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Extremal Models for Electromagnetic Induction

in Two-Dimensional Perfect Conductors

P. Weidelt

Bundesanstalt fiir Geowissenschaften und Rohstoffe, Stilleweg 2, D-3000 Hannover 51, Federal Republic of Germany

Abstract. The simple problem of electromagnetic induction in
two-dimensional perfect conductors is considered. Extremal
models are constructed maximizing the depth to the top of the
conductor for magnetic field data at N=1 or 2 observation
points. It is assumed that the inducing magnetic field is quasi-
uniform and that the electromagnetic field is excluded from a
depth greater than z=A, where A is prescribed. Then the
extremal models consist of two levels: a conducting plane at a
depth z=A and either N conducting strips or N gaps in a
conducting plane at a depth z=z,, which is the maximum
possible depth as calculated from the data. The problem is
solved by conformal mapping and illustrated by data from the
North German conductivity anomaly.

Key words: FElectromagnetic induction — Maximum depth
rule — Conformal mapping — North German conductivity
anomaly

1 Introduction

Now that techniques have been developed for estimating by
various kinds of generalized matrix inversion the degree of
non-uniqueness of a given imperfect data set, interest has arisen
in the problem of how to obtain geophysically relevant proper-
ties common to all models, which both fit the data and satisfy
certain a priori assumptions (i.e., the feasible models). The
research of Parker on ideal bodies is a typical example of this
approach (Parker 1972, 1974, 1975). Work along similar lines
has been carried out by Sabatier (1977a-c), Safon et al. (1977),
Rietsch (1978), Huestis (1979), and Barcilon (1979). The in-
vestigation of the upper bound of a minimum value (or the
lower bound of a maximum value) of a special model parame-
ter has been of particular importance in this development. For
instance, if a data set is to be interpreted in terms of a buried
structure, then any feasible model has a minimum depth of
burial (the depth to the top of the structure). If we could find
the model with the greatest minimum depth of burial, then the
minimum depth of burial of all feasible models cannot be
greater than this upper bound. The search for the maximum
depth of the top of a buried structure leads to maximum depth
rules. For potential field data many rules of this nature have
been established (Bott and Smith 1958; Smith 1959, 1960).

In this paper maximum depth rules are derived for the
simplest problem in electromagnetic induction, where the mo-

Fig. 1. The model under consideration. C, and C, are the surfaces of
perfect conductors. The other symbols are explained in the text

del is two-dimensional and consists only of perfect conductors
and insulators, thus admitting a treatment by conformal map-
ping. In this limit the surface of the conductor coincides with a
field line, since the magnetic field component normal to the
conductor vanishes. The following problem is considered: As-
sume cartesian coordinates y, z (z positive downwards, surface
at z=0) and a quasi-uniform inducing field in y-direction.
Further, assume that the perfect conductor extends with hori-
zontal tangents to infinity and that it excludes the electromag-
netic field from a depth greater than z=A, where A is known
or can be estimated. The magnetic field components H (p) and
H,(p), normalized by H,, the horizontal magnetic surface field
for y— + oo, are given at a surface point p

h,=H,(p)/H,, h,=H,(p)/H, (1.1)

The problem is to determine the conductor with the deepest
top complying with h,, h, and 4.

A section across the most general model under conside-
ration is shown in Fig. 1. It consists of a perfect conductor with
undulating interface C, extending to infinity and a second
isolated conductor with boundary C,. It turns out that a
doubly connected conductor is necessary to construct extremal
models for all possible values of h, and h,. Fig. 1 introduces z,
as the depth to the top of the conductor and a=A4—z, as the
depth range of irregular distribution of conducting material.
The horizontal asymptotes of C, lie at depths y, below z,.

The above problem is solved for a single observation point
p in Sect. 2, and partial results for two observation points are
presented in Sect. 3. Finally, in Sect. 4, the findings are applied
to real data.
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2 Single-Point Extremal Models

2.1 Simply Connected Conductors

For ease of presentation we first search for extremal models
within the class of simply connected conductors, restricting
attention to the undulating interface C,. Let

p=y—i(z—z,) and w=u+iv 2.1)

be two complex variables and let p(w) map the line v=0
conformally into the interface C, and the half-plane v>0 into
the insulator above C,. Let this mapping be normalized by

pPw)—»1 for w—ooo, v>0 (2.2)
The parameter representation of C, is
pw)=yWw)—iy(u) for —oc <u<+oo, v=0 (2.3)

where =z —z, is subject to 0=y(u)<a with a=4—z, (Fig. 1).
The function y(u) with y =z—2zy and a= A4 —z, (Fig. 1). The func-
tion (u) with the limiting values ¥, for u— + oo is the boundary
value of the negative imaginary part of p(w). The function p(w)
is analytic in v>0 and satisfies Eq. (2.2). Hence,

p(w)=w+l(lﬁ+—xp_)log,w—l NV (2.4)
T T —W

where

. Yyw+y, -y, u<0

l//(u)_{;b(u), u>0

The subtraction term in i and its subsequent reconsideration
in the log term is necessary to ensure the convergence of Eq.
(2.4) if Y, #y_. Using the identity

