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Abstract. Geomagnetic micropulsations are believed to
be caused by magnetohydrodynamic (MHD) waves in
the magnetosphere. The corresponding wave equation
is extended by an inhomogeneous term to describe
forced vibrations generated by a source. The general
solution of this inhomogeneous MHD wave equation is
given. It turns out that it is sufficient to solve a simpler
equation which is independent of the ambient magnetic
field by means of Green’s functions and to perform a
special transformation characterized by the geometry of
the background magnetic field. In an application full
space solutions with respect to a homogeneous mag-
netic field are calculated. In addition, some possible
magnetospheric applications are considered.

Key words: MHD waves — Geomagnetic micropul-
sations — Green’s functions — Boundary value prob-
lems.

1. Introduction

Since Dungey’s (1954) fundamental investigations much
effort has been expended in the attempt to find solutions
to the magnetohydrodynamic (MHD) wave equation
which are in accordance with observed properties of
geomagnetic micropulsations. Most of this work deals
with the corresponding eigenvalue problem. Of course,
any observed pulsation event has to be excited by a
source which, roughly speaking, is located in the outer
regions of the magnetosphere. Only recently has it been
practicable to compare satellite observations accom-
plished in these source regions with ground based
measurements. From these experiments some concepts
have been developed relating different kinds of micro-
pulsations to special source mechanisms in the outer
magnetosphere (for a recent survey see Southwood,
1981). Therefore, it might be of some interest to study
the inhomogeneous MHD wave equation describing
MHD vibrations generated by some source distribu-
tion. In the present paper a quite general approach will
be given to the solution of this problem.

The basic equations are stated the next paragraph.
The general procedure and the final integral repre-
sentation of the solution are presented later, followed
by a discussion of the general full space solution in a
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homogeneous magnetic field and some explicit so-
lutions to some simple source distributions. The final
paragraphs summarize the results and consider some
possible further applications. In an appendix two sim-
ple magnetospheric models are presented to which
the methods developed in the paper are applicable in
principle.

2. Basic Equations

The theory of geomagnetic micropulsations is usually
based on the set of linearized MHD equations. Consid-
er a MHD plasma with density p,(r) in an ambient
magnetic field By(r) (r=position vector). It is assumed
that there are no electric currents (curl B, =0), no elec-
tric fields and volume charges, and no plasma move-
ments. Let this static equilibrium configuration be dis-
torted so that the disturbed magnetic field B is small
compared with B,, |B|<|B,]. Neglecting all terms
which are small, of second order in the disturbed quan-
tities, the basic equations read (SI units being used
throughout the paper)

curl B(r, t) = uyj(r, t), (2.1)
_ 0B(r,1)
curl E(r, t)= — FTa (2.2)
E(r, ()= B, (r) x v(r, 1), (2.3)
0
o) D =jte, ) Byt (2.4)

Equations (2.1) and (2.2) are Maxwell’s equations in the
MHD approximation (i.e., neglecting the displacement
current) with

1o =magnetic field constant =47-10~7 Vs/Am,
j=electric current density,

E =electric field,

0 L . )
—=derivation with respect to time.

ot

Equations (2.3) and (2.4) describe Ohm’s law for infinite
electrical conductivity and the equation of motion, re-
spectively, where v is the plasma velocity. The assump-
tion of infinite electrical conductivity as well as neglect-



ing the gas pressure in Eq. (2.4) are good approxi-
mations for the Earth’s magnetosphere (Siebert, 1965).

From Egs. (2.1)-(2.4) one single differential equation
can be deduced for any of the vector fields of interest
B, j, E, and v. It is customary to choose the electric
field E because it plays the role of the vector potential
with respect to the magnetic field disturbance B for
time periodic phenomena (Eq. (2.2)). Supposing a time
dependence proportional to exp(iwt) (i=imaginary
unit, w=angular frequency) some manipulations yield
(curl? =curl curl)

t(r) x t(r) x curl> E(r) + k2 E(r) =0 (2.5)

with f=B0/|BO| the unit vector in the direction of the
undisturbed magnetic field and k=w/V,. V, is the Alf-

vén velocity, V,=B,/)/ ypo- In the following it is
assumed that k=const., i.e., By(r) and p,(r) are related
by some function to give a constant Alfvén velocity 1, .

