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Abstract. We investigate the systematic error that is
introduced into the phase and amplitude of a dispersed
signal by the application of a gaussian time window.
The most significant contribution to the phase error is
proportional to the slope of the group delay (vs. fre-
quency) curve and inversely proportional to the square
of the window width. This error is normally negligible
in the 15-100s long-period seismic band, but can be
significant at periods longer than 240s for fundamen-
tal-mode Rayleigh waves. To first order, no phase error
is associated with a slope of the amplitude spectrum.
We derive a simple nonlinear formula that predicts the
bias in the phase velocity to a few parts in ten thou-
sand; it applies both to the moving-window and to the
multiple-filter method.
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The Problem

Two methods are widely used in phase velocity analysis
of seismic surface waves. The moving-window method
consists in isolating parts of the wavetrain from other
seismic arrivals or noise with a set of time windows,
and determining the Fourier phase at each frequency in
the appropriate window. As stated by the convolution
theorem of the inverse Fourier transform, this pro-
cedure is (for a given window) equivalent to convolving
the signal spectrum with (27)~! times the Fourier
transform of the window function. The resulting Fou-
rier phases are in general different from the original
ones whose spatial dependence defines the phase ve-
locity. Phase velocities obtained with the moving-win-
dow method are therefore biased, and while the bias is
small when the window is wide compared to the signal
period, substantial errors can arise at very long periods
where windows no more than a few periods wide must
be used to separate subsequent surface-wave arrivals.
An alternative method for phase velocity analysis is
the multiple-filter method. It consists in transmitting
the seismic signal through a set of zero-phase bandpass
filters, and evaluating the instantaneous phase of the
filtered signals at or near the group arrival time. No
time windowing is applied explicitly, but it is implied in
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the duration of the transient response of the filters.
There are some problems, both theoretical and practi-
cal, associated with this method. The instantaneous
phase is in general different from the Fourier phase,
and no simple relationship exists between them unless
simplifying assumptions are made (such as constant
amplitude and a linear group delay “curve”). It is

_therefore not quite obvious how the phase velocity is

related to the instantaneous phase, and in fact the
instantaneous phase of an unfiltered signal gives only a
poor estimate of the phase velocity. Nevertheless the
multiple-filter method is equivalent to the moving-win-
dow method provided that the time at which the phase
is read, and the frequency to which it is associated, are
correctly identified. This follows from the identity
(Eq. (1) of Kodera et al., 1976):

1
5(tg, wg) = | F(w) Hw—wy) exp(iowty) dw

=expl(iwgto) | f(t)h(ty—1) exp(—iw,t)dt. (1)

Here f(t) is the seismic signal, F(w) its Fourier trans-
form, h(t) is a window function which we assume to be
real and symmetric with respect to the origin, and H(w)
is its Fourier transform that has the same property.
s(ty, wy) is an estimate for the complex signal ampli-
tude at time t, and frequency w,; its computation is
known as a frequency-time analysis (FTAN), and a
two-dimensional display of its modulus is known as a
Gabor matrix.

The time-domain integral represents the Fourier
amplitude, at frequency w,, of the signal f(t) in a time
window centered at time ¢,. The frequency-domain in-
tegral is an inverse Fourier transform; it represents the
instantaneous complex amplitude, at time t,, of the
signal that was passed through a zero-phase bandpass
filter centered at w,. Equation (1) states that the two
complex amplitudes are equal when the phases are
referred to a common time origin. Thus, the moving-
window and multiple-filter methods of frequency-time
analysis are mathematically equivalent, and the phase
corrections which we are going to derive apply to both
methods.

Apart from a phase factor that refers the phase to ¢,
as the time origin, the estimate s(t,, ®,) mathematically
approaches the complex Fourier amplitude F(w,) when
we increase the window width to infinity so that H(w)
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in Eq. (1) becomes 27 times a delta function. Vice versa,
s5(ty, wo) becomes the instantaneous value f(t,) when
the time window h(t) is reduced to a delta function. In
the analysis of real signals, the presence of noise would
prevent us from reaching these limits; the integrals
would diverge away from the desired values when the
window width, or the bandwidth, are unreasonably in-
creased. We therefore need methods to convert FTAN
phase estimates obtained with a limited set of windows
or filters into Fourier phases (for a phase velocity
measurement) or into instantaneous amplitudes and
phases (for a group velocity measurement).