S 1R gwmde]
I lim — =
m{:fo = My A
it is easily verified that Eq. (2.4) meets all requirements. The
normalized magnetic field in the p-plane,

h=h, +ih,=(H,+iH,)/H,

is derived from a normalized complex potential f(p) by h(p)
=f'(p) where, by virtue of the Cauchy-Riemann differential
equations, the lines Re f=const. are the equipotential lines and
the lines Im f=const. the field lines. By the conformal mapping
w(p) this field is mapped into a magnetic field in the w-plane,
which is derived from the complex potential g(w)=f(p). In view
of the quasi-uniform inducing field the magnetic field in the
upper w-halfplane is also uniform and can be derived from the
normalized complex potential g(w)=w, where Eq. (2.2) has
been used. Hence the magnetic field in the p-plane is simply

(2.5)

h(p)=1"(p)=g (W) w'(p)=1/p"(w) (2.6)
or expressing h by means of Eq. (2.4) in terms of y,
1=1—l [ vmat 2.7

h n 0, (t—w)?

For computational ease it is temporarily assumed that instead
of A the quantity a is prescribed. We are then faced with the
following problem:

The normalized complex magnetic field h and the depth
range a are given. Determine the complex point w and the real
function ¥ (u) with 0=y <a, which maximizes z,=1Im p(w) sub-
ject to Eq. (2.7). Moreover, for v=0 p(w) has to be a univalent
(or one-to-one) mapping.
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This problem of constrained maximization is best solved by
the use of Lagrangian multipliers (Luenberger 1969, p.249),
yielding, for the minimization of —z, (to retain the canonical
form), the Lagrange function

L=Im{—p(w)+Ai[p'(w)—1/h]}

+ © + o
= - @y@di+ | pr @@ (0)—a)dt (2.8)
The complex multiplier A=4,+i4,, where A, and A, are unre-
stricted in sign, is associated with the equality constraint Eq.
(2.7). On the other hand, the functions u~(t) and u*(t) as-
sociated with the inequalities —y(1)<0 and Y(t)—a=0, re-
spectively, are positive where the inequalities are binding (i.e.,
satisfied with the equality sign), and zero elsewhere. The exis-
tence of an extremum requires that the first variation of L with
respect to Y vanishes. Hence,
1 A

m{n(t__w)—m}—ﬂu(”+ﬂ+(ﬂ=0 29)
Since L is linear in ¥, this function does not occur in Eq. (2.5).
From the fact that u= =0 for >0 and u* =0 for Yy <a it is
immediately deduced that the only points ¢ where ¥ (t) attains
neither its lower nor its upper bound, are the roots of

1 A
m{r——w‘m}z"

which has at most two real roots. This is assumed here and
verified in a later stage. The origin on the real axis of the w-
plane is now fixed by placing the two roots at t=+c, ¢>0.
Hence, either

(2.10)

a) l//(t)={g’ :;:ii @.112)
or

0,
b) w(t)={a :i:iz 2.11b)

These two cases will be discussed below. The model parameters
w and c are determined from the fact that at an extremum the
three partial derivatives of

L=Im{—p(w)+[p'(w)—1/h]}

with respect to u, v and ¢ have to vanish. This latter form of L
differs from Eq. (2.8) by the inequality terms, which vanish for
a choice of p(w) according to Eq. (2.11a, b). An analytic func-
tion f(w) satisfies

0, Imfw)=Imf'(w), d,Imf(w)=Ref'(w)

where 0,=0/0,, etc. Hence, the first two conditions are equiva-
lent to

—p'+ip"=0 or A=p'/p” (2.12)
which combined with ¢,_L=0 yields the extremal condition
Im{—-0.p+@'/p")0.p'} =0 (2.13)
Case a:
From Eqgs. (2.4) and (2.11a) it follows that
p(w):w—l—5 log (_C_W)

n +c—w
reducing Eq. (2.13) to
n(|w|®>—c?)—2ac=0 (2.14)



Fig. 2A-C. Types of extremal models for a single observation point
showing upper and lower conducting sheets and magnetic field lines:
(A) for h <1, (B) approximate model for h,>1, (C) exact model for
h,>1 (see text for full explanation)

Equation (2.14) supplements the complex equation p'(w)=1/h.
This set of three real equations is solved by

h 2h,—1
u=%hyi1 tan f3, UZ% tan f3, c=% lihy (2.15a-¢)
where
2h —1

tan? f=— 22— 2.16
= e (2.16)
implying

Zo=Imp(w)=" (—f+1a ﬁ)—A(l i ) 2.17
o= mPW=2 np= n—pf+tanf 17

For consistency, insertion of Eq. (2.15a-c) and of 4 from Eq.
(2.12) will verify that t= +¢ are the two real roots of Eq. (2.10).
Equations (2.17) and (2.16) provide a partial answer to the
problem under consideration. The answer is incomplete be-
cause ¢, assumed to be positive, becomes negative for h,>1.
The second change of sign of ¢ at h,=0.5 is not serious, since
the horizontal magnetic field of internal origin, h,—0.5, is al-
ways non-negative. (The normal magnetic field H, consists of
the external inducing field and the internal normally induced
field in equal parts.)

The type of the extreme model and a few field lines are
shown in Fig. 2, part A. It consists of two horizontal halfplanes
at z=z, and a horizontal plane at z=A4. The width of the gap
between the halfplanes (i.e., the distance between the two points
where p’'(w)=0) is

2
i=2 {1_52+10g iﬂ} e=1/2h,—1
- —¢

n &

For hy,—1—0 and h,>0 (say), the right halfplane is displaced to
infinity, yielding an infinite width.