The inhomogeneous MHD wave equation results
from (2.5) by adding a “right hand side”, say —Q(r),
representing some source function. In terms of an ex-
ternal force density k,(r, 1)=k?(r) exp(iwt) acting on the
configuration, Q is given by

Q=(iwpy/B,|) tx k. (2.6)

The overall problem of the present paper can then be
stated as follows: ~

Given a scalar constant k and two vector fields t(r)
and Q(r), determine a solution E(r) of the equation

t(r) x t(r) x curl®> E(r) + k2 E(r) = — Q(r) (2.7)

in a region V with suitable conditions at the boundaries
of V.

3. The Formal Solution
of the Inhomogeneous MHD Wave Equation

In this section the formal solution of Eq. (2.7) together
with appropriate boundary conditions will be develop-
ed using the method of Green’s functions. This method
for solving inhomogeneous problems is usually based
on a knowledge of the eigenfunctions of the corre-
sponding homogeneous equation. Unfortunately, the
eigenfunctions of Eq. (2.5) are not generally known.
However, a simple transformation of Eq. (2.7) will show
a way out of this difficulty.
Making use of the vector identity

A x(BxC)=B(A-C)—C(A-B)

for every three vectors A, B, C, Eq. (2.7) can be written
as

curPE—k*E=Q+ %, curl’E. (3.1)

The second term of the right hand side of Eq. (3.1)
represents the scalar product of the dyad (second rank
tensor) P, =tt and the vector curl*E,

B, curl> E=t(t- curl® E).

For the moment, this term involving the influence of
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the undisturbed magnetic field B, will be dropped to
shorten the notation. The remaining equation

curPE—k*E=Q (3.2)

is well known from classical electromagnetic theory. It
determines the electric field due to a distribution of
oscillating electric dipoles with moment Q (except for
dimensional factors). The solution of Eq. (3.2) by means
of Green’s functions is a classical procedure. Define
Green’s dyad ®(r|r’) by the equation

curl® G(r|r')—k* G(r|r)=Jd(r—r’) (3.3)

(3=unit dyad, é(r—r)=Dirac’s delta function, r=ob-
servation point, r'=source point) satisfying the same
boundary conditions as the electric field E. Multiplying
Eqg. (3.2) by G(r|r) from the right, Eq. (3.3) by E(r) from
the left, respectively, integrating the difference with re-
spect to r over the volume V and using Green’s vector
theorem (Morse and Feshbach, 1953, p. 1768) yields

E(r)= [ Qm6(r|r)dV

—$dS{curl E(r)- [¥ x G(r|r")]
N
— [V x E(r)] - curl ®(r|r")}. (3.4)

In Eq. (3.4) S is the boundary surface of V and v is the
outward normal unit vector.

In the following it is assumed that there are only
perfectly conducting boundaries. In this case of zero
tangential boundary values the surface integral in Eq.
(3.4) vanishes. For exterior problems (i.e., without outer
boundaries) a suitable condition at infinity has to be
stated. Since Eq. (2.7) belongs to the class of Helm-
holtz-type differential equations, this condition is the
so called Sommerfeld radiation condition. Its appro-
priate form for the vector Helmholtz equation reads

|rE|<C(C=const) and r(¥xcurlE—ikE)-0 (3.5)

uniform with respect to direction as r— oo (Jones, 1964,
p. 63).

Demanding an equivalent condition for Green’s
dyad ®, it follows from the boundedness of r® that

lim %(¥ x curl E —ikE)- 6 =0,

r—00

and from the boundedness of rE that

lim r?E- (¥ x curl ® — ik $)=0.

