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Gravity Interpretation of Two Dimensional Fault Structures

Using Hilbert Transforms
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Abstract. The Hilbert Transform of the second order
horizontal gradient of the gravity effect of a two dimen-
sional dipping fault is derived. Using the derivatives of
the horizontal gradient of the gravity effect and the
Hilbert Transform, the parameters of the dipping fault,
namely the dip, the depths to the top and bottom and
the density contrast, are obtained. The gravity effect of
the vertical fault has also been analysed treating it as a
particular case of the dipping fault. The validity of the
method is exemplified with theoretical and field exam-
ples in either cases.
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Introduction

In recent years, Hilbert transformation techniques
(Nabighian, 1972; Stanley and Green, 1976; and Stan-
ley, 1977) have assumed importance in the quantita-
tive interpretation of gravity and magnetic data.
Nabighian’s (1972) work was confined to the transfor-
mation of vertical gradients (vertical magnetic field)
into horizontal gradients (horizontal magnetic field)
and vice-versa with the help of the Hilbert transform.
But Mohan et al. (1982) have devised a novel interpre-
tation technique making use of the Hilbert transform to
analyse vertical magnetic anomalies due to some two
dimensional bodies, through which the parameters of
the causative body are determined by means of simple
mathematical expressions. The very same approach has
been extended in the present paper for determining the
parameters of two dimensional fault structures. Since
the gravity effect and its Hilbert transformation are
in the space domain, the kind of assumptions which
are necessary in frequency domain techniques,
(Bhimasankaram et al., 1977) are no longer required.

Gravity Effect of a Dipping Fault

For a semi infinite dipping fault block of finite throw
(Fig. 1a), the gravity effect is given by (Jung, 1961):

b)

Fig. 1. a Geometry of the two dimensional dipping fault.
b Geometry of the two dimensional vertical fault

g(x)=2Gosind[(x+hcotd)

- sind {sind In(rg/r,) —cos d(¢z — ¢ ,)}

+(Zpp—ho,)] )
where

G - is the gravitational constant.

o - is the density contrast.

d - is the dip of the fault.

h - is the depth to the top of the fault.

and

Z - is the depth to the bottom of the fault.
Differentiating Eq.(1) with respect to x twice, we

obtain,

d—xsind
g'(x)=2Gasind [w

P)
Ty

_(2Z—h)cosd—xsind]
e '

Equation (2) can be rewritten as,
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Fig.2. Computed second horizontal gradient of the gravity
0 effect of the dipping fault, the Hilbert transform and the
Discrete Hilbert transform. (Model I)
: hcosd —xsind hsind —x cosd
"(x)=2G smd[— H(x)=2Gasi d[
g’ ¢ x2+h? (x) gsm x2+h?
(x—D)sind—Zcosd] 3) (x—D)cosd—Zsind] (8)
(x—D)*+ 22 (x—D)*+Z*
where D=(Z —h)cotd.
The Fourier transform of g”(x) is given by, Evaluation of Parameters
T s e Following Nabighian (1972) we determine the origin by
Flo)= _J-wg (e it ) considering the maxima of,

Substituting for g”(x) from Eq.(3) in Eq.(4) and
evaluating the integral, the real and imaginary com-
ponents of the Fourier transform are obtained as:

Re F(w)=2nGosind[e~“"cosd—cos(d—wD)e~"%] (5)
and

Im F(w)=2nGosind[e “*sind —sin(d —wD) e~ “Z]. (6)

Hilbert Transform

The Hilbert transform of g”(x) is defined as (Thomas,
1969):

H(x):%T[ImF(w)cos wx —Re F(w) sin wx] de. (7)
0

Substituting Eqs. (5) and (6) in Eq. (7), and then in-
tegrating, the Hilbert transform is obtained as,

AX)=V[g"()]*+ [H(x)]*. ©)
Then the approximate dip of the fault block is de-
termined (see Appendix) using the relation,
g”(O)]
HO) 1

d=cot‘1[ (10)

For g”"(0)=0, d becomes 90 degrees which is the case of
a vertical fault. The graphs of the second horizontal
derivative of the gravity effect of an inclined fault block
g”(x), and its Hilbert transform, H(x), are found to
intersect on either side of the origin (Figs.2 and 3).

If the abscissa of the points of intersection are x,
and x, then,

g7(x,,2)=Hlx,,5)
(ie.)

x2(h—Z —D)+x,(D*+ Z*—h?—2hD)
—=Zh*—hZ?—h*D—hD?
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and
x3(h—Z—D)+x,(D*+Z*—h*—-2hD)

=Zh*—hZ?—h*D—hD> (12)

Solving equations (11) and (12), the depths to the top A,
and bottom Z are obtained as,

(et )Y G )+ 40, XK +K5)

-
2(K,+K3)

(13)
and

(14)

14+2P—P?
R=TIF
P T)
- 1-P

3

K;
and
P=cotd.