Case b:
Combining Egs. (2.4) and (2.11b) we obtain

a c—w
pw)=w+— log( )
T c+w

(2.18)

and the extremal condition
(w2 —c?)+2ac=0

The resulting parameters u, v, and z, are identical with those
given in Egs. (2.15a, b) and (2.17), whereas
e a 2h,—1

n h,—1

suggests that case b covers the range h,>1. However, an in-
spection of Eq. (2.18) reveals that p(w) is not univalent for all
v>0. Only for sufficiently large v are the lines v= const., which
are field lines for a quasi-uniform inducing field, mapped into
the corresponding field lines in the p-plane (Fig. 2, part B). The
value of v can decrease until a limiting field line is reached
where two different parts of the field line touch at the axis of
symmetry. For smaller v, the image of the line v=const. has
two points of intersection on the axis of symmetry, implying
that for —a<Imp(w)<0 two different points of the w-plane are
mapped into the same point of the p-plane. The deepest physically
real conductor is traced by the limiting field line, whereas
contrary to our assumption the line v=0 does not map the
interface of a physically real conductor.

Since the search for an extremum model within the re-
stricted class of simply connected conductors failed for h,>1,
the broader class of doubly connected conductors will now be
considered.

2.2 Doubly Connected Conductors

An account of the theory of conformal mapping of doubly
connected domains, which is intimately related to the theory of
doubly periodic functions, is given by Koppenfels and Stall-
mann (1959).

We assume the conductor configuration of Fig. 1: A conduc-
tor C; with undulating interface extending at both sides, with
horizontal tangents, to infinity and an isolated conductor C, of
finite extent. A very special case of this class is shown at the top
of Fig. 3. A branch cut from any point of C, to infinity creates
a simply connected domain. As in Sect. 2.1 we introduce two
complex variables

p=y—i(z—z),

where w will now be dimensionless. Using the univalent confor-
mal mapping w(p), the simply connected domain is mapped
into a rectangle of length n and heigth 3« in the w-plane, such
that C, is mapped into v=0 and C, into v=%a, 0<u=n (top
and centre of Fig. 3, for illustration). The aspect ratio of the
rectangle depends on the conductor system C,, C,. Broadly
speaking, « is large if the minimum distance between C, and
C, is large compared with the dimension of C,, and vice versa.
To each physical contour around C,, which must cross the
branch cut, corresponds a different rectangle in the w-plane,
displaced by a distance = to the right (left) if C, was lying to
the left (right) of the contour. Hence, w(p) is multi-valued and
p(w) periodic, satisfying p(w + kr)=p(w) for any integer k.

Let p=oo be mapped into w=0. Then the asymptotic be-
haviour

w(p)=—b/p

w=u-+iv (2.19)

for p— oo, Imp>0 (2.20)
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Fig. 3. Example of the mapping of a doubly connected domain in the
p-plane (upper diagram) onto half a period rectangle in the w-plane
(lower diagram). The period rectangle is completed by the mirror image
at v=0/2 and periodically reproduced with periods n and ia. The
bottom shows magnetic field lines for a doubly periodic dipole and a
uniform magnetic field in the w-plane. As a consequence of Eq. (2.23)
the uniform field is adjusted to yield a vanishing net flux across a line
from any point at v=0 (except source points) to any point at v=o/2.
The magnetic field in the w-plane corresponds to a quasi-uniform
inducing field in the p-plane

establishes a conformal one-to-one mapping of a neigh-
bourhood of p=o0o0 onto a neighbourhood of w=0, where the
scaling length >0 has to be determined. The minus sign
ensures that Imw>0 if Imp>0.

For a quasi-uniform inducing field let

H(p)/H,=h{p)=1"(p),

where f(p) with f(p)=p for p— oo is the normalized complex
potential. Then the corresponding normalized potential g(w)
=f(p) behaves according to Eq. (2.20) as

gw)=—b/w

which can be interpreted as the potential of a horizontal mag-
netic dipole or current doublet at w=0, corresponding to the
fact that the normal magnetic field in the p-plane can be
conceived as the limit of a distant line current and its mirror
image at C,.

In virtue of the Cauchy-Riemann differential equations the
real part of the complex potential can be interpreted as the
ordinary scalar magnetic potential and the imaginary part as
the only component of the vector potential. At boundaries to
perfect conductors this component vanishes since it is pro-
portional to the time derivative of the electric field, vanishing
at conductors. Hence, g satisfies the boundary condition

v=a0/2

(2.21)

for w—0, (2.22)

Imgw)=0 for v=0 and (2.23)

The complete potential g(w) can be considered as the super-
position of the potentials of the infinite sequence of dipoles a
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distance n apart along the horizontal axis, plus the potentials
of the infinite number of images of this sequence at v=0, —a,
20, —2a,... which ensures that Img is constant at the con-
ductors at v=0 and v=0/2, plus the potential of a still un-
specified uniform horizontal field which adjusts Img at both
conductors to zero. Hence,

gw)=—b{pw, 0)+c,w+c,} (2.24)
where
+M + 1
,o)=1i —
00w 2) Ml—lvl:o ,,.=Z_M k=z_:co w—kn—imo
+M
=lim ) -cot(w—ima) (2.25)
M- m=_M
otw2 {2 sin2w 226)
=cotw S — )
¢ m—1 cosh2ma—cos 2w
_ J'f’ sin 2w
_,,.= ~ o cosh 2ma—cos 2w
=8, (w)/8,(w) (2.27)
with
S w)=2Y (—1y e *™Psin2n+1)w (2.28)
n=0