Combining these results yields

lim r?[($ x curl E)- & —E - (¥ x curl )] =0.

r—00

By cyclic permutation of the factors in the triple scalar
products and because dSocr? the surface integral in Eq.
(3.4) vanishes for all kinds of boundary condition under
consideration.

In the remaining terms of Eq. (3.4) interchange r
and r and make use of a fundamental property of
Green’s functions, i.e., their reciprocity,
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Gr|r)=6"'|r)
(®T =transposed dyad). This results in the following
integral representation of the solution of Eq. (3.2)

E(r)=[ 6(r|r)- Q) dV’ (3.6)

where dV’ is the volume element with respect to the
source point coordinates (r'). Equation (3.6) can be
written in a shorter form by introducing an operational
notation,
E=GQ. (3.7)
In this form G is an integral operator with dyadic
kernel G(r|r’).

Applying this result (Eq. (3.7)) to the complete prob-
lem (Eq. (3.1)) the following integral equation, or more
exactly, integro-differential equation is obtained
E=G(Q+ %, curl*E). (3.8)

So far, the anisotropy of the problem caused by the
direction of the undisturbed magnetic field and repre-
sented by the dyad B, has not been taken into account.
A genuine way to overcome this shortcoming is to
introduce a special system of reference, ie., the local
triad t, A, b with respect to the vector field BO, as it was
brought mto discussion by Siebert (1965). The three
vectors t, i, and b form a right-handed orthogonal set
of unit vectors specifying the tangential, the principal
normal, and the binormal direction, respectively, at any
point of space with respect to the field B,,.

Now, all vector fields are to be decomposed in their
components according to that triad (e.g, F= Ft+Fn
+Fb for any vector F). In this sense the followmg
matrix notation is obvious for Green’s dyad ©®,

G, (rlr') G, (r|r') G, (r|r)
Or[r)=1{G,(r[r)  G,(r|r) G,,(r[r) (3.9)
m(rlr’) Gya(rlr’)  Gyylrlr)

where, e.g., G, (r|r') is given by
G, (r[r)=1(r)- G(r|r) - ¢(r').

In a similar way one can introduce a matrix notation
for the integral operator G,

Gn Grn Gzh
G=|6G, G, G,l. (3.10)
Ght Ghn th

The components of this operator valued matrix (Eq.
(3.10)) are scalar integral operators with kernels given
by the corresponding elements of the matrix defined in
Eq. (3.9).

This system of reference is of great advantage in
describing the fields involved. Special features which
frequently are closely connected to the geometry of B,
can be seen most directly. For example, the condition
that the electric field has to be perpendicular to the
magnetic field B, (Eq. (2.3)) simply reads E,=0, similar-
ly, Q,=0 (Eq. (2.6)). Furthermore, rather than specifying

the magnetic field B, in this stage of analysis, it is
possible to continue the calculations quite generally.

Now, after these preliminary remarks concerning
the system of reference, Eq. (3.8) can be treated further.
It is quite unsatisfactory that the condition E,=0 can-
not be seen directly in this representation. However, it
is possible to transform the right hand side of Eq. (3.8)
so that it depends only on the given source function Q
(Krummbheuer, 1981, p. 60)

E=(G-GAG)Q (3.11)
where
G;' 00
A=1 0 0 O (3.12)
0O 0 0

with G ' as the inverse operator to G,, G,G;'=1I, I
=identity operator. Now it can be shown that the
electric field given by Eq. (3.11) possesses all the desired
properties. Obviously, the dyad 9B, can be represented
by the operator valued matrix

1 00
P={0 0 0].
000

Then firstly,
E,=PE

because BGA=PF. Secondly, E is a solution of the
differential equation (3.1) because

curPE—k*E=Q-4GQ

=(BG-BGAG)Q=(EG-EG)Q=0  (3.13)

(3.14)

from Eq. (3.3). Applying the operator P to the last
equation one obtains

PcurPE=—-PAGQ (3.15)
using Eq. (3.13), E,=0, and Q,=0 (Eq. (2.6)). Now, BA
=/, and comparing Egs. (3.15) and (3.14) it follows
that

curPE—k*E=Q+ B, -curl*E

which is identical with Eq. (3.1). Thirdly, the repre-
sentation of the electric field E by Eq. (3.11) guarantees
that the boundary conditions are satisfied, since the
kernel ®(r|r’) of the integral operator G obeys the same
boundary conditions as E.