Dziewonski et al. (1972) and Denny and Chin (1976)
have proposed methods to measure group velocities of
dispersed seismic signals without bias. The residual-
dispersion method of Dziewonski et al. eliminates the
phase bias as well, without determining it explicitly.
Still, an independent investigation of the bias remains
desirable, whether for the purpose of determining its
magnitude, to derive criteria for the selection of win-
dows, or for correcting phase velocities obtained with
different methods. We have not found any useful for-
mula for the difference between FTAN phase estimates
and Fourier phases in the seismological literature. Such
formulae were however developed in unpublished in-
vestigations by Nyman (1977) and Cara (1978) for gaus-
sian multiple filters. Nyman takes into account third-
order derivatives of the signal spectrum with respect to
frequency, but assumes that the instantaneous phase is
evaluated at the exact group arrival time, which is in
general unknown. Cara solves the problem to second
order in the phase and to arbitrary order in the ampli-
tude spectrum with an infinite series. Their results can-
not be compared to ours term by term due to their
different mathematical form, except for the leading
first-order term which agrees with our Eq.(13) in each
case. The inclusion of derivatives higher than the sec-
ond appears unrealistic from a practical point of view.
We therefore restrict our investigation to derivatives of
second order of the logarithmic signal spectrum. The
resulting error formula (10) has a comparatively simple
structure and permits us to discuss in some detail the
functional dependences involved, especially the influ-
ence of the position and width of the window on the
FTAN phase. The second-order formula is sufficiently
accurate for practical applications in surface-wave seis-
mology. Accuracy is however not our main point. As
will be discussed later, the “systematic error” consists
of one desired and one undesired component; only the
latter needs be removed, but the distinction is to some
degree subjective. A discussion of the “accuracy” of a
method for bias correction is therefore not meaningful
without reference to a specific problem.

Prediction of the Systematic Error

Consider a plane dispersed wave that is recorded at a
distance 4 from the source:

1(t, 4) =§1; | A(w) expli(wt—kA)]dw

=%jF(w) exp(iot)do. 2)

Assuming that the amplitude has no zeroes, we write
the Fourier spectrum F(w) in the form

F(w)=A(w)exp(—ikA)
=expla(w)—iwT, ()] 3)

where a(w)=log A(w) and 7, (w)=kd/w=4/c(w). ¢ is
the phase velocity and t, the phase delay time. The
signal (2) is analyzed in the time window

w(t)=h(t—to)=exp[ —(t—10)*/e”] (4)

of width e. This is equivalent to convolving F(w) with

1 1
— W(w)=— _i
o () o H(w)exp(—iwt,)
€ &2
=——exp[——a)2—iwt]. (5)
/4n 4 °

The result at frequency w, is

&

s(tos a)o)zl/H [ exp [a(w)—iwtw(w)

82
— (0= ) i, o) Io] do. (6)

To solve the integral, we replace the logarithmic ampli-
tude a(w) and the phase wrt,(w) by their second-order
Taylor expansions around w=w,. This is the only ap-
proximation in the derivation of Eq.(10). Our result
will therefore be exact to that degree to which a(w) and
k(w) can be represented by second-order polynomials
in the effective bandwidth of integration. Observing

d
that r(a))zd—(w t,) is the group delay time, we have
)

a(w) = a(w,) + (@ —w) @(we) + (@ —we)? a”(wo), (7

01, (0)=w,1,(w)

+(0 =) T(@e) + 5 (0 —we) T'(wy). (8)
The constant term, exp[a(w,) +iw,1,(w,)] can now be
extracted from the integral; it represents the original

Fourier coefficient F(w,). The remaining integral repre-
sents the error that was introduced by time-windowing.

000 & o [(w_wo)(a’—i—i(lo—f))

F(w,) —I/E

+4(w—m,)? (a”—fzi—ir’)] do. ©)

From now on a, t and their derivatives are to be taken
at w=w,. We will assume that a(w) is real; the genera-
lization to complex amplitudes (i.e., the inclusion of an
initial phase at 4 =0) affects the definition of the group
arrival time but does not change our subsequent de-
rivations. t,—7 is the offset of the center of the window
against the group arrival time 7. The integral can be
evaluated with standard methods provided that a”, if
positive, is less than £%/2. The result is

S(tg, o) (1 —2“—”+2i 7 )*”2 o
- 2
&

i3 (@ +i(ty—1))
Fl(w,) &

&2 —=2a"+2i7"’

(10)



The error depends only on the four dimensionless
quantities

o=, ﬂ= , '))2—2—, 5:——2‘ (11)

These normally have, in seismological applications, ab-
solute values smaller than one, but are not always
small enough to allow a linear expansion of Eq.(10).
For a qualitative discussion, let us first assume that «
and 7y are negligible, i.e. the amplitude spectrum is flat
in the vicinity of w,. The remaining two variables, f3
and 0, measure how well the window is centered at the
group arrival time, and how strongly the signal is dis-
persed in the window. For small dispersion, =0, the
right-hand side of Eq.(10) reduces to the original win-
dow function