The above derivations are based on the identities 4.3.91, 4.3.39
and 4.3.31 of Abramowitz and Stegun (1965) and Example 15,
Chap. 21 of Whittaker and Watson (1927). In Eq. (2.27) 9,(w) is
the first Theta function for the period ratio t=ia/n in the
notation of Whittaker and Watson. The series (2.26) is rapidly
convergent for «=n. For a <= the application of Jacobi’s imag-
inary transformation (Whittaker and Watson 1927, p. 474) to 3,
also yields a rapidly convergent representation:
w n [(mw n?
el

ow, o)= —2— (2.29)

o o
The constants ¢, and ¢, in Eq. (2.24) are determined from the
observation that

0, v=0 (except source points)

Imq)(w,oc)={_1 v=uf2

The latter result is obtained by rearranging the terms of Eq.
(2.25), yielding only a contribution for m= — M. Hence, satisfy-
ing Eq. (2.23) by ¢, =2/, ¢, =0, we end up with

gw)=—b{oWw, a)+2w/a} (2.30)
The bottom of Fig. 3 shows a few magnetic field lines, Img
=const., within a complete period rectangle of length = and
height a. A particular feature of the field in any doubly con-
nected domain is the existence of a neutral point (g'=0).

The presence of a linear term in the complex potential
reflects the fact that the scalar magnetic potential and hence
the complex potential is a multi-valued function, increasing
after any closed clockwise contour by the amount of current
encircled, reckoned positive if flowing in x-direction (into the
sheet). Hence, the total current I flowing in the conductor C, is

2nh
=" H

I (2.31)

o n

After having determined g(w), the normalized magnetic field in
the p-plane is given by

h(p)=f"(p)=g'(w) - w'(p)=g'(W)/p' (W) (2.32)



Let ¢, (4) and ¥,(u) be the boundary values of the negative
imaginary part of p(w) at v=0 and v=0/2. With the formula of
Villat (Koppenfels and Stallmann 1959, p.107) the mapping
function p(w) - analytic in O<v<a/2 - is, apart from a real
additive constant, given by

1 n
p(w)=—— !, W@ et=w)=¢, () x(t—w)} dt

2w ™"
2 T W0y (0) dr o)

where
AW)=@Ww+3ia)+i=9,(w)/9,(w)
i 2sin2w

= 2.34
m_1 cosh(2m—1)a—cos2w (2:34)

using a set of identities given in Chap.21 of Whittaker and
Watson (1927).

Unlike the complex potential g(w), the mapping p(w) is
periodic p(w+m)=p(w), requiring that the second term of Eq.
(2.33) vanishes, i.e.,

[ (-} de=0 (2.39)

0

provided that the domain is strictly doubly connected (o < 00).
Because of Eq. (2.20), p= —b/w for w—0, and

lim LY s

2
vmt0 T U202

it is reasonable to split y, into a bounded part ¥, and an
unbounded part,

Vi)=, () —bnd(u) (2.36)
implying that the proper range of integration in Egs. (2.33) and
(2.35) is from —0 to n—0. For 0Su<n the functions ¥, and
¥, are bounded by

0<V,W<a, 0<y,(W<a (2.37)
where again a=A4—z, (Fig. 1). Hence we are faced with the
following problem: The complex number h=g'(w)/p’(w) and the
depth range a are given. Determine the two real functions V,
and ¥ ,, subject to Eq. (2.37), the complex point w and the scale
length b such that zy=Im p(w) is a maximum.

As in Sect. 2.1, the problem is solved by means of a La-
grange function L, which now reads

L=Im{—p(w)+Ai[p'(w)/g'(w)—1/h]}

+§{—ur Gyt =)=y Yk (V- a) dt

+lo{£(~/71—l//2)dt—nb} (2.38)
The difference from Eq. (2.8) is only that two functions have to
be determined, constrained by Eq. (2.35). Since L is linear in ,
and y,, the same arguments as in Sect. 2.1 lead to the result
that in an extremal model ¥, and ¥, can attain only the values
0 and a. Since C, contours a conductor which does not extend
to infinity, ¥, must be continuous. The only possible choice is
Y,=0. (In the case y,=a the doubly connected domain de-
generates into a simply connected domain, and the results of
Sect. 2 can be recovered.) The function V,(t) may have either

none or two points of discontinuity, the latter being the roots
of

Im {p(t—w)+ ¢’ (t—w)/g' (W)} + i, =0 (2.39)

which are mapped into p=oo. First it is assumed that Eq.
(2.39) has no roots. Then we have to choose Y, =a, which
implies according to Egs. (2.35), (2.36) and (2.33) that b=a and

pw)=—afpw)+i} (2.40)
In Eq. (2.33) we have used

[@t—w)dt=log$,(t—w)[E=in, v>0
0

The mapping of Eq. (2.40) maps the line v=2« into a horizon-
tal strip at z=z, and the line v=0 into a plane at z=z,+a
=A. The model is illustrated in Fig. 2, part C. Inserting Eq.
(2.40), the Lagrange function, Eq. (2.38) reduces to