The remaining problem now is to determine G, '.
Unfortunately, the components of the matrix defined
by Eq. (3.9) do not have the properties of scalar
Green’s functions. This can be seen by multiplying Eq.
(3.3) by t, e.g., from the left and the right. The result

t(r)- curl® G(r|r)- ¥(r)
—k? G, (r|r) =H(r) - () (r — 1)

shows that the first term cannot be expressed as a
scalar differential operator applied to G,,, in general.
Therefore, G, ! is not representable as a scalar differen-



tial operator. Only for very simple configurations does
it appear possible to find G, ! analytically. One exam-
ple will be given in the next Section.

For the general solution (Eq. (3.11)) the following
Fredholm integral equation of the first kind has to be
solved,

Gtrf: _(th Qn+sz Qb)7

or, more explicitly,
[ Gl f(e)dV'
14

=~ [ [G,,(r]r) Q, (1) + G, (x[r) Q,(r)] dV".
14

(3.16)

Defining a function Q' by

Q=/t+Q

with f the solution of Eq. (3.16), the general result can
be written as

E=—-txtxGQ. (3.17)

4. Applications to Forced Vibrations
in a Homogeneous Magnetic Field

In the preceding Section a general solution of the in-
homogeneous MHD wave equation has been found
without specifying the ambient magnetic field B, (ex-
cept for curl B,=0). It is instructive now to look for
solutions in simple configurations. Consider a homoge-
neous magnetic field By=B,X in a rectangular carte-
sian coordinate system with unit vectors X, y, Z, and
require a full space (i.e, an outward radiating) solu-
tion E(r) of Eq. (2.7) generated by an arbitrary source
function Q(r). The corresponding Green’s function for
this problem is (using dyadic notation)

—ikR

grad grad) S

1
6 ! p— o~ o
)= (3+ s

2 R=|r—r|

(4.1)
(e.g., Morse and Feshbach, 1953, p. 1780). To apply Eq.

(3.11) it is necessary to invert the integral operator G,
=G, with kernel

1 (’32 ) e—ikR (42)

Guteit)= (1455 7)o

This can be accomplished by looking for a solution f(r)
of the differential equation

12
(5+#) F01=—a0 @3)

ox?
(g some source function) satisfying a radiation con-

dition in three dimensional space. Direct substitution
into Eq. (4.3) shows that

| e-ikR
f= 2ik ;j/ 4R

+ 0
. [ | e‘”"x/"‘”'(A”+k2)q(r”)dx”]dV’ (4.4)

— 00
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q

is the desired solution (R=|r—r'|, r=(x,y,z), r
=(x,y,2), v"=(x",y,2), A” =Laplacian with respect to
l.H)'

To obtain this result one has to proceed quite care-
fully. For example, the function

+ o0

1 . ,
f(r)zz—ik‘ [ e""'x"‘|q(x’,y,z)dx’

— o0

is also a solution of Eq. (4.3), but it fulfills 1 D radiation
condition rather than a 3D one. The radiation con-
dition in 3D space is given by the behavior of the
function exp(—ikR)/R as R— o0, and it is this kernel in
Eq. (4.4) that guarantees the correct behavior at in-
finity. This dimensional dependence of the radiation
condition is the reason for “embedding” the 1D kernel
exp(—ik|x—x']) in a manner given by Eq. (4.4).

Now, combining Egs. (4.2) and (4.4),

2
(e #7) ==, (Gt

2iy

0x?