S(th wO) 2,2

———exp[—(1—t,)°/e 12
F(COO) 0 ] ( )
as expected for an impulsive input signal. When ¢ is
not negligible but the window is centered, we have

S(IO’WO) s 12\ —1/2
———=(1+2it/e*)" 1~ 13
Pl ~U+2070) (13)
The behaviour of the systematic error now depends on
the magnitude of 6. This quantity determines whether a
change of the signal frequency can be resolved in the
window or not. The resolving power of a gaussian time
window of 1/e-width ¢ for angular frequencies is ¢ *
and the variance of the angular frequency of the signal
in it is e(2|7’|)~'; the latter can be resolved when
2|7l <é?, ie. |8| < 1. When |§| is small, the phase error is
proportional to § and the amplitude error to 6% |d|=1
defines the width of an “optimum window” in which
the signal has the smallest bandwidth. This is easily
seen from Eq.(10) if we put a'=ad"=0: the value ¢
=]/2|t’| minimizes the real part of the exponent, and
thus the modulus of s(ty, w,), at any frequency w, for
which the window is not centered. The Fourier trans-
form of the optimum window defines an optimum filter

of bandwidth 1/2|7'|~" for which the filtered signal has
the shortest duration (Inston et al, 1971; Cara, 1973).
With this optimum width, we obtain a phase bias of
Fr/8, depending on the sign of . When |d| is much
larger than one, the signal is practically sinusoidal in
the window; the amplitude becomes proportional to
the window width, and the phase error approaches the
limit Fn/4. This is the well-known relationship be-
tween the instantaneous phase and the Fourier phase
in the case of linear dispersion (compare Fig. 7.4 of Aki
and Richards, 1980 and our Fig. 5).

A linear expansion of Eq.(10) is possible when all
four quantities in Eq.(11) are small, i.e. when the win-
dow is sufficiently wide:
$(tg, o)

Flw,)
l+e a' +d?—(ty—1)*+2id (t,—1)—iT). (14)

This equation indicates that for ¢ large and t,=1 the
phase error depends only on the window width and on
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the slope of the group delay curve; an eventual slope in
the amplitude spectrum (a'#0) would not cause a
phase error. This is in agreement with Nyman’s (1977)
and Cara’s (1978) formulae. Considerations of sym-
metry suggest that this result is not restricted to gaus-
sian windows; any centered symmetric window should
provide a phase estimate independent of the amplitude
spectrum to first order. However, phase errors related
to a' have occasionally been observed (Dziewonski et
al, 1972; Souriau-Thevenard, 1978). Since both our
Eq.(10) and Nyman’s formulae predict a phase error
proportional to a'?7//e* when nonlinear terms are re-
tained, such errors are likely to occur when the window
is narrow. An alternative explanation would be that the
error is not directly related to the measurement of the
instantaneous phase at time t,, but comes in when its
time derivative (the instantaneous frequency) is evaluat-
ed and taken for w,.

Equation (14) also has an application to free mode
analysis. Time-variable filtering is sometimes used to
separate different modes of oscillation prior to spectral
analysis. It is then essential that the window width is
chosen proportional to the optimum width (i.e. to the
square root of the group delay time) so that the system-
atic error is constant. Otherwise, the error would enter
into the eigenfrequencies and the amplitude decay
rates. A window of increasing width can however be
realized only for the first few Rayleigh arrivals.

When the window is offset from the arrival time,
Eq. (14) predicts an additional phase error proportional
to the window offset and to the slope of the amplitude
spectrum. Amplitude equalization, as recommended by
Cara and Hatzfeld (1976) for group velocity analysis,
would eliminate this part of the error, but at the same
time deteriorate the signal-to-noise ratio by spectral
leakage from those frequencies where the noise pre-
dominates. It is probably better to leave the amplitudes
unchanged, giving automatically less weight to those
frequencies where the signal-to-noise ratio is in-
adequate.

In practice, the width of the window must often be
chosen such that none of the Egs.(12), (13) or (14) is
applicable. By splitting the logarithm of the right-hand
side of Eq.(10) into its real and imaginary parts, we
find that the dependence of the phase error on the
window offset is quadratic, and its dependence on the
window width is characterized by an arctangent func-
tion. We shall however postpone the discussion until
we have presented the results of a numerical test.

As indicated above, our results apply without any
change to a multiple-filter analysis with the gaussian
filters

N "2
H(w —wg)=—— exp [——%((1}——(1)0)2]. (15)

an

We have then to interpret w, as the center frequency of
the filter, and ¢, as the time at which amplitude and
phase are read from the filtered seismogram.

