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Abstract. Measures of the frequency-dependent coherence. and
the frequency-dependent degree of polarization have been used
for some time in describing the statistical characteristics of
multichannel geophysical data. The degree of polarization is
rotationally invariant, suggesting that this measure is more
useful than the coherence in describing the statistical character-
istics of the spatial components of waves. In the present paper
generalizations of the bivariate coherence and the degree of
polarization for data with an arbitrary number of channels are
developed, and the relationship of the coherence to the degree of
polarization is described. Some suggestions for applications of
the measure of the degree of polarization in the selection and
filtering of geophysical data are given.
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Introduction

Measures of the coherence and degree of polarization of vector
time-series have been used for some time in evaluating the
statistical characteristics of geophysical processes. Jones (1979)
has indicated that there does not yet seem to be much appre-
ciation of the close connections between coherence and polariza-
tion, at least in the geophysical literature. Jones has limited his
discussion and conclusions to two-dimensional processes, but
has stated that ‘they are equally valid however in three dimen-
sions’. This statement might be somewhat misleading, and con-
sequently I would like to present a more comprehensive eval-
uation of the measures of coherence and polarization in pro-
cesses of arbitrary dimension n.

There are numerous reasons for extending these concepts to
vector processes of arbitrary dimension, rather than restricting
the discussion to three-dimensional spaces. Some examples will
serve to illustrate this point. In magnetotellurics, four time series
are measured, and the vector process is x”(£)=[e, (t), e,(t), b,(t),
b,(t)] where e ;and b; (j=1, 2) are the electric and magnetic field
components respectively. The descriptions of VLF waves in the
magnetosphere require a 6-dimensional vector, with 3 magnetic
and 3 electric field components (Storey and Lefeuvre 1979).
Finally, any array of instruments can be considered to be an m
X p dimensional process, where m is the number of instruments

and p is the number of spatial components measured by each
instrument.

The Spectral Matrix, Coherence, and Polarization

The information in the vector process x(f)=[x,(t), x,(t) ...
x,(t)] can be conveniently represented in the frequency domain
by using the spectral matrix S where

f+6 «©

S(,0)= [ [ C(x)e "= drdg, (1)
f—0 —
C(r)=<x@Ox"(t+1), @

and ¢ ) denotes the expectation.
The coherence, y?, in a coordinate system with bases (j, k) is
defined by

kazsjkskj/(sjjskk)» 3)

with 0<% <1. For arbitrary directions r, and r,(r, and r, are
real and orthogonal, i.e., r{ r,=0), Eq. (3) becomes

y2(ry, ry)=(r7Sr, 11 Sr,)/(x7Sr, rISr,). (4)

Equation (4) can be written in a more standard operator format
by noting that

r{Sr, =Tr((r,r{)S), )
where Tr denotes the sum of the diagonal elements. Then,
P2(r, 1) =Tr(R,,S) Tr(R,,S)/(Tr (R, ,S) Tr(R,,S)) (6)

where R, =r;rg.

For reasons to be discussed later, it is necessary to further
generalize the definition of the coherence by defining this pa-
rameter for vector u; in a unitary space. A linear vector space
will be called unitary if the components of the vector are from
the field of complex numbers, and the inner product has the
following properties

ulu,=(ufu)*, (7a)
(au)'u, =aulu,, (7b)
(u;+u) w,=ulu,+ufu, and (7¢)
ulu;=b. (74d)
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The symbol 1 denotes the hermitean adjoint or complex con-
jugate of the transpose, a and b are real numbers, and b is non-
negative.

For vectors u, and u, in a unitary space (aju,=0), the
coherence is

2 (uy, up) =Tr(u;,8)Tr(u;;S)/(Tr(u;;S)Tr(u,,S)) ®)

where U;, =u;uj. Henceforth, the vectors r; will always be in a
real space, and the vectors u; will be in a unitary space.

In defining the degree of polarization for n=2, Jones has
used the expansion (Born and Wolf 1964)

S=P+N )

where P is totally polarized, det [P]=0, and N is unpolarized, N
N 0

= [ 0 N]' The degree of polarization R is given by the ratio of

the polarized power to the total power, or

R=TrP/TrS. (10)

The expansion in Eq. (8) is not possible for n>2 (Samson 1973),
and consequently an alternative method must be found to define
the degree of polarization.

We first expand S in the form

(11)

n
S=) ¢uu!

where the ¢; and u; are respectively the eigenvalues and eigenvectors
of S. If S is purely polarized or is a pure state, then S has only one
nonzero eigenvalue and

S=¢,u,ul. (12)

In this case, the vector process can be considered to be ‘pola-
rized’ in the direction of the unitary vector u,. Since the
information on the polarization is in the eigenvalues of S, we
must consider the characteristic equation for the eigenvalues,
which is given by
n
S e =0. (13)
1=0
If o,_,=0, then S is a pure state.