L=Im{a(p+i)+ilo'/¢’+2/)—1/h]}

At an extremum, the three partial derivatives with respect to
u,v and o vanish. As in Sect. 2.1, the first two admit the
elimination of A, and the third then provides the extremal
condition

Im {ad,0—(¢'/@")- 0,(x¢)} =0 (2.41)
which supplements the constraint
h=1+2/(a¢) (2.42)

The nonlinear system, Egs. (2.41) and (2.42) is solved easily by
numerical means. Some insight, however, is obtained by an
approximate solution. For h, slightly greater than unity the
extremal model must be close to that for h <1, ie., the strip at
z=12, is wide and « is small. In this limit, Egs. (2.29) and (2.26)
yield the approximation

PAT w
oW, )= ——+— cot [— ) akn
o i io

reducing the extremal condition Eq. (2.41) to

2 2 2
cosh (—nE> + (n——l) cos (ﬂ) =0
o o o

After solving for u, v, and o, the relationship Eq. (2.17) is
reproduced exactly. Hence, Eq. (2.17) gives reliable results for
h,>1 also if

o/n? =(h,—1)[2h,—1)

is small. The applicability of Eq. (2.17) for h,>1 is revealed
from Fig. 2, parts B and C. The field lines, which become
identical at infinity, show a remarkable similarity, except for
the different field line topology in the region of weak magnetic
fields. The approximation of Eq. (2.17) is worst if both h, and
|h,| are large, i.e., for points near the edge of the strip. Howev-
er, the results of Table 1 indicate that for all cases of geophysi-
cal interest, Eq. (2.17) provides a completely satisfactory ap-
proximation. The figures of Table 1 underline that the search in
the extended class of doubly connected conductors consistently
yields a slightly greater z,/A-value than the search in the class
of simply connected conductors.

At h =1 the transition between the extremum models of
Fig. 2, parts A and C is continuous: Assuming h,>0, the right
edge of the gap (A) tends to y= +oo for h,=1-—0 and the left
edge of the strip (C) tends to y= —co for h,=1+0.
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Table 1. Comparison of approximate and exact z,/4 values

hy || zo/A (approx.)  zo/A (exact)
2.0 1.0 0.0973 0.1027
20 0.5 0.1494 0.1534
2.0 0.0 0.1790 0.1822
1.5 1.0 0.1036 0.1057
1.5 0.5 0.2213 0.2225
1.5 0.0 0.3371 0.3376

Iso-lines of z,/4 which are circular arcs for h =1, are
shown in Fig. 4. If only h, or h, is given, z, is the greatest value
attained if the unknown parameter varies freely. If h, is given,
z, reaches its maximum for h_=0; if h, is given the maximum
of z, occurs on the light dashed line, which in the approxima-
tion of Eq. (2.17) is given by h2=h (h,—1).

3 Two-Point Extremum Models

Now we assume that the complex magnetic fields h, and h, are
given at the two surface points p; and p, with p,—p,=d, and
that the electromagnetic field does not penetrate deeper than a
given depth A. From these data we want to obtain the upper
bound z, of the depth to the top of the anomalous con-
ductivity. For this two-point problem the answer will remain
incomplete since for certain combinations of the data triply
connected conductors will be required, which cannot be han-
dled with the present tools.

We are going to determine the mapping function p(w), Eq.
(2.33), depending on y, and ¥, with p(w,)=p,, k=1,2. The
complete Lagrange function is (cf. Eq. (2.38))

L———Im{—pﬁ-ld(pz—pl—d)+/1A(p1+ia—iA)

2
+2 Api/gi— l/hk)}

1

+({=pur U +uf by —a)—p3 Yo+ u3 (W, —a)} de

Ot— 3 =

The multiplieers 4,, 4,, and 4, are complex, since each ac-
counts for two constraints, whereas 1, and A, are real. The
length a=A4—z, is now explicitly treated as variable. Again,
the linearity of L in {, and y, implies that these functions
attain only the values O and a. In particular ¥, =0, since ¥,
has to be continuous. On the other hand, ¥, may have (at
most) two jumps between 0 and a, occurring at the roots of the
first variation of L with respect to ¥/,

Im{(l +A,— A ot—w)— A 0t—w,)

2
+ Y A (p’(t—wk)/g;(}+nio=0 (3.2)
k=1
Let these roots be y, and y, with 0=y, <vy,<m, ie,
0, 0=t=y,
Ji=1a, v, St<y, (33)
0, y,St<m

Then Eq. (2.35) yields b=(y,—7v,)a/r and the mapping accord-
ing to Eq. (2.33) using Eq. (2.27) is

'91(V1_W)}

34
31(y,—w) G4

P(W)=—{—(V2—V1)€0(W)+102

The model consists of two halfplanes at z=z, with a horizontal
strip in the gap and a plane at z=A. It includes as limiting
cases the extreme models (A) and (C) of Fig.2, which cor-
respond to a=o0 and y, =0, y,=mn, respectively. To determine
the model parameters for a given data set h;, h,, d, and A, the
slightly modified Lagrange function

Lzlm{-pl-l—ld(pz—pl—d)+lA(p1+ia—iA)

2

+kzl lk(gi(/p;—hk)} (3-3)
is used, differing from Eq. (3.1) in that, instead of the data
kernels for 1/h,, the kernels for h, are considered. The reason
for this is that the associated 4, has an immediate interpre-
tation, since the Lagrangian multipliers measure the sensitivity
of the objective function z, to small changes in the data (Luen-
berger 1969, p. 221).