+ 00
. [ f eI =X 47 4 k2) q(r”)dx”]clV’ (4.5)

and rewritting Eq. (4.3) as

62
(—+k2) f=-6,G 'q
X

the bracket on the right hand side of Eq. (4.5) together
with the factor k/2i provides the representation of G_'.
Further, the matrix 4 (Eq. (3.12)) can now be estab-
lished and the complete solution of the equation under
consideration reads (after some lengthy calculations)

mn:jC;:S)meV'

—ikR

1
+R x & x Ij/ Fgrad grad (e (4.6)

-Q(r)dV".
4nR) Q)

In the second term the influence of the magnetic field
B,=B,X is obvious both in the double vector product
with X and in the appearance of Q, where

+ 00

] e QL y, 2

— 00

(4.6a)

It can be ascertained by direct substitution into Eq.
(2.7) (with t(r) replaced by %) that Eq. (4.6) together
with Eq. (4.6a) is indeed the solution of the inhomo-
geneous MHD wave equation for a homogeneous mag-
netic field B, and a radiation condition.

The representations Eqgs. (4.6) and (4.6a) allow de-
termination of exact solutions of the inhomogeneous
MHD wave equation for simple source distributions
Q(r).

As a first example consider a homogeneous exci-
tation in the plane x=0, i.e.,

Q(r)=Qd(x), Q=const., Q, =0.

Straightforward integration shows that the second term
in Eq. (4.6) makes no contribution whereas the first
term simply leads to
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1 ‘
E:er_lklxl. (47)

As expected, this result represents a plane wave travel-
ling in the positive x direction for x>0 and in the
negative x direction for x <0, respectively.

As a second example consider a point source exci-
tation by a Hertzian dipole at the origin, i.e.,

Q(r)=Q4(r), Q=const., Q, =0.

Even in this more complicated case all integrals can be
evaluated explicitly to give the electric field

-—1kr

i
drr 4k

—ikr

E= Q xxxxgrad[ 3
p

(r«Q)]. (4.8)

(pP=(k x & xr)?=r?—x?). Its components turn out to
be quite simple when we introduce cylindrical polar
coordinates (x, p, ¢). In addition, without loss of gene-
rality, let

Q=09=0(p cos ¢ —$sin ¢).
With these assumptions one obtains
£ i e—lkr ¢ 49
o= Ak 5—Q cos (49a)
i —ikr lkpz
E,=—— ——0Qsi . .
b= o Qsing (1+ ; ) (4.9b)

A striking feature of this solution (Egs. (4. 8) or (4.9a,b))
is the existence of a singularity at p=0, ie., a singu-
larity along the x axis. In particular, it is 1mp0851ble to
satisfy the radiation condition (Eq. (3.5)) with respect to
the direction of the ambient magnetic field B,. This
can be seen in more detail by writing Eq. (3.5) ex-
plicitly,

—ikr

r(v x curl E—ikE)=

(4.10)

where the angle 0 is between the radius vector and the
x axis, cos@=r-x. From Eq. (4.10) it is clear that the
radiation condition is satisfied in every direction as
r—oo except for 6=0 and 6=n, ie, except for the
direction of the magnetic field B,. This property is not
yet completely understood, but it seems to be a quite
general feature of wave motion in anisotropic media
(Lighthill, 1960). Nevertheless, Eq. (4.8) represents an
exact solution of the inhomogeneous MHD wave equa-
tion for a point source excitation in a homogeneous
magnetic field B,,.

The components of the corresponding magnetic
wave field B can easily be obtained from Egs. (4.9a,b)
using the induction law (Eq. (2.2)),

—ikr

i
B, .= wz 5 pQsinp(1 +ikr),
i —ikr pZ
B,=— Ay 2szmqﬁ[]—i— (1+ikr)],
i e—lkr
B,=— 5 XQ cos ¢.

w 4nrp

Obviously, the behavior of the component B, is regular
outside the origin whereas the components B, and B
show the same singularity at p=0 as the electric field
components (Egs. (4.9a,b)).