The first three coefficients of the characteristic equation can
be written in terms of the invariants TrS and TrS? (Samson and
Olson 1980) giving

o, =10
2, ;=—TrS (14)
o,_,=1(TrS)2—TrS?).
Since

-1
(TrS)z—(TrSZ)gnT(TrS)Z, (15)
(Samson and Olson 1980) we have
0=n(2a,_,)/(n—1)(TrS)* <1, (16)
and we can choose our degree of polarization R? to be
R2=(nTr(S?)—(TrS)*>)/(n—1)(TrS)?). 17

If n=2, Eq. (16) becomes
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_ 4det[S]

(TrS)? (13)

R?=(2(TrS?)—(TrS)?)/(TrS)? =1

which is the parameter derived by Born and Wolf (1964).

A Comparison of Coherence and the Degree
of Polarization

Having derived the generalizations for the coherence [Eq. (8)],
and the degree of polarization [Eq. (17)], we are now in a
position to compare the two parameters. Jones (1979) pointed
out that in two dimensions, the maximum value of y2(r,r,),
under a real rotation, obeys the equality

max (y*(r,,r,))=R*>  (n=2) (19)
Relation (19) was derived earlier by Wolf (1959) and by Parrent

and Roman (1960) in the study of partially polarized light.

In generalizing the case to n>2, I shall show that Eq. (19) is
not true in general, and that the maximum in the coherence is
found by a unitary, not orthonormal (real) transformation. Max-
imization in a unitary space leads to a maximum value for the
coherence which is, for all », similar to the value for n=2.
Maximization in a real space leads to quite different results.

The maximization of y?(u,, u,) is an extremum problem in a
unitary (complex) vector space, and we must determine sta-
tionary values of y*(u,,u,) where u, and u, are orthogonal
vectors in a unitary space. Thus we must find the stationary
points u; and u, where

y*(u, +d0u,,u,)—y*(u;,u,)=0 and

P? Uy, uy +0u,)—y%(u,,u,)=0 (20)

with du, and du, arbitrarily small changes, and subject to the
constraint uju, =0 (orthogonality).

Using a Lagrangian multiplier formalism, we look for the
vectors u, and u, which give stationary values for the function 4
where

A=(uiSu,)(uiSu,)+ly(1 —uiSu, ulSu,)

+Aufu, +A,ubu,. (21)

The denominator in Eq. (8) has been eliminated by using the
constraint with multiplier 1,. The derivatives /04, /04, /04,
give the constraints in finding the stationary values. Then we
also have the two equations

A(u;+du;,u)—Au;, u)=0
(=1, k=2;j=2,k=1). (22)

Expanding (22) and neglecting terms second order in u, and
u, we get the two vector-equations

u!(ufSu;Su, — A,ulSu,Su;+1u,)

+(!SuuiS— A ufSuulS+A,ul)du;=0 (23)
(i=1,k=2; j=2,k=1).

Thus we now have two equations of the form
Sula, +aldu, =0 (24a)
Sulb, +b}du,=0. (24b)



If we consider the variation in the direction idu, and idu,, then
Egs. (24a) and (24b) become

oula, —aldu, =0 (25a)
dulb, —b}éu,=0. (25b)
It then follows that
a,=a,=b, =b,=0 (26)
giving four vector-equations.

To determine A, we use the equation
ula, =0 (7

giving 1,=72(u;,u,). We also note that b, —b,=0, and con-
sequently 1, =A%. Finally we solve for 4, using

uja, =0 and (28a)
biu, =0, (28b)
giving the two equations
I
7y =ubSu, B2 (1 —92(uy,uy), and (29a)
oy
u}Su
A =u}Su, uzfu 2(1=y%(uy, up). (29b)
2%2
The multiplier 4, is nonzero only if
u!Su, =u'ZSu2 (30)

ulu,  ulu,
Since the value of y%(u,, u,) is independent of the magnitudes of
u, and u,, we can choose ulu,=u}u,, and consequently the
condition (30) becomes u}Su, =u}Su,.

If either u}Su, =0 or y*(u;,u,)=1, then we also have a
solution for the stationary values. The former case obviously
gives an absolute minimum since y?=0. The latter case gives an
absolute maximum, and in this case u, and u, are not uniquely
defined, but need only lie in the plane for which y?=1.