+,10{§($1 —lﬁz)dt—ﬂ:b} (3.1)
0
T T T T /OIS T T T T T T T P T

10
fhz|

08}

06 -

04 F

02f

0

Fig. 4. Iso-lines for zo/A4 (curve parameter) and the curve
joining the maxima of the iso-lines. The latter curve is
used if only 4, is given
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In particular

; 0z,
k_ahzk

. 0z,
+1 ,
Ohy,

At an extremum, the partial derivatives of L with respect to
real and imaginary part (if present) of the variables 1,, 1,, 4,
A4s Wi, Wy, 74, 72, @ and a have to vanish, yielding a system of
fifteen equations (linear in the Lagrangian multipliers) for fif-
teen real unknowns. Also, Eq. (3.2) has to be satisfied for ¢
=71, 7,, introducing 4, as an additional variable. It is easily
verified that the two latter conditions and the conditions on the
partial derivatives of L with respect to y, and y, provide only
three independent equations, implying that Eq. (3.2) can be
ignored (since 4, is of no interest).

As an example, for h, =(1.0, —0.5), h,=(1.5, 0.0) and d/A
=0.25 we obtain

1,=(02113,02672) 4, 1,=(—0.1018, —0.0538) 4
j'A

ImA,=0,2y, 4,=0,2, (3.6)

Jg=(—0.3550, 0.3528), =0.0694
w, =(0.3387,09118), w,=(2.9917, 1.1482)
7,=02389, 7,=2.3056, a=084244, o=38923

Hence, z,=0.1576 A. The abscissae of observation points and
of halfplane and strip edges are, respectively, —0.2241 A,
+0.0259 4; —3.5008 4, +1.1141 4; —0.0623 4, +0.0619 4. In a
single-point extremum model h, and h, would yield z,/4
=0.2213 and 0.3376. This demonstrates that consideration of
the field gradient can significantly improve the depth estimate.
For different data, one might try to find the corresponding
parameters by solving a sequence of problems, which gradually
transform the above data into that required.

The doubly connected model breaks down if the solution of
the system demands y, <0 or y,>n. In this case a triply con-
nected model is required, where for y,<0 (y,>n) the two
halfplanes at z=z, merge into a second strip to the right (left)
of the first. It has not been possible to formulate the conditions
under which a switch to triply connected conductors becomes
necessary, in terms of the data. However, from

d,,L=0 or 0,L=0
it is inferred that limiting models satisfy

Im(Z, h, 4+, h,)=0 (3.7

Defining the vector
h=(h,, h., h.,. b))

N and D=h-Vzy(h)

Equations (3.7) and (3.6) imply that for limiting models D=0,
ie. at the corresponding magnetic field values the hyperplanes
through the origin are tangential to the surface zo, =const. An ana-
logue of condition (3.7) also holds for single-point problems, where
it means that the switch from simply to doubly connected con-
ductors occurs, where in Fig. 4 the lines through (h,,h,)=0 are
tangential to the z-isolines, i.e., at h,=1.

The two-point problem becomes particularly simple if 4
(and a) tends to infinity. In this case, the image of the plane z
=A reduces to a point, ie, y;—y,(=y) such that b=(y,
—7,)a/n remains finite. Expanding Eq. (3.4) at y=7y, using Eq.
(2.27),
pw)=—b{pW)+p(y—w)} (3.8)

The edges of the halfplanes (v=0) and of the strip (v=0/2),
defined by p'(w)=0, occur at u=y/2 and u=(n+7y)/2. Knowing

the type of the model, the extremal parameters for the data set
hy, h, and d can be inferred as follows:

The current flows in the same direction in halfplanes and
the strip. This is obvious for physical reasons and can be
deduced from

for v=0 and ov=0a/2

(Egs. (2.32), (2.30), (2.29)), implying that h, is different in sign
immediately above and below the conductors. Let j(y)=0 be
the induced sheet-current density at z=z,, normalized by H,.
Then the normalized magnetic field of internal origin at a
surface point p=y+iz, is given by (p,=y,)

hy(y’ ZO) dy=g/(W) du>0

_Li *I“’ JBo) dy,
2 2n ~w P—Do
whence using Schwarz’s inequality

h(p)

dZ + .

|h1_h2|2=‘—2 f ](J’o)d)’O
4n*| o (P1 —Po) (P2 — Do)
4t *j"" JBo)dyo * j(yo) dyo

“4n? — |p1—Po|2 — o IPz—Po|2

dZ
iz (2h,, —1)(2h,,—1)
or
Zoél/(zhyl—l)(ZhyZ—l) J (39)

2|h1_h2|

Equation (3.9) provides an upper bound for z,, where the
equality sign holds for a line current. The upper bound is also
attained if a uniform vertical magnetic field is added to the line
current field. This field can be conceived as the magnetic field
of induced currents in remote halfplanes at such a distance
from the surface observation points that a uniform vertical field
is observed.