A Numerical Test

As a test seismogram we have used a synthetic wave-
train (Fig. 1) representing a Rayleigh wave that has trav-



Fig. 1. The test seismogram
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Fig. 2. Phase and group delay (lefthand scale), and log ampli-
tude (righthand scale) of the test signal

elled over a distance of 4=40,030km on a flat earth.
Group velocities were fitted to those of the observed
free spheroidal oscillations of the earth at periods lon-
ger than 150s, and to those of model 1066B at shorter
periods (both after Gilbert and Dziewonski, 1975). The
use of cubic splines in the fit makes it possible to
calculate the derivatives in Eq.(10) analytically as con-
tinuous functions. For the amplitude spectrum a sim-
ple mathematical form was specified, A(w)~w?
exp(—wA/2¢Q), with a phase velocity c=4km/s and a
Q factor of 100 (both being relevant only at the short-
period end of the spectrum). Figure 2 shows the phase
and group travel times and the amplitude spectrum.
Our program for dispersion analysis evaluates
Eq. (6), replacing the integral with a sum over the coef-
ficients of the Fast Fourier Transform of the signal.
This is a very efficient method that requires only one
Fourier transform for any number of frequencies and
windows. The sample frequencies w, and the window
parameters t, and ¢ at each frequency can be chosen
arbitrarily. Normally we set the window width equal to
2008+ 2T at period T, a value that was found satisfac-
tory in a practical application (Wielandt and Knopoff,
1982) at periods up to 400s. At longer periods, one
would probably have to use narrower windows in order

s| AT,
26|
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" 100s 200 *300 400 5005 600

Fig. 3. Predicted and experimental errors of the phase delay
time. Errors are positive when the windowed signal is de-
layed. Window width ¢ (Eq.4) is 200s+2T at period T. The
window centers are offset by —50%, 0% and +50%, of the
width against the theoretical group arrival time. In this figure
and all following, solid lines represent experimental values
and symbols predicted values
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Fig. 4. Error of the phase delay at 400s period versus window
offset. 1009 is an offset equal to the window width ¢ which is
1,000s. The vertical scale gives the error in seconds and as a
fraction of the total phase delay; with a minus sign, this is
also the relative error of the phase velocity

to separate subsequent Rayleigh arrivals, but we have
no practical experience in this.

Observed and predicted errors of the phase delay
time are compared in Fig. 3 for three sets of windows:
one centered at the theoretical group arrival time and
one each offset by + and —509% of the width. The
agreement is satisfactory, considering that the obser-
vational error per circuit is expected to be about 3s
rms for free modes (where several passes of the same
wavetrain are averaged), and about twice as much for
individual great-circle circuits. The systematic error is,
in this example, negligible at periods shorter than 100s,
and becomes substantial only beyond 240s. Even for
window offsets as large as +50%, the term with a'(t,
—1) in Egs. (10) and (14) does not produce a significant
error at the short-period end of the spectrum where the
amplitude decays rapidly (Fig. 2). Experiments with less
regular amplitude spectra confirm that the influence of
the amplitude on the phase error is in fact very small
Since in practice amplitude and phase spectra are not
independent of each other, it appears unrealistic to
study their influences separately in much detail.

An unexpected result is that at long periods the
systematic error is close to a maximum when the win-
dow is centered, and decreases when the window is
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Fig. 5. Error of the phase delay at 400s period versus window

width, with no offset. Note the reciprocal scale; g, =1,000s is
the normal width
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Fig. 6. Amplitude error versus period, for the same windows
as in Fig. 3

offset. This is more clearly seen from Fig.4 where the
error at 400s period is plotted versus the relative offset,
(to—71)/e. For offsets of approximately —909% and
+709%, the systematic error vanishes in this example.
We do not recommend this as a method to eliminate
the bias. One might however consider adjusting the
window so that the maximum of the error curve at
about —109%, offset, rather than the center of the win-
dow, coincides with the expected group arrival time; a
small error in the latter would then not cause an un-
controlled bias.

The error in phase delay time at 400s period as a
function of the window width is plotted in Fig. 5. In
order to be able to display the limiting behaviour for
wide windows, we have chosen a reciprocal scale for
the width, ie. the scale is linear with respect to the
bandwidth. The error increases in proportion to &2
when ¢ is large, but approaches a limit when the width
is reduced below the normal value, as predicted by
Eq.(13). The normal window width lies just between
two regions of asymptotic behaviour, a fact that makes
a general discussion of Eq. (10) difficult.