Finally the density contrast ¢ is determined from,
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Fig.3. Computed second horizontal gradient of the gravity
effect of the dipping fault, the Hilbert transform and the
Discrete Hilbert transform. (Model IT)

where

1
A=
_D*+Z*+4DZ cosdsind
B ZR-LpEp
2(Z+2Dsind cosd)
 h(Z2+DY

B

£l

C:

Thus, the above analysis facilitates the determination of
all the parameters of the dipping fault.

Vertical Fault

The semi infinite vertical fault block (Fig. 1b) is just a
particular case of the dipping fault with d assuming the
value n/2.

Correspondingly the second horizontal derivative of
the vertical fault and its Hilbert transform are obtained
by substituting d ==/2 in Eqgs. (3) and (8).

Thus,
i X X
Bl =264 [xz—i-Zzﬁxz-%hz] (16)
and
h Z
Hl(x)=2Ga[x2+h2—xz+Zz]. (17)



Table 1. Theoretical Examples (* In arbitrary units)

Parameters d h* z* o*
Dipping fault
Model 1 Assumed 120.0° 1.00 3.00 1.00
values
Evaluated 123.8° 1.11 3.14 1.03
values
Model 11 Assumed 110.0° 1.00 4.00 1.00
values
Evaluated 114.6° 0.97 390 1.11
values
Vertical fault
Model I Assumed - 0.50 1.00 1.00
values
Evaluated - 0.56 0.99 1.28
values
Model 11 Assumed - 1.00 3.00 1.00
values
Evaluated - 1.00 2.71 0.95
values

Evaluation of Parameters

As in the earlier case the graphs of g7(x) and H,(x) are
found to intersect on either side of the origin (Figs. 4
and 5). The parametric evaluation in the case of a
vertical fault can be made simple by substituting d = /2
in Egs. (13), (14) and (15) which yield the depth to the
top and bottom and the density contrast as follows:

(x4 +x2)i1/(x1 +x,)° +4x,x,

h = 5 , (18)
_ T X1 Xy
7 (19)
and
_hZy 'O +[HO7* 0)

2G(Z—-h)

Theoretical Examples

The theoretical procedures developed earlier as ex-
pressions of continuous variables can be made applic-
able to the field data which is discrete, by using the
Discrete Fourier Transform (DFT) and the Discrete
Hilbert Transform (DHT).

The real and imaginary components of the DFT are
given by (Gold and Radar, 1969),

N-1

Re F(nwy)= Y g"(l-4x) cos(naw, -1 Ax) (21
1=0

and
N-1

ImF(nw,)= 3 g"(l-4x)sin(nw, - 14 x). (22)
1=0

The discrete Hilbert Transform is defined as,
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L

12
H(l-Ax)=—[ Im F(nw,) cos(nw, - 14 x)
N . T La—o
2

~"Y Re F(nay) sin(naw, - 14 x)]. (23)
=0

hn

Where w,=2n/N-Ax (radians per unit length) is the
fundamental frequency, 4x is the station spacing and N
is the total number of observed values.

Dipping Fault

Two theoretical models (Table 1) are analysed to exa-
mine the applicability of the procedure. With the help
of Egs. (3) and (8), the second horizontal derivative of
the gravity effect and its Hilbert transform are com-
puted in each case and shown in Figs. (2) and (3). The
Discrete Hilbert Transform, H(I- Ax), is also computed
in each case using (23) and they are also shown in the
same Figures.

Using the Egs. (10), (13), (14) and (15) the parame-
ters, namely the dipd, the depth to the top h, the depth
to the bottom Z and the density contrast ¢ are evaluat-
ed and presented (Table 1).

Vertical Fault

In the case of a vertical fault also, two theoretical
models are computed using the corresponding equa-
tions and are shown in Figs. 4 and 5. The parameters
of the causative body are evaluated using the procedure
given for the vertical fault, and are presented in Table 1.

Field Examples
Dipping Fault

A profile of residual Bouger gravity anomaly (Fig.6)
across the Garber structure, Garber County, Ok-
lahoma (Grant and West, 1965) is considered for in-
terpretation. The entire profile is digitized into 64 equal
parts such that it yields a station spacing of 121 m. The
second horizontal derivative of the anomaly is com-
puted numerically, and smoothed. Using an FFT algor-
ithm the real and imaginary components of the DFT
are computed and then the DHT is computed and
plotted with the second horizontal derivative of the
anomaly (Fig.7). It is seen that these two curves in-
tersect at x, =20.0 and x,=—29. The parameters of
the causative body are evaluated and compared with
that of Grant and West (Table 2).

