D), satisfying inequalities
agn(x, y)<b, a< —nj(x, y)<b’ in D and presented in the form

N
FInx, 9] =Y olX) ¥,
k=1
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Fig. 6. Results of the regularization experiment for Test I. Dashed
lines correspond to boundary of stability domains, D, D* are
uniqueness and stability domains of the original problem, D, D*
are the same domains of the continued problem. D* contains D,
therefore the error-function in D of the continued problem is less
than the same function of the original problem (see Fig.3b)

where

n(x,y):v‘l(x,y), x:(xl""’xm)’
D={(x,y): |x|]<o0,0sy=<H},

0 eC}R™, ,eC[0,H], d.b.

a, b, H are positive constants, f(z)eC>*[a,b],
variable y being the depth.

Another approach to the investigation of uniqueness of
solution of multidimensional inverse problems is described in
Anikonov (1971). For the case where the travel time curves
satisfy some differential equation, then the velocity function
satisfies a corresponding differential equation. On the basis of
this approach a number of particular solutions of the multidi-

|f'(2)|>0, the

3

R

Fig.5.

Example of the velocity
cross-section based on seismic
prospecting data and regenerated
by the characteristic method
(values of isolines in km/s)

mensional inverse kinematic problem are obtained (Anikonov and
Shasheva 1971; Anikonov 1974). In Jobert (1973) a method for
an approximate inversion of the travel-time curves is presented
for the three-dimensional case where the surfaces of equal
velocity are planes with an infinitesimal dip. In this case our
method gives a complete solution for any dips.

2. In our opinion the approach considered here for the solution
of the multidimensional inverse kinematic problem has possibil-
ities applicable to the creation of efficient algorithms. A set of
programs in ALGOL-60, implementing the above characteristic
method for processing real data, obtained from observational
systems, was created in Novosibirsk Computing Center, Siberian
Branch of the USSR Academy of Sciences. In Figs.3 and 4
results of test calculations by the characteristic method are
shown. An example of isolines of velocity functions generated
from the real velocity data are shown in Fig.5. Data from
prospecting profiles, of average length 130 km, have been pro-
cessed by the characteristic method. The results obtained were
used for estimating the velocity parameters of the upper part of
the cross-sections of Siberian platform.

3. In the course of numerical experiments it was found that in
the uniqueness domain D of the inverse problem the stability
domain D* is distinctly determined. This domain is the set of
deeper points of rays in the given finite interval [0,L] of
observations ¢(x,y). Outside the domain D* the solution of the
problem is generally unstable.

If the initial data ¢(x,y) for problem are given on the whole
boundary of the halfspace #=0, then D={(£,#): n=0} and D*
=D. In this case the problem is correct (Mukhometov 1975),
since the instability domain is absent. But in our problem the
data are given on the segment [0,L] thus giving rise to the
instability domain D\D*. Therefore our problem belongs to the
class of improperly-posed problems. In order to obtain the
solution of the improperly-posed problem one should employ a
proper regularization method.

However, taking the remark at the end of Sect.1 into ac-
count we can limit ourselves by linear extrapolation of the
values f; (or f,) from D* to D\ D*.

The problem can be regularized in three ways. Firstly, if the
initial data are continued smoothly beyond the interval of
observations, then the stability domain of the continued prob-
lem contains the uniqueness domain of the original problem
(Fig.6). In this case an implicit connection between velocity
values in D* with velocity values outside is introduced. Numeri-
cal analysis (Romanov 1972) has shown that stability in D can
be essentially increased in this way. Secondly, fixing the class of
velocity functions where the solution is being sought, one may
try to find integrals of Hamilton system (4), (6), thus introducing
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additional relations on characteristics, determining an explicit
connection between the values f;, f, in D. Thirdly, one should
consider additionally the variation along the rays of the value

0
VT

If the value r(z) on the ray is known then the value f, is
determined from this relation making use of the value f; in D*
(or, on the contrary, making use of the value f, in D*, f| is
determined outside D*). In this case the Hamilton-Jacobi equa-
tion itself is the additional relation which connects the values f;
and f, at the ends of rays.

Stability is also affected by errors arising in numerical im-
plementation of the method: these are errors in obtaining local
approximations by the linear functions (&, #), errors in numeri-
cal integration of Egs.(4), (6) and errors caused by inaccurate
initial data (5), (7). However, their estimations require a special
discussion and here we note only that an error introduced in
local approximation is easily estimated by the method described
in Sect.2. This error is proportional to h? and depends on
estimations of higher derivatives of the velocity function. To
decrease this error in the program for solution of the inverse
problem, two blocks are provided: a spline-smoothing block and
a block for integration of Eqgs.(4), (6) at v=0 with the step 0.1
x h.

