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Original Investigations

Two Methods of Solving the Linearized

Journal of
Geophysics

Two-Dimensional Inverse Seismic Kinematic Problem

M. Novotny
Geofyzika, n.p. Brno, Jetna 29a, 61246 Brno, Czechoslovakia

Abstract. In a laterally variable seismic medium, the slowness
function s(x,z) can be derived from travel-time curves of
surface-to-surface refracted waves if the arrival times are in-
terpreted in the form of a two-dimensional function. In the
following article two methods are suggested for solving the
inverse kinematic problem using a linearized formulation.
The arrival times ¢(p,q) are arranged according to increasing
epicentral distance g, and p represents the x-coordinate of the
point midway between source and receiver. The first method
is based on the Fourier transform of the time function ¢(p, q)
in the variable p. This method can be applied to a system of
travel-time curves with epicentral distances small in compari-
son to the length of the profile interval x,, ie, g<x,. The
second, grid method interprets recursively the arrival times
t(p;,q;) from the smallest epicentral distance to the largest
one. The results of one interpretation step are the grid values
of the slowness function s(x,z) on one grid line z=z;. In
contrast to the method of Fourier coefficients the recursive
grid method does not introduce any limitation of the shape of
the solution region. Both methods have been tested using
both theoretical and real data.

Key words: Inverse kinematic seismic problem - Laterally
inhomogeneous media - Ray interpretation of travel-times

Introduction

The interpretation of travel-time curves of surface-to-surface
refracted waves represents one possible method for estimating
the velocity distribution in deep-seated structures. If the me-
dium is assumed to be inhomogeneous in the vertical direc-
tion only, then the unknown velocity function v(z) of depth
can be obtained by the well-known Wiechert-Herglotz in-
tegral transformation of the travel-time curve of the surface-
to-surface refracted wave t(r). In the majority of compu-
tational algorithms based upon the Wiechert-Herglotz theory
it is assumed that t(r) is a one-valued function of the epi-
central distance r with non-increasing derivative, even
though, as early as 1932, the theory was generalized by
Slichter (1932) to the case of loop-like travel-time curves
occurring in a medium with strongly varying velocity gra-
dient or even with velocity discontinuities. In this case the
travel-time curve of the supercritically reflected wave must
also be taken into account. The problem of the estimation of
the function v(z) in the presence of a low-velocity channel
was studied in a paper by Gerver et al. (1966). Practical

difficulties associated with the travel-time curve ambiguity
meant that a new theory was needed and this has recently
appeared in the form of the tau method (Bessonova et al.
1974), sometimes called the method of extremal inversion
(Kennett 1976). The tau method is based on the Legendre
transform of the travel-time curve t(r) that transforms the
loop-like travel-time curve into the one-valued function 7(p)
(Gerver et al. 1967). This approach also allows the setting of
reasonable bounds to variations of the velocity function v(z),
deduced from the character of the discretely measured values
t(r). In particular, incompletely recorded travel-time curves, as
well as the discontinuous ones that are met frequently in
interpretation of deep seismic sounding data, can be more
reliably interpreted by means of the tau method (Beranek
et al. 1979).

Real seismic media are generally also inhomogeneous in
the horizontal directions x and y. If the inhomogeneity is
negligible in one direction (for instance y), it then makes
sense to consider the two-dimensional inverse problem of
finding the velocity distribution v(x, z). It is now assumed that
an adequately dense system of travel-time curves t(xg,Xg) is
available with sources S=(xg,0) and receivers R =(xg,0) dis-
tributed uniformly over the entire interval under consid-
eration <0,x,> along the profile (Fig.1).

Instead of the variables xg, xy it is more advantageous to
operate with other variables p,q defined by the relations

p=(xs+xg)/2,

This new coordinate frame is also currently used in the
CDP method of seismic reflection prospecting. The p vari-
able represents the x coordinate of the midpoint between the
source S and the receiver R. The variable g stands for the
epicentral distance (offset of measurement). The function
t(p,q) then represents, for the constant offset variable g, an
isoline of the so called special time field (Puzyrev et al. 1975).
The use of the variables p,q is based on the equivalence of
the travel-times of seismic waves between reciprocal points,
i.e., t(xg,xg)=t(xg,xg). Since the reciprocal measurements are
often performed in practice, we remove this redundancy in
the input data.