Figure 6 shows the relative amplitude error as a
function of period for the same three sets of windows
as in Fig. 3. As expected, the Fourier amplitude of the
windowed signal is normally smaller than that of the
original one, and reduces further when the windows are
offset. Discrepancies between experimental and pre-
dicted values are somewhat larger than for the phase
velocity; they are apparently related to the neglected
second derivative of the group delay time.

Application to Real Signals

In contrast to the synthetic signal used to test Eq.(10),
real signals often exhibit rapid oscillations in the ampli-
tude and phase spectra for which the expansions (7)
and (8) may not be accurate. One might try to include
higher derivatives in the Taylor expansions; however
one would then have the problem of extracting the
values of these derivatives from the experimental data.
Even a” and 7' in Eq.(10) may be difficult to evaluate
when the signal is noisy. For a practical application of
Eq. (10), one has normally to use synthetic or smoothed
experimental spectra where higher- order terms in the
Taylor expansions are not very significant.

Fortunately, it turns out that the bias correction
derived from a smooth spectrum is all we need. Time-
windowing a dispersed signal has at the same time a
desired and an undesired effect. The desired effect is the
elimination of signal components and noise outside the
time window; the undesired effect is the phase bias that
results from spectral smoothing when the phase spec-
trum does not have a constant slope (ie. the group
delay is not constant). The two effects are in principle
undistinguishable from each other. Only by referring to
our a priori knowledge of what a dispersed seismic
signal should look like are we able to define which
degree of spectral smoothing is appropriate. Removing
completely the phase distortion introduced by the
frequency-time analysis would defeat the very purpose
of this method. In general, the application of a second-
order correction formula is probably a good compro-
mise. For a more careful investigation, a scheme in-
corporating a differential analysis between observed
and synthetic wavetrains would permit the a priori defi-
nition of the desired smoothness of the spectrum, and
then the complete elimination of the systematic error
for that spectrum. Remaining differences between
the observed and synthetic signals would be considered
as random noise whose suppression does not constitute
a systematic error. The residual-dispersion method of
Dziewonski et al. (1972) can be used in this way, but
other methods are conceivable. It does not make much
difference whether we first subtract the synthetic phase
from the observed one and then analyze the resulting
“residual-phase” seismogram, or first analyze the two
signals separately and then form the phase difference.
The effects of spectral leakage may be somewhat dif-
ferent, but numerical tests indicate that there is no
significant difference between the two schemes with re-
spect to their sensitivity to noise.

The systematic error can be studied directly with
experimental data when a program for dispersion anal-
ysis is available that puts out a complete filtered ver-
sion of the experimental seismogram. Using the latter
as an input signal in the next step, we may pass the
same signal through the filter repeatedly, and observe
the small changes in amplitude and phase it undergoes
every time. This is a very instructive experiment be-
cause it provides at the same time information on the
magnitude of the systematic error and on the quality of
the data (which can be judged from the stability of the
error). Moreover, extrapolating backward from the
phase after n=1,2,3... passes to n=0, we obtain an
unbiased estimate for the unfiltered signal. The experi-
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ment (with seismograms from Wielandt and Knopoff,
1982) confirms what we have discussed above: a syn-
thetic signal provides a valid estimate of the experimen-
tal phase bias at frequencies where the signal is good;
the scatter in the phase is undesirably enhanced by re-
moving the experimental bias at frequencies where the
signal-to-noise ratio is bad.

Other Systematic Effects

While phase delays measured with plane surface waves
on a stratified halfspace can be interpreted directly in
terms of the velocity-depth structure, this is not so
simple on a sphere. Even in the case of a laterally
homogeneous, non-rotating sphere, a correction for the
incomplete polar phase shift must be applied to the
observed phase delay before the latter can be converted
into a phase velocity (Schwab and Kausel, 1976; Wie-
landt, 1980). The correction depends on the source-
receiver geometry and on the radiation pattern of the
source, and can amount to 1%, of the phase velocity at
400s period. This correction normally has the same
sign as that investigated in the present paper, so a
substantial bias (in the sense of an apparent negative
anomaly of the velocity) can accumulate when both are
neglected. Another, although minor correction must be
considered for the ellipticity and rotation of the earth
(Dahlen, 1976). The purpose of all these corrections is
to make phase velocities observed in different regions
of the earth and with different methods comparable to
each other. Their interpretation in terms of regional
elastic properties of the earth is of course another,
largely unsolved problem. Nevertheless, it is clear that
lateral variations of the phase velocity are very small at
periods between 200 and 400s, possibly of the order of
1%. Evidence for such anomalies should not be ac-
cepted before the corrections in question have been ap-
plied, or demonstrated to be insignificant.
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