The currents in the strip degenerate into a line current if
o— 00. In this limit Eq. (3.8) reduces to

p(w)= —b{cotw+cot(y—w)} (3.10)

The condition that the edges of the two halfplanes (u=y/2 and
u=(n+1y)/2), lying at

y=—2bcot(y/2) and y=+2btan(y/2)

tend to y= £ oo requires that b— oo, however in such a way
that b/ is finite, ensuring according to Eq. (2.31) a finite total
current in the strip. The latter limit implies, in view of Eq.
(3.10), that at a point p (not at infinity) v— oo, leaving be~2"
finite. Hence, using Eq. (2.32) and taking all limits into account,

(3.11)

h(p)=1(1—i cot )+ (3.12)
oxp

The first term is the inducing field, the second term the uni-
form vertical field from the induced currents in the remote
halfplanes, and the third term the field of an induced line
current at the origin of strength I, given by Eq. (2.31). A simple
relationship between y and the ratio of the distances to the
edges of the halfplanes can be established by Eq. (3.11). By
means of Eq. (3.12) for p=p, and p=p, the five parameters z,,
7, bjo. y,. and y, are easily adjusted to the five data h,, h,, and
d. In particular, as expected,

, _V@h, —1)2h,,—1) J
0 21hy —h,|

(3.13)
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Equation (3.13) assigns a depth z, to any data set, even if
inconsistent (e.g., h,, =0.5, h ,>0.5) or pathologic (h,;=h,,,
h.y>h_,, where y, -+ oo for h,,=h ; F0).

Although it is appealing that Eq. (3.13) depends on measur-
able data only, the absence of a priori assumptions renders it
inefficient.

Finally, a comment on the triply connected domain with
two horizontal strips at z=z,, which is necessary for y, <0 or
y,>m. Although the mapping is no longer univalent in this
case, the value obtained for z, will still be very reliable, as in
the single-point problem. As an alternative we may try to
adjust the parameters of the model (of known type) by direct
model calculations. For a sheet-current density j(y) at z=z, the
magnetic field is

hp) =1+~ T{ ! !

2n y (P—Yo P—(yo—2ia)
The second term in the integral is the mirror image of j at Imp
= —a, where the imaginary part of the complex potential f(p)
has to vanish. Hence,

(3.14)

}j(}’o) dyo

S e p—
f(p)=p+la+g jlog{——L

j(yo) d
I p_y0+2l.a}1(yo) Yo

The condition Imf(p)=0 for yeC, where C is the union of
conductors at the level z=z,, then leads to the integral equa-
tion
1 +
— |1 3.15
a+ yyu | log (3.15)

—

{ (V=0

j(o)dy,=0, yeC
(y—yo)2+4az} orme

which is easily solved, particularly if the edge singularities of j
in a strip from y, to y, are isolated by assuming

JO) =IOV 2= —yy),

V€1, ¥2)

4 An Application

In cooperation with U.Schmucker, parts of his magnetic field
data collected during the IGY along north-south profiles across
the North German conductivity anomaly (Schmucker 1959)
have been reanalyzed with particular emphasis on the con-
struction of a reasonable magnetic reference field (Weidelt
1978). Figure 5 presents the transfer functions h, and h, for a
period of T=1800s on the eastern profile. Of course, the out-
of-phase component has to be ignored in the simple perfect
conductor model.

The depth to the top of the anomalous conductivity causing
this pronounced anomaly is most restricted by the magnetic
fields at the three sites

GT (Géttingen):  h(GT)=(0.69, —0.20)
FAL (Fallersleben): h(FAL)=(1.06, —0.78)
EBS (Ebstorf): h(EBS)=(1.24, +0.07)

at profile distances 99 km and 68 km apart.

First the two-point formula, Eq. (3.13) for A=o00 is applied.
The depth z, can be obtained for any two points of the profile.
However, only the smallest value obtained is of geophysical
interest. The pair FAL-EBS yields z,=50 km and the pair GT-
FAL z,=47 km.

For more useful estimates we have to fix the depth A4, which
in the real geophysical situation can be approximately iden-
tified with a regional average of

Re {E (w)/(iw po H ()}
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Fig. 5. Transfer functions and their standard variations on the eastern

profile across the North German conductivity anomaly

for the frequency w=2n/T (Schmucker 1970), where E_ is the
horizontal electric field perpendicular to H,. Taking A4
=200 km, the site FAL is the most restricting for the single-
point problem, yielding according to Fig.4 zy=24km. To a
minor extent, the depth is also restricted by the low h (GT)-
value (z,=34 km).

Proceeding to two-point problems with finite 4, the stations
FAL-EBS reduce z, to 22 km, and the sites GT-FAL reduce it
even further to 17.7 km. In the latter case the extremal model
consists at the level z, of a conducting strip between 18 km and
133 km north of FAL and two remote halfplanes with edges
431 km south and 719 km north of FAL and of a conducting
plane at the level A. The Lagrange multiplier 1,=0.05 in-
dicates that an increase of the poorly known depth 4 by 50 km
(say) would increase z, by about 2.5 km.