While methods of solution of the one-dimensional inverse
problems are relatively well developed and can thus be im-
mediately applied to solve practical problems (Bessonova et
al. 1976; Kennett 1976), the study of multi-dimensional prob-
lems is still at the beginning. The inverse kinematic problem
for more dimensions is, from the mathematical point of view,
a classical ill-posed problem. Its solution has required a new

q=|xg—x4. (1)

0340-062X/81/0050/0007/$01.80



“X“,xs) tlp,a)
_______ H- ay
tola) /
—me e ——am e r_ Q2 P .
]
Z // ______ L 7@

*» x 0 xp P

o

Fig. 1. Two representations of arrival times of surface-to-surface re-
fracted waves. System of travel-time curves t(xg,xg) with a constant
coordinate xg of the source S and a variable coordinate x, of the re-
ceiver point R can be arranged into time isolines t(p,q) with a con-
stant offset of measurements g =|xg—xg| and with the lateral variable
p=(xg+xs)/2. Travel-time curve ty(g) is obtained as the average of
all arrival times due to common offset ¢

approach to the question of solution stability (Romanov
1972). The first strict mathematical formulation of the two-
dimensional inverse problem as a certain Cauchy problem for
the non-linear differential equation of the Hamilton-Jacobi
type has been presented by Belonosova and Alexeyev (1967).
The travel-time curve of the surface-to-surface refracted wave
t(xg,xg) and its partial derivatives 0t/dxg, 0t/Oxp represent
initial conditions. It has been shown by theoretical examples
(Belonosova and Alexeyev 1967) that the finite-difference ap-
proximation yields a numerical solution to the problem with
an accuracy of 5-10%.

Another approach (Romanov et al. 1978) is based on a
combination of solutions of both the inverse and the direct
problem. Both approaches require both the two dimensional
travel-time curve t(xg,xg) and its partial derivatives. Howev-
er, commonly used systems of measurements do not yield a
sufficiently dense set of data that would make possible a fair
approximation of the required initial data. In particular, de-
rivatives 0t/0Oxg and 0t/0xy derived from sparsely measured
travel-times t(xg, x) would cause considerable inaccuracies in
the results obtained by these methods. In such a case, the
simplified linearized formulation of the inverse kinematic
problem appears as one way out.

The linearization of the inverse problem in a multi-dimen-
sional case has been suggested by Romanov (1972). It repre-
sents a particular generalized analogue of the linearized ap-
proach to solving one-dimensional problems (Johnson and
Gilbert 1972).

Let us consider a two-dimensional problem. The following
expression is valid for the travel-time of seismic energy pro-
pagated from point S to point R along trajectory I'(R,S)
(Fig. 2):

t(R,8)=[r.s5(x,2)dy 2

where the slowness function s(x, z) represents the reciprocal of
the velocity function v(x, z) in the medium. In agreement with
the Fermat principle, the curve I'(R,S) connecting points R
and S represents the geodetic in the Riemann space with the
metric s(x,z). To solve the inverse kinematic problem means,
in the geometrical interpretation, to find the unknown metric
s(x,z) by means of the metrical distances t(R,S) known be-
tween all boundary points S and R of the region D,, under
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Fig. 2. All grid points (x,z)) in the solution region D,, are defined by
the vertices of supporting ray paths I4(p;,q,), ie, x;=p;, z;=&(q).

The form of the region D,, implies the useful part D, of input data
in the (p, q) coordinate plane

consideration. It is obvious that the expression (2) cannot be
inverted with respect to the unknown metric s(x,z) because
this metric also defines the geodetics along which the in-
tegration is performed. The process of linearization suggested
by Romanov (1972) consists in dividing the metric s(x, z) into
a regular part so(x,z) and a perturbative part A4s(x,z), ie.,
s(x, z)=s4(x, z) + 4s(x, z), provided that the norms of the func-
tions s(x,z) and sq(x, z) in the region D, satisfy the condition
l4s(x, z)|| < [lso(x, 2)||. It can then be proved on the basis of
(2) that the travel-time also consists of the regular part t°(R, S)
and the perturbative part 4t(R,S), i.e.,

t(R,S)=t,(R,S)+ 4t(R,S), (3)

where ty(R,S) corresponds to the travel-time of wave propa-
gation along the geodetic I},(R,S) generated by the metric
So(x, z). For the perturbative part it follows that

AR, S)= [ ror.5A5(x,2)dyo + AL,(R, S). )

The term A4t,(R,S) approaches zero as a quantity of 2nd
order with respect to At(R,S) if the norm 4s(x,z) goes to
zero. If the term A4¢, is neglected in expression (4), the
relation between At and As is linear because the geodetic
I,(R,S) appearing in expression (4) does not depend on 4s.
Expression (4), or its differential analogue (Novotny 1980),
serves as a base for all algorithms of numerical solution of
the linearized inverse kinematic problem.