The numerical method described for solving the inverse
problem is known to have an error of second order in ap-
proximation.

4. As compared to other approximate methods employed in
seismic practice the methods considered are based on the ac-
curate statement of the inverse problem under conditions pro-
viding uniqueness of the inverse-problem solution, i.e., under the
a priori assumption of a velocity increase with depth. It is
essential that the function of two variables ¢(x,y) given in the
domain P={(x,y): 0Sx<y<L<oo} is used as the data. The
characteristic method considered is based on the discrete set of
points (x°,y°)eP where the values o(x°%y°), do(x° y°)/0x,
0¢(x°,y°)/0y should be given. Therefore, a dense distribution of
the points (x°, y°) is necessary both for qualitative approxima-
tion of ¢(x,y) and for the determination of the derivatives
0¢p/0x, 0p/0y and the details of the velocity law v(&, ).

The greater the density of points (x°, y°) in the observational
system, the better the results.

5. The inverse problem can be also solved when the function
@(x,y) is ambiguous (in the presence of loops). In this case, from
some point (x°, y°) € P, where ¢(x, y) is ambiguous, rays originate
at various angles [different pairs p°, ¢° in (5)].

6. Sections 1 and 2 describe concrete applications of the theory
of Hamilton formalism to the solution of problems in the case of
a two-dimensional medium. This formalism can also be applied
in the three-dimensional case. In this case the vector-functions

x(2)=[x,(2). x,(2)], y(2) = [¥1(2). y2(2)). P(2) = [P, (2), P,(2)],

q(2) =[q1(2), g,(z)] should be considered instead of x(z), y(z), p(z),
q9(2).

Equation (2) also describes the kinematics of reflected waves
(see Sect.4) and the kinematics of waves in a medium with
curvilinear interfaces. Therefore the development of this ap-
proach to kinematic problems opens possibilities for the de-
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moving point: M = (x*,z*)

Fig. 7. Orientation of axes and labelling of ray-path and ve-
locity-interface in formulation of the variational problem

velopment of computerized systems of real seismic -data—prqcess-
ing in for example reflection and refraction profiling and seismic

deep sounding.

The Characteristic Method —
an Application of Hamilton Formalism to Kinematic Problems
for Multi-Dimensional Media

Let us consider some general ideas on the application of Hamil-
ton formalism to the kinematic seismic problems. For the sake
of simplicity we will restrict ourselves to a two-dimensional
medium with one smooth interface, since all the results are valid
for three-dimensional and multi-interfaced media.

Let (£,7) be a point in the half-space =0 (Fig. 7), v(&, n)—a
velocity function with discontinuities on the interface n=~h(¢).
Consider a curve y connecting those points in the medium with
the coordinates (x,z), (y, z) and consisting of two branches 7y,
={(&mn): &=x(n), 0sz=n=<z*} and y,={&n): &=y
0=z<n<z*}. Forall ne[z z*], x(z*)=y(z*) =x%*, ie, (x*, z*) are
the coordinates of the intersection of the branches. Let us define
a plane G in the three-dimensional space of the variables {x, y, z}
by the equation x=y and the interface I' ={(x,y,2): x=y=¢, z
=h(&)}. Then all the kinematic seismic problems connected with
waves refracted and/or reflected from I' lead to the consider-
ation of a variational problem of minimizing the functional J(y)
with a moving point (x*, x*, z*):

J(v)= f L(x(n), y(n). X(n), y(n), ) dn (11)

where
L= f,[x(n),n]V 1+ X*() = L0y, 0]V 1+ 92(n),
b
x_dn’ Y—dn, (12)
1 1
Silx(m),n]= o’ S2v(m).n] =m-

For the case of refracted rays the moving point is (x*,x*, z¥)eG
and for the case of the rays reflected from I, the moving point
belongs to the manifold I.

If the curve 7 is an extremal, i.e., if it realizes the minimum of
the functional J(y), the pair of functions [x(z),y(z)] form a
seismic ray: either refracted, if (x*, x*, z*)eG, or reflected from I



if (x*, x*, z¥)el". Here J(y) becomes a function of the coordinates
of the finite end-points of the extremal y: J(y)=1(x,y,z); the
value of this function coincides with the travel-time from the
point (x,z) to the point (y,z) and is sometimes called the
geodesic distance or eikonal (Courant 1962). The point
(x*,x*,z*) along with manifolds G and I' will be called initial
according to t(x*,x*, z*)=0. On the initial manifolds G and I
there are transversality conditions, which are obtained from
stationary state conditions of the functional J(y) with a moving
end. In the case of refracted rays we have

X(z¥)= —y(z*) =00 13)
and in the case of reflected rays (Elsgolz 1969) one can easily
obtain

b +x W +y _0, ¥ dh (14)

+ = —_—
V1+%2 Y1+)? d&fe=x-

as the condition, describing the law of ray reflection for the
moving end.