It should be emphasized that the actual extremal model,
which fits only a few data, is not of great interest. The only
relevant information is the number z,=17.7 km, meaning that
any two-dimensional perfect conductor model with 4 =200 km
explaining the data will show a conductor shallower than z,.
The data errors introduce into z, an uncertainty of at most
+5.6 km, as can be deduced from 4, and 1,.

5 Conclusions

The extremal models, which have been constructed for N=1 or
2 observation points, consist of a conducting plane at a given
depth z=A4 and either N gaps or N conducting strips at the
level z=2z,. Apart from transition models, strips and gaps are
of finite lateral extent. Including z,, the coordinates of the
edges with respect to the observation points are specified by
2N +1 real constants. 2N equations are furnished by the data
and the last by an extremal condition (not given explicitly for
N=2)



The above results can be generalized to arbitrary N, yield-
ing an M-connected conductor (M =N or N +1). The exterior
of the conductors is mapped by a univalent mapping onto the
exterior of M parallel slits with pre-assigned inclination to the
real axis (Goluzin 1969, pp. 210, 275). Although some insight
into the general structure of the problem is obtained by con-
sidering arbitrary N, the problem is not open to simple numeri-
cal treatment. However, knowing the structure of the extremal
model, the problem may be handled by Egs. (3.14) and (3.15):
Pre-assigning a small value of z,, we try to infer the 2N edge
coordinates from the 2N data, which is a nonlinear problem. If
a set of coordinates can be found, z, is gradually increased
until a solution is no longer obtained. The limiting value of z,
will be considered as the best possible estimate.

A more urgent need than the generalization to arbitrary N is
the generalization to conductors of finite conductivity, incorpo-
rating the out-of-phase component of the transfer functions into
rating the out-of-phase component of the transfer functions into
the data. These models will certainly considerably improve the
depth estimate. Although the above results may serve as guide-
lines, the method of solution must be quite different from that
presented here. Perhaps the method of analytic continuation of
electromagnetic fields, as developed by Zdhanov (1980), may
turn out to be quite useful.

Acknowledgements. 1 would like to thank the two referees for their
helpful criticism.

References

Abramowitz, M., Stegun, 1.A.: Handbook of mathematical functions.
New York: Dover Publications 1965

Barcilon, V.: Ideal solution of an inverse normal mode problem with
finite spectral data. Geophys. J.R. Astron. Soc. 56, 399-408, 1979

Bott, M.H.P., Smith, R.A.: The estimation of the limiting depth of
gravitating bodies. Geophys. Prospect 6, 1-10, 1958

Goluzin, G.M.: Geometric theory of functions of a complex variable.
Transl. Math. Monographs, Vol. 26. Providence: Amer. Math. Soc.
1969

Huestis, S.P.: Extremal temperature bounds from surface gradient
measurements. Geophys. J.R. Astron. Soc. 58, 249-260, 1979

Koppenfels, W.v,, Stallmann, F.: Praxis der konformen Abbildung.
Grundlehren Math. Wiss., Vol. 100. Berlin: Springer 1959

Luenberger, D.G.: Optimization by vector space methods. New York:
Wiley 1969

Parker, R.L.: Inverse theory with grossly inadequate data. Geophys.
J.R. Astron. Soc. 29, 123-138, 1972

Parker, R.L.: Best bounds on density and depth from gravity data.
Geophysics 29, 123-138, 1974

Parker, R.L.: The theory of ideal bodies for gravity interpretation.
Geophys. J.R. Astron. Soc. 42, 315-334, 1975

Rietsch, E.: Extreme models from the maximum entropy formulation
of inverse problems. J. Geophys. 44, 273-275, 1978

Sabatier, P.C.: Positivity constraints in linear inverse problems, parts I
and II. Geophys. J.R. Astron. Soc. 48, 415-469, 1977a, b

Sabatier, P.C.: On geophysical inverse problems and constraints J.
Geophys. 43, 115-137, 1977¢

Safon, C., Vasseur, G., Cuer, M.: Some applications of linear pro-
gramming to the inverse gravity problem. Geophysics 42, 1215-
1229, 1977

Schmucker, U.: Erdmagnetische Tiefensondierung in Deutschland
1957/59: Magnetogramme und erste Auswertung. Abh. Akad. Wiss.
Gottingen, Math.-Phys. K1. Beitr. z. IGJ, Heft 5, 1959

Schmucker, U.: Anomalies of geomagnetic variations in the south-
western United States. Bull. Scripps Inst. Oceanogr. 13, 1-165, 1970

Smith, R.A.: Some depth formulae for local magnetic and gravity
anomalies. Geophys. Prospect 7, 55-63, 1959

Smith, R.A.: Some formulae for interpreting local gravity anomalies.
Geophys. Prospect 8, 607-613, 1960

Weidelt, P.: Entwicklung und Erprobung eines Verfahrens zur Inver-
sion zweidimensionaler Leitfahigkeitsstrukturen in E-Polarisation.
Habilitationsschrift, Math.-Nat. Fak. Univ. Gottingen 1978

Whittaker, E.T., Watson, G.N.: A course of modern analysis, 4th edn.
London: Cambridge University Press 1927

Zdhanov, M.S.: Cauchy integral analogues for the separation and con-
tinuation of electromagnetic fields within conducting matter. Geo-
phys. Surv. 4, 115-136, 1980

Received October 23, 1980; Revised Version January 27, 1981
Accepted January 27, 1981

225