The Method of Fourier Coefficients

Relation (4) can be used either for the removing of arrival-
time deficiency relative to some velocity model obtained in
another way (Romanov et al. 1978) or in an iterative mode to
find the unknown velocity model with desired accuracy. In
the case of weak lateral inhomogeneity we can restrict our-
selves to the first iteration and choose the starting model
independent of the lateral variable. Romanov (1972) has
suggested an algorithm on the basis of expression (4) for a
spherically symmetrical starting model, i.e., so(p, ®)=5,(p); p,
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Fig. 3. In a laterally homogeneous medium neither the ray path Ij(q)
nor its characteristics s,(z), 4x(z) and £ depend on the lateral coor-
dinate p

¢ are polar coordinates. The unknown function 4s(p, @) was
sought in the form of finite polynomial expansions in exp(i @)
and p. After integration according to Eq. (4), an expression
was obtained for At(R,S) which is linearly dependent on the
unknown expansion coefficients. If a satisfactory number of
arrival times t(R, S) is available, optimal values of coefficients
can be found by the least-squares procedure. Earthquake
records along the Pamir-Baykal profile have been interpreted
in this way (Alexeyev et al. 1971).

Besides this algorithm, another method of solving the inverse
problem is suggested by Romanov (1972). The integral equa-
tion relating the Fourier spectra of At and 4s functions with
respect to the lateral variable p was utilized (Eq. (1)). On the
basis of integral equation properties the uniqueness of so-
lution of the inverse linearized problem was proved. Howev-
er, no numerical algorithm based on the integral equation
was suggested.

The Fourier coefficient method presented in this section is
based on an expansion of At and A4s functions in the lateral
variable p by means of Fourier series. This allows derivation
of directly solvable system of linear equations for the un-
known coefficients of the Fourier series for As instead of the
integral equation mentioned above.

Let us assume a starting model independent of the lateral
variable x. Thus, in a Cartesian coordinate frame we have
So(X,2)=s,(2). It is then possible to transform the integration
along the geodetics I'H(R,S) in expression (4) into a simple
integral with respect to the variable z:

dz

At(p,q) =[50 [As(p — Ax(2), 2) + As(p + Ax(2), 2)] wsay O

Here we used new variables p and gq defined by Eq. (1). The
maximum depth of the ray path I',(R,S) is denoted by &, a(z)
is the angle between the ray path and the vertical at an
arbitrary point (x,z). The quantity Ax(z) (Fig. 3) is given by
the following relation:

Ax(2)=[¢ dz' tana(z).

Time differences At(p,q) are determined for individual offsets
4; as the difference between the total values of time isolines
(p,q;) and the arrival time t,(g;) corresponding to the lat-
crally homogeneous starting model sq(z). It thus follows
(i=1,2.....M)

At(p, q;)=t(p, 4:) —1to(q)- (6)

The unknown perturbative part of the metric 4s(x,z) will be

now approximated in the region 0<x=<x,, 0=x=<z . by the
finite expansion (n=—(N—1)/2,..., —1,0, 1, ...,(N —1)/2)

A5(x,2)=Y. Y A,,P(z) e!2""/% %)
i n

where Py(z), j=1,2,...,L is a suitable polynomial basis. Now,
we want to derive equations for the unknown Fourier coef-
ficients A,;. Therefore, we expand the left-hand side of Eq. (5)
in the single variable pe{0,x,

4t(p,q)=} B, (q) """, ®)

Finally, we obtain from (5), for Fourier coefficients 4,; and
B, (q) of expansions (7) and (8), the following linear relation

Bn(q)=;Ananj(q)’ )
where
F,j(@)=2[{" P(z) cos[2nnAx(z)/x,] dz. (10)

Expression (9) represents N linear systems from which all
Fourier coefficients 4,; can be determined in terms of B,(q)
and the starting slowness function s, (z). Each system consists
of as many equations as time isolines are available with
different offsets (g=gq;, i=1,2,..., M). If the number N of the
polynomials used in (7) is equal to the number of time iso-
lines M, ie, L=M, there is one solution of (9). If L<M,
there is no solution satisfying all equations, but we can per-
form an optimization process, finding the vector 4,; which
gives the minimum value of the expression

S 1B,(@)— Y. Fyy(a)A, > (1)

Both these possibilities have been included in the numerical
realization (Novotny et al. 1979) of the algorithm which en-
ables us to choose the maximum degree L of polynomials
independently of the number M of given offsets. The algo-
rithm was tested on an example of a theoretical model with
constant velocity gradients.