Vertical Fault

Gravity data collected over a fault structure near Adil-
abad (at latitude 19°42' N and longitude 78°33' E),
Andhra Pradesh, India, has been analysed (Fig.8).
From the shape of the anomaly it is assumed to be a
vertical fault. The area of investigation forms a part of
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Fig.4. Computed second horizontal gradient of the gravity
effect of the vertical fault, the Hilbert transform and the
Discrete Hilbert transform. (Model I)
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the Penganga basin of precambrian sedimentary for-
mation. [t consists of two successions of alternating
limestones and shales with basal quartzites. The stratig-
raphy sequence is as follows:

Shale?
Limestone?

Precambrian Penganga Shale
sedimentaries group Limestone
Quartzite

-Non-confirmity -

The length of the profile considered is 6.4km and
the station interval is 100m. The computed second
horizontal derivative of the anomaly and its DHT are
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Fig.6. Bouger gravity anomaly across the Garber structure,
Garber County, Oklahoma
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Table 2. Field Example (Dipping fault)

Parameters d h VA g
Hilbert transform  73.5° 327m  2816m [7.6kg/m?
method
Grant and West 50°-70° 366m 2804 16.0 kg/m?
method to to

4328m 220

Fig.7. The second horizontal gradient of the Bouger gravity
anomaly of the Garber structure and the Discrete Hilbert

Fig.8. Gravity anomaly over a vertical fault near

0.10+
" Second horizontal derivate
of the anomaly
w»—=x Discrete Hilbert transform curve

005
ol
5
- 0 h 1 1 1 1 1 1 1
‘c;: 4 8 12 16 20 28
(5 2

-0.05+

-0.10

transform. Abscissa values in units of 121 m

5.0

4.0+
I’
B 304
E

20

1.0+

0 ; ’ | 1 | Adilabad, Andhra Pradesh, India

plotted and shown (Fig.9). It is observed that these two
curves intersect at x,=7.6 and x,=—1.2. Using the
procedure detailed in the text, the results obtained are
presented in Table 3.

Discussion

In this method differentiation of g(x) with respect to x
introduces a certain amount of error, consequently the
Hilbert transform H(x) is affected. The computation of
the discrete Hilbert transform is further affected while
taking the Fourier transform and its value depends

6000 m

upon the FFT algorithm. The sampling distances and
the sampling rate used to digitize the measured poten-
tial gradients play an important role in minimising
errors. [t may be mentioned here that differentiation
may be carried out effectively and more accurately in
the frequency domain where, controlled by a dense
sampling rate, the errors may be reduced sufficiently to
obtain a reliable second derivative profile.

[t may be pointed that the amount of error in the
evaluation of parameters depends on the measurement
of the gravity field and the computation of derivatives.
We presume that an error of 0.1 units has been made
in the measurement of g(x) and the combined gradient
value can be expressed as follows:
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Table 3. Field Example (Vertical fault)

Parameters h Z o

Hilbert 214m 426 m 122.2kg/m?
transform

method

glx)=g(x)+0.1g(x).

The Fourier transform of the above relation can be
written as, :

d? d?
F)=F [+ g0} + 5 (0.1g0} |
— L1F[g"()].

Consequently, the Hilbert transform can be written as:
H(x)=H[L1F{g'(x)}]1+¢

where ¢ is a small amount of error introduced during
the computation of Hilbert transform.

Hence, it is seen that the error in calculating the dip
of the fault structure is

[LLHO)+e
a=1 [ 1g'(0) ]

Therefore, it could be concluded that when ¢—0, the
dip of the fault is affected little by errors in the
measurement and computation of the gravity field.
However, the approximation made in determining the
dip affects the subsequent evaluation of other parame-
ters.

Fig.9. The second horizontal gradient of the vertical fault
anomaly and the Discrete Hilbert transform. Abscissa values
in units of 100 m

Appendix
At x=0, the Egs. (3) and (8) reduce to,

O } 1 zZ D-sind
¢(0)=2Go smd[cosd(h—D2+ZZ)—DZ+ZZ], (A1)
1 Z D-cosd
H(0)=2Go sind |sind (- — £ . (A
0)=2Go smd[smd(h 1)2+22) D2+Z"-] (A2)
From Eqgs. (A.1) and (A.2) we have,
g(O):M-cotd—N' (A3)
H({0) M—N-cotd
Where,
1 Z
M_(E_DZ+ZZ)
and
D
N=———.
D*+Z*

For large values of Z, N approaches zero. So for many
practical purposes, Eq. A-3 can be approximated to

_g'0)
cotd—H(O).
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