In summary we note that the undisturbed magnetic
field B, does not enforce one special direction of wave
propagation. It is the direction of B, that influences the
amplitude of the wave field in a striking manner.

As a third example consider a homogeneous exci-
tation within a circular disc of radius a in the plane x
=0, ie,

Qo(x), if p<a, Q=const.
Q= =0(p cos p—sin §) (say), 0, =0
0, if p>a

again using cylindrical polar coordinates. In this case
the integrals can be calculated only asymptotically for
the two extremes p <a and p> a, respectively, yielding

Q

Ezﬁ(e—iklxl_le»ikm)’ p<a (4.11a)
and
i e—ikr
E=na Qm‘;p
-[cosdbﬁ—i—( p )sind)fﬁ], p>a. (4.11b)

Of course, the results of the preceding two examples
are included in Eqgs. (4.11a,b). From Eq. (4.11a), as
a—oo (assuming that k possesses a small negative
imaginary component), we derive Eq. (4.7). Similarly,
from Eq. (4.11b), as a—0 (and simultaneously Q — o0 so
that ma?Q =const.), we derive the result for a point
source excitation (Egs. (4.9a,b)).

The first example shows that a plane wave is gener-
ated only by a very special excitation. The results of
the second and the third example “re-emphasize how
unrealistic is a treatment of anisotropic wave motions
in terms of plane waves alone” (Lighthill, 1960, p. 415).

5. Conclusions

In the preceding section the feasibility of the method
described in Sect. 3 has been tested by applying Eq.
(3.11) to simple source distributions in a homogeneous
field B,. The general solution (Eq. (3.11)) shows that it
is sufficient to know Green’s dyad for a problem which
is independent of the field B, (Egs. (3.2) and (3.3)). The
anisotropy caused by the geometry of the magnetic
field B, has then to be taken into account by a trans-
formation of the integral operator G. This transfor-
mation can be achieved most simply by introducing a
special system of reference, ie., the local triad with
respect to the vector field B,. After inversion of the
component G, of the integral operator G the (operator
valued) matrix A can be established, and the influence
of the magnetic field B, is then given by the additional
term GAGQ in Eq. (3.11).

This procedure divides the problem into two parts.
The first is concerned with the region under conside-
ration together with the boundary conditions, the sec-



ond with the magnetic field B,. In principle therefore,
it is possible to solve the inhomogeneous MHD wave
equation in those regions where Green’s dyad can be
found, according to Eq. (3.3). The prerequisites for
applying this formalism to two configurations which
might serve as simple magnetospheric models are given
in the appendix.

It is the aim of future work to complete these mo-
dels (or similar ones) by special source mechanisms to
describe the excitation of the various types of micropul-
sation. This can be accomplished only by detailed
numerical calculations. Any heuristic approach to the
problem will lead to quite speculative results, since
even the conclusions of the preceding section, referring
to a far simpler geometry, show some unexpected fea-
tures.

Finally, it should be noticed that the application of
the general result of Sect. 3 is not restricted to the
interpretation of geomagnetic micropulsation. It is ap-
plicable to all kinds of forced MHD wave phenomena
for which the basic equations (Sect. 2) hold.

Appendix. As a first example consider the region out-
side a sphere of radius a. Let this region be filled with a
magnetic dipole field and ask for a solution E of Eq.
(2.7) generated by an arbitrary source distribution Q
with # x E=0 at r=a and E satisfying a radiation con-
dition (Eq. (3.5)). This is an exterior problem outside a
perfectly conducting sphere of radius a. Green’s dyad
according to Eq. (3.3) is well known from classical
electromagnetic theory. Using dyadic notation and re-
ferring to spherical polar coordinates (r,0, ¢) it reads
(Jones, 1964, p. 497)

nN_ i 24 5 Q
G(rir)= Tk {(k f+grad 6r>
. 0
(kzr’ +grad’ ~,) rr' Vyi(r,r)
or
+k2(t x grad) (' x grad’) V,(r, r’)}.