To characterize the accuracy that is achieved by a lin-
earized method in the case of theoretical models, we used
the quantity #(z), defined as a ratio of the integral absolute
error of the method and the integral absolute lateral de-
viation of model s(x,z) from the starting model s,(z) at the
depth considered, i.e.

n(z)=[2EAsc(x, 2) = Asp(x, 2)l dx/ [2 3 As(x, 2)] dz. (12)

Indices C, T denote successively computed or theoretical val-
ues in the interval of interest {x,(z),x,(z)>. It was found that
two factors limit the application of the Fourier coefficient
method:

() Adequacy of the fitting of the input values 4t(p;,q;) by
means of the expansion (8). Figure4 illustrates the accuracy
achieved by the Fourier coefficient method with respect to
the different ways of fitting. Curve (1) represents the relative
accuracy 7(z) of the method in the case when the Fourier
coefficients were calculated from experimental values At(p;)
with the help of the discrete Fourier transform. As we could
use only a limited number N of the Fourier coefficients (N
< 128), we achieved a better accuracy using the finite Fourier
series that approximates the course of At(p) in the least-
squares fashion. Further, we tested the influence of surface
velocities on the accuracy of the method. The curve (2a)
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Fig. 6. Time isolines t(p,q;) obtained from the data, recorded along
the Carpathian profile 100R. For the calculation of the velocity
section isolines are given with offsets g,=idgq, i=1, 2, 4, 6, 8, 11, 13,
and 15, Ag=25km

corresponds to the case when the surface velocities are taken
into account, while the curve (2b) stands for the relative
accuracy #(z) in the case when the method works without the
input of the surface velocities. We observe that the method is
rather insensitive to this influence.

(ii) The shape of the region D, where values At(p,q) are
located. The natural shape of the input region D,, that en-
ables utilization of all input times is rather trapezium shap-
ed (Fig.2). However, the method of Fourier coefficients is
based on Fourier expansions in the rectangular region
0=x=x,, 0£g=gq,, eventually in 0=x=x,, 0=z(g)=z(g,)-
This principal disproportion leads to a considerable dete-
rioration of the convergence of the method. A test has shown
that the solution converges only in that part of the region D_,
delimited by the rectangle constructed on the shorter base of
the trapezium D, . Therefore, the Fourier coefficient method
can only be applied if the maximum measurement offset g,, is
much smaller than the length of the interpreted interval x,,
Le, gy €X,.

The Direct Inversion Method

Using the method of Fourier coefficients the velocity distribu-
tion is found over a larger region than it is possible to map

11

by means of supporting rays Iy(p;»q;) corresponding to the
input time data t(p;,q,) available. If the region where the
solution is sought were limited strictly to the interpretable
region D, formed by the turning points of seismic rays
Iy(p;,q;) (Fig.2) it could be expected that the linearized
theory will bring better results. The grid method presented in
this section is one possible way to achieve this. Its principle
consists in a sequential ray interpretation of time isolines
from the smallest offset to the largest. In contrast to the
previous method the interpretation of arrival times is based
on the knowledge of surface velocities.

Basic Equations

Let us consider a laterally homogeneous starting model s(z)
such that the arrival times of the surface-to-surface refracted
wave form a continuous function f,(g) with monotonically
decreasing derivative. For this class of starting model it is
natural to define the grid points in the plane (p,z) to be the
turning points of supporting rays I(p;,q;) (Fig.2). Coor-
dinates of grid lines are then as follows

b Bl
i=1,2,.., M,

pi=jdp,
z;=E&(q)

where £(q) denotes a continuous and monotonically increas-
ing function of offset g. In individual steps of interpretation
we seek the unknown grid values 4s(p;, z;) on individual grid
levels z,. In the first step we determine only the lateral slow-
ness deviations on the surface using the input values of sur-
face velocities and the mean velocity sy '(0) following from
the chosen initial model sy(z). In the successive steps we
interpret the individual time isolines 4¢(p;,q;) in the following
recursive manner.