Considering the function 7(x,y,z), introduced in the way
described above, a theory of direct and inverse kinematic prob-
lems in an inhomogeneous medium with interfaces can be
developed in the most natural form. Here one may use Hamil-
ton formalism, developed in analytical mechanics, in variational
calculus, in the general theory of equations of the first order
partial derivatives, as well as in other fields of mathematics, for
example, in the theory of optimal control. The application of the
results of the latter is especially interesting from the point of
view of creating algorithms for the solution of kinematic prob-
lems.

It is known (see Sect.1) that t(x, y, z) satisfies the Hamilton-
Jacobi equation

Z—Z+Vf12(x, 2)— (2—;)2 +]/f;(y, 2)- (g_;)z 0

where f, = —v7(x,2), f,=v~ (9, 2). If z=0 is the Earth’s surface,
then in direct seismic problems the problem of determining the
function

(13)

0=x=y

lIA

1%, 3, 0)=0(x, y), L (16)
is posed, with a function of velocity distribution v(£,#) and the
interface I' given (or functions f;, f, in Hamilton-Jacobi equa-
tion). Here the function ¢(x, y) presents a complete set of travel
time curves of refracted or reflected waves.

The inverse problem, of the determination of the velocity
function v(¢,7) and the interface I', can now be posed, using the
observed travel time curves, as an inverse problem for the
differential Hamilton-Jacobi equation.

In kinematic problems it is natural to pass on to the system
of ordinary differential equations equivalent to the Hamilton-
Jacobi equation and to determine characteristic curves (from the
Hamilton system we have dz/ds=1, where s is a parameter,
therefore the parameter s is identified with z)

dx_@H

dz op’

dy 0H

dp 0H dq
dz 0q’

on
dz

il = 17
ox’ dz oy’ a7

dt 0H O0H

L —p 4g——H 18
dz p@p +4 daq (18)
dr 0H

& (19)

where r is a dual variable with respect to z. The system (17) is
complete and if the solution of the system is known, then t(z)
can be found by integration from (18). Equation (19) determines
the characteristic function r(z), which can help in solving the
inverse problem. In (17)-(19) the Hamilton function is expressed
with independent variables

H=H(x..p.q.2=Vf}(x2-p* +Vf} (0.9~ q". (20)
In direct problems the Cauchy problem is considered for the

canonical Hamilton system (17) and Eq.(18), with the initial

conditions defined at the moving end. For refracted waves these

initial conditions are of the form

x(z¥)=x*, p(z*) = fi(x*,z%),

7(z*)=0.

y(z*)=x*,

q(z*) = fr(x*, 2%), 21

For reflected waves the initial conditions are different only for p
and g:

fl(X*7 Z*) .
—X

p(z*)= = (z*),
1+x%(z*)
0= TN S e 22
a(z*) 1er_z(z*)y(z ), 2 =h(x¥). (22)

The values X, y are given in accordance with (14) and determine
various values of the reflection angles from the same interface
point.

Note that in the case of a three-dimensional medium x, y, p,
q are vector-functions x=(x;,x,), y=0¥,), p=(P;,P2) 4
=(q1,9,)

In inverse problems unknown functions f,(x,z), f,(y,z) [or
the function v, see (12)] are included in the right-hand sides of
(17) - (19) but the final conditions with z=0 are given:

0
x(0)=x°,  y(0)=)", p(0>=a—“’

b
x=x0
y=y°

, 10)=0(x%,)°).

Some assumption (see Sect.1) about the medium and a particu-
lar choice of the points (x°,y°) on the plane z=0 allow one to
determine f,, f, approximately, thus reducing the inverse prob-
lem to the Cauchy problem similar to (17), (18), (21), the inte-
gration of system (17)-(18) being in reverse order (ie. from the
final to the initial point).

Thus the geodesic distance t(x, y, z), introduced in the above
manner, allows one to consider kinematic seismic problems in
inhomogeneous media from a uniform viewpoint.

The approach described is called a characteristic method
since its essence lies in the use of the notion of the characteristic
curve, i.e., of the ray [x(z), y(z)], along with travel time t(z).
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