The equations a, =0 and b, =0 can now be written

Su, —aSu; + fu, =0 (31a)
Su, —a*Su,+ fu, =0 (31b)
where
a:yzulsul =7’2“25“27 and
ulSu, u}Su,

u}Su,
B: “Iul (l_yz(ulsuZ))'
Solving (31a) and (31b) for u, we find
u, =(apf)" e?—1)Su,—a " 'u,. (32)

Substituting this value for u, into Eq. (31a) we obtain the equa-
tion

Au, + Bu, =0 (33)
where

1—a?
A= (—) S?42S.
B

Equation (33) is an eigenvector equation, with eigenvalue f.
Since A is a polynomial of the matrix S, the n eigenvalues of A

1— 2
are ( i ) €2 +2¢; (j=1,n), and we have the n equations

p

B*=(1—-a*el+2Bs; (j=1,n). (34)
Choosing any two equations and solving for y? gives

2 =(5j_8k)2 35
(7*(uy, uy)) (8j+8k)2. (35)

An absolute maximum occurs if we choose ¢; to be the maxi-
mum eigenvalue of S, and ¢, to be the minimum eigenvalue.
Consequently

(81 - en)z

max (y%(u;, “2))=m’

£,28,... 2&,. (36)

In general, since the space of real vectors r, and r, is a
subspace of the n-dimensional unitary space, we have

max (y*(r;, r,)) Smax (y*(u,, u,)). 37
The equality applies only when A in Eq. (33) is a real matrix.
For n=2 A can always be written as a real matrix, with a
suitable choice for (1 —a?)/B, and thus the equality is true giving

(&, — 82)2

max (y(r,, l'z))zm
1 7€

(n=2). (38)

To complete the discussion, we must consider the relative
values of max (y*(u,,u,)) and R? for arbitrary n. We first rewrite
R? in the form

o Trs?) 1

“n—1(TrS? n—-1

(39)

Now we wish to maximize R? by varying the eigenvalues ¢ (=2,
n—1), and thus we must maximize

Tr (S2)/(TrS)? = Z 62/ (Zl sj)z (40)

j=1

subject to the constraint ¢, =¢,... =¢,=0.

0
Each derivative 7. (Tr(S?)/(TrS)*) has at most one sta-
g.

tionary point in the region allowed by the constraints, and this
point is a local minimum. Thus the maximum must be found at
the end points ¢;=¢, (j=2, n—1) or ¢;=¢,. Substitution of these
two possible sets into (40) shows directly that ¢;=¢,, and thus

(81 - 8")2

RY)=—— 41
R O T “
Comparison of (35) and (41) then shows that
max (y*(u,, u) = R% (42)

Discussion
It is clear from the above discussion that the comparison of the

coherence values and the degree of polarization is more com-
plicated for n>2, and no simple relationship exists to compare
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max (2 (u,, u,)) or max (y2(r,, r,)) with the degree of polarization
R?. For n=2, the comparison is far simpler with max (y*(r,,r,))
=max(y* (u,, u,))=R? (n=2).

Measures of the degree of polarization of a vector process
are in many cases a more objective measure of the statistical
characteristics of multichannel data than are the individual
coherences. This is particularly true for the analysis of the
spatial components of waves. Since the degree of polarization
[Eq. (17)] is constructed from the scalar invariants TrS and
TrS?, the value of this measure does not depend on the choice
of the coordinate system for orienting the instrument. The value
of the coherence depends on the choice of the coordinate-
system. Thus the degree of polarization might be considered to
be a more ‘intrinsic’ quantity of the waves.

Measures of the degree of polarization can have many
practical applications in the analysis of geophysical data. In
most cases, geophysicists are interested in extracting the more
polarized waveforms from multidimensional data, and reducing
the random noise component. To facilitate these studies, data-
adaptive filters which use measures of the degree of polarization
can be used to selectively enhance the pure states or polarized
waveforms. For example, one can filter the n-dimensional data
xT(t)=[x,(t), x,(t) ... x,(¢)] by modulating the Fourier transform
of xT(t) with the frequency-dependent measure of the degree
of polarization. The filtered data y(t) are then given by

y(t)=271t—T _gj:) R2(f)s(f)e*"/'df, where (43)
T/2
s(f)= [ x(@)e ?"dy, (44)

~T/2

and T is the temporal length of the data. We have used filters of
this type with considerable success in extracting waveforms from
multichannel ULF magnetometer data and ULF riometer data.

For a second, and final, example of a practical application of
measures of polarization consider the problems inherent in the
selection of magnetotelluric data. The magnetotelluric theory
assumes that b=Ze where b is the horizontal magnetic field
vector, e is the two component electric field vector, and Z is a
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complex impedance tensor. When the magnetotelluric vector
xT(t)=[b,(t), b,(t), e,(t), e,(t)] has a spectral matrix that is
completely polarized (R?=1) at some particular frequency, then
the data satisfy the impedance-tensor relation. It is possible that
selection of magnetotelluric data by using criteria based on
measures of the polarization might be more suitable than the
coherence-based methods now being used (Goubau et al. 1978,
and references therein).
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