Let us assume that we have found the velocity distribution
to the depth z,. Now, we shall divide the integration in
expression (5) along the ray trajectory I;(g;, ) into two parts
separated by the grid line z=z, The integral in the region
already mapped for z<z, can be performed. Therefore, we
write expression (5) in the form

j As(x,z)dyy,=

szsz zi €z 5241

Atprdivi)— ds(x,z)dy,. (13

The left-hand side represents a value of the quantity At(p,q)
related to the subsurface level z=z,. For this we introduce
the notation At(p;,q;,,,z). This quantity can be expressed on
the basis of known grid values 4sip,,z,), m=1,2,...,i, in a
reasonable numerical approximation. The right-hand side of
expression (13) depends on unknown grid values As(p,,z;,,)
on the next grid line z=z; . If the grid spacing is appropriate
to the character of the medium studied, one can restrict
oneself to a linear interpolation of function 4s(x, z) along this
part of the ray path. The right-hand side can then be ex-
pressed in linear form with respect to unknown grid values.
Expression (13) can then be written in the following form
At(pj’qurl’zi):Cj+ZDjnAS{Pn’Zi+1)' (14)
n
Vector C; as well as matrix D,, are entirely determined by
values As(p,,z;) on the preceding grid line z=z;, then by the
shape of the ray path [I,(q;,,) in the depth interval
z;£zZz;,, and finally, by the kind of numerical approxima-
tion of the line integral. Summation index n goes through the

same values as the index j. Matrix D, is therefore square. It
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can be shown that it is symmetrical with a limited number of
non-zero diagonals given by the number of grid values
4s(p,,z;,,) on line z=z; | necessary to perform the interpo-
lation of A4s(x,z) along the deepest part of the ray Iy(p;, 4,4 ).
In particular, if the interpolation in the lateral direction is
suppressed, a diagonal form of matrix 4, is obtained. In this
case, one input time value t(p;,q;,,) contained at the left-
hand side of the relation (I4) results in one grid slowness
value  As(p;,z;,,). This property of direct inversion
At(p;.q; )= A5(p;,2,,,) led to the name of the method.

The system of linear Eq. (14) thus enables us to state all
unknown grid values 4s(p,,z;,,) on the basis of the known
time differences At(p;,q;,,) of the interpreted (i+1)-th time
isoline. After performing all M steps of the interpretation, the

entire region D, is then mapped out. Expression (14) is the
basic one for the method of direct inversion.

Applications

On the basis of expression (14) a numerical algorithm was
derived and a program implementing the method of direct
inversion was written. Input data are surface velocities and
arrival times of surface-to-surface refracted waves arranged
according to individual measurement offsets in the interval
investigated (0,x,>. The accuracy of the line integral calcu-
lation that occurs in expression (13) depends on the sub-
division of the ray path I,(g). In the computer implemen-
tation the accuracy of a calculation of C; coefficients as well
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times derived from input time isolines; + + +, arrival times calculated by means of a ray tracing program. The corresponding ray paths are

illustrated in the lower part of the figure

as matrix elements D;, is controlled by choice of an adequate
number of subelements of the ray path between neighbouring
grid lines z. Further, the calculation of the velocity distribu-
tion can be performed at any sub-interval of the basic in-
terval €0,x,>.

The supporting travel-time curve f,(g) is obtained by cen-
tering the individual time isolines within the chosen sub-
interval. The starting model s,(z) is then derived by the
Wiechert-Herglotz transformation of a smoothed version of
tolg). In this way we always interpret the minimum lateral
time deviations in the chosen sub-interval. when the lin-
earized theory works best (Fig. 1). By defining sub-intervals
with certain overlapping parts and by a mutual comparison
of the velocity models calculated here, the consistency of the
lincarized approach can also be verified.

The method has been tested on theoretical as well as real
data. Figure 5 shows the result of an interpretation of
theoretical time isolines corresponding to a velocity model
with constant velocity gradients. The lateral inhomogeneity
reached nearly +50% in the upper part of the section
(Fig. 5b). In spite of this fact, isolines of the calculated ve-
locity distribution are in good agreement with the theoretical
equidistant straight lines over the entire region of the solution
obtained, with the exception of a narrow region close to the
margins (Fig. 5a). A quantitative evaluation of the method’s

accuracy is presented in Fig. 4. Curve (3) shows the depen-
dence of relative accuracy #5(z) on the depth z according to
expression (12). In comparison with the one-step method of
Fourier coefficients (curves 1 and 2) the method of direct in-
version shows a substantially better accuracy.