The functions V; and V, are given by

(0r) = 3 o k) A B ) H2kr) cos )
ad 1
V)= > 2n+ (G (kr)+ B, R P (kr)) B2 (kr') P(cos y)

n=s ) (A2a)

for r<r" and interchanging r and r for r>r. In Eq.
(A.2a) j, and h{? are spherical Bessel functions of the
first and third kind, respectively, P are Legendre poly-
nomials, y is the angle between the observation point r
and the source point r’,

cosy="F 1 =cos 0 cos 0 +sin 0 sin 0 cos(¢p — ')

A, and B, are constants,

a= =[] [ en]

B,= —j,(ka)/hP(ka).

n

r=a (A.2b)
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The local triad with respect to a dipole field

M _
B,= — 1% . (2cos0F+sin 0 6)

A3
47 p3 (A.3)

(M =dipole moment) is given by

t(r) = —(1+3cos?6)"*(2cos O +sin O
fi(r)= —(1+3cos?0) *(sin0f—2cos 0
b(r)= —¢.
The second example refers to a closed magnetospheric
model. Indeed, the magnetosphere is not extended to
infinity, but it is bounded by the magnetopause. The
actual shape of the magnetopause is rather awkward,
and it might be very difficult to construct Green’s dyad
for configurations close to reality. Certainly, the follow-
ing model is oversimplified, but it should serve as a
first attempt to take into account an outer boundary.

Consider the region between two concentric, per-
fectly conducting spheres with radii a and R, respec-
tively, a<R, and a magnetic field B, which will be
referred to later. Green’s dyad for this region and the
corresponding boundary conditions at r=a and r=R
can be represented in a similar way to the case above.
The functions ¥V, and V, in Eq. (A.1) have now to be
replaced by
Viier)

X 2n+1 . o
=Y (A, ) (kr)+B,h2(kr)) j,(kr')

n=1 n(n+ 1)

+((B,+ 1) j(kr)+ C, hi2 (kr) 2 (kr')] B(cos )

A) 9
A)’

(A.4a)
V,(r, 1)

= g 2l i (2) : '

—n= 1 n(n+ 1) [(Dn‘]'l(k r)+E”h” (k V)) ]n(kr )

+((E,+ 1) jy(kr) + E, 2 (kr) 2 (kr')] F(cos 7)

for r<r and interchanging r and r for r>r. The
constants 4,,B,, ..., F, are given by

ey Ly

d d
& n@ —(rh'® D
An [dr(rh" )]rsu I:dr(rh" )]r=R/ '
d d
_ |4 4@ D
B=-| dr(r‘l")],=” | )] / 1

C,= [;ir (rjn)] ) [Ed? (rj")],=a/D1

r=a

(A.4b)
D, =h(ka) h?(kR)/D,

E, = —j (ka)h(kR)/D,

F, =j,(ka)j,(kR)/D,

with
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D,=j,(ka) P(kR) ~j,(kR) k¥ (ka).

The ambient magnetic field in this region can be cho-
sen as a superposition of a dipole field (cf. Eq. (A.3))
and the homogeneous field

2M "
0=2%% F(cos@f—sin@@).

The local triad with respect to the resulting field is
given by

() = —c(r, 0) [20059 ((?)3—1) £+ sin0 ((?)12) o‘],
i(r)= —c(r,0) [sin@ ((?)3—%2)? —2cos0 ((?)3—1) é],

br)=—¢
with

—1
2

R\? R\
c(r,0)= [4+4 (7> (13 cos? 0) + (7) (143 cos? 9)]
For a<r <R this field is very similar to a dipole field
whereas for r—R the magnetic field lines fit the outer
Boundary r=R. By construction, it has the same vector

field properties as a dipole field (i.e., zero curl and zero
divergence).
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