Time isolines in Fig. 6 were drawn from refraction data
recorded along a part of the Carpathian profile 100R in West
Slovakia (Rektofik et al. 1979). In this portion of the profile
time isolines exhibit a considerable lateral dependence corre-
sponding to a transition from the region of pre-Neogene
formations into Neogene basins. The contour map of the
velocity distribution in Fig. 7 was derived from calculated
grid data As(x,z) as well as contour lines of the relative
lateral deviation from the velocity starting model. It is ob-
vious from this figure that the lateral deviation varies from
approximately +409% in the region of pre-Neogene for-
mations to —30% in the region of lower velocities in the
Neogene sedimentary basins. To verify the results we chose
the two longest travel-time curves with shot points fixed at
x=64.0 km and 93.9 km (solid lines in Figs. 8 and 9). By means
of a ray tracing program (Cerveny et al. 1977) the direct
problem for the obtained velocity model was solved. The ray
paths, together with corresponding travel times for the shot
points tested, are illustrated in Figs.8 and 9. In spite of the
complex character of the model tested (strongly variable gra-
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Fig. 9. Test of the calculated velocity model for the source position xg=93.90km. The reduction velocity is Skm/s. + + +, arrival times
calculated by means of ray tracing program. The corresponding ray paths are illustrated in the lower part of the figure; ..., arrival times derived

from input time isolines

dients, local velocity inversions) time discrepancies larger
than 2 %, have not been detected in the tests.

Recently the method has been applied on further regional
refraction profiles in Czechoslovakia (Novotny et al. 1981).

Concluding Remarks

Methods for solving inverse seismic problems can be divided
into two groups:

(i) Evolutional, multi-step methods that, on the basis of
surface data, map the seismic medium successively from the
surface down to some depth. The result of each step is de-
pendent on results of preceding steps. Included here, for in-
stance, are the so called wave-equation migration methods
which form an image of the seismic medium using infor-
mation carried by the reflected wave field (Claerbout 1971).
Of the methods for solving the inverse kinematic problem
mentioned above, the differential method (Belonosova et al.
1967) and the method of characteristics (Romanov et al. 1978)
can be designated as evolutional, as can the method of direct
inversion presented in the section above.

(i1) One-step methods where the solution is sought for the
entire region investigated by means of an optimization pro-
cedure. The method suggested by Romanov (1972) is a one-
step methods as is the method of Fourier coefficients derived
above.

As far as the character of the problem allows, it is advan-
tageous to use numerical algorithms of the evolutional type
(lower requirements for computer memory, mostly simpler
algorithms, a natural possibility of intermediate results
management). In spite of various numerical implementations,
common principles of evolutional algorithms can be found,
ie.,

- the values of the interpreted quantity registered at the
surface (z=0) are recursively transformed to lower and lower
depth levels 0<z, <z,<z,...,

- the result of the interpretation is yielded in terms of the
quantity transformed for the zero travel time of the seismic
wave of interest.

In the case of holoseismic techniques the reflected wave
field is transformed. While solving the inverse kinematic
problems, we transform the travel time of refracted waves
directly. In particular, the transformation of time isolines
used by the direct inversion method consists in the recalcu-
lation of the travel-times t(R, S) from the position of source §
and receiver R on the surface z=0 recursively to lower and
lower depth levels z=z,. In the limit, when, during the re-
calculation, coincidence of the source and receiver is achieved
(ie., transformed travel-time reaches zero), the value of the
slowness function can be obtained by differentiating ¢(R, S)
with respect to the distance g of the source and receiver. In
terms of p,q introduced in Eq. (1) this transformation prin-
ciple assumes the following simple form



ot(p, q, z
As(x, z)=(‘;—qq)p=x

q-0

(13)

where t(p, q,z) is the travel time recalculated along the ray
path I'(p,q) to the level z. An expression like (15) in a finite-
difference form represents the basic equation of the method
suggested by Belonosova et al. (1967). To extrapolate the sur-
face arrival times depth, a non-linear differential equation is
solved by finite-difference approximation.

In the linearized approach used in the direct inversion
method, the extrapolation is realized in a form of a line
integral, such as the left-hand side of expression (13) for the
deviation 4t(p, g,z) of the propagation time. The right-hand
side of expression (13) then represents the linearized analogue
of the transformation principle (15) in integral form: the
limiting transition g—0 is replaced by the linear interpolation
of the function As along the ray path trajectory. It appears
that the choice of the natural grid points as the vertices of the
supporting seismic ray paths where the relation (15) is ful-
filled, in particular, leads to a high accuracy for the linearized
method even in the case of a low density of grid points.
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