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from Stacked Data
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Abstract. In exploration systems with digital data ac-
quisition the process of stacking is frequently performed
to reduce the requirement for memory space. If, as is
often the case, the observations are corrupted by a drift
then this drift is not averaged out by the stacking
process. The presence of such a drift will frequently
cause serious errors in estimation of the signal. A ro-
bust method for least squares linear estimation and
removal of the drift is presented together with an anal-
ysis of the errors involved. Examples with both syn-
thetic and field data are presented to show the im-
provement in accuracy of signal recovery achieved by
drift removal.
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Introduction

In the past few years the availability of microchips and
minicomputers has had a significant effect in explo-
ration geophysics. It has now become relatively com-
mon for exploration measurements in the field to be
computer controlled and for “on-site” data processing
to be performed. In particular computer equipment is
now being used for induced polarisation (I.P.) studies
and DC resistivity soundings. Evidently signal process-
ing cannot be applied to a true DC. However, it is
possible to use a sinusoidal current with a frequency
low enough that the Earth will respond in an entirely
resistive manner and then apply signal processing tech-
niques to the sinusoidal signal. I.P. work entails the use
of periodic square wave signals.

Typically an electrical measurement (resistivity or
I.P.) would then consist of many voltage measurements
per cycle of the input current repeated over several
cycles. A large memory (which is usually expensive)
would be required to record each of the individual
voltage measurements and to avoid this the obser-
vations are “stacked” to provide a composite or aver-
aged set of observations over a single cycle. The sim-
plest way to achieve this is to perform the voltage
measurements at regular intervals in time and to
choose this interval such that a single period of the
input current (sinusoid or square wave) is an integral
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multiple of the measurement interval. If a fast Fourier
transform (FFT) or discrete Fourier transform (DFT) is
then applied to the stacked observations the signal
frequency is precisely equal to the fundamental fre-
quency of the transform and so there is no side-lobe
leakage or phase shifting of the fundamental frequency
due to the finite record length.

Unfortunately electrical measurements are fre-
quently plagued by potential electrode drift or a drift in
telluric potentials. As will be shown, a linear drift is not
averaged out by the process of stacking many cycles
back to a single cycle of the signal and, from the point
of view of an FFT or DFT, the drift appears in the
stacked waveform as a sawtooth wave with fundamen-
tal frequency equal to the signal frequency. Con-
sequently the presence of drift can lead to grossly in-
accurate results and so it is vital to remove the drift
from the stacked waveform before performing an FFT.

In the process of stacking information is lost and it
becomes very difficult to obtain a reliable estimate of
the drift for subsequent removal. A rough estimate can
be obtained by taking the difference between the first
and last points of the stacked waveform. However, this
actually makes use of very little information and so is
subject to large amount of random error. If a simple
least squares linear regression is performed on the
stacked waveform this will lead to an incorrect estimate of
the drift. This is easily seen from the fact that a least
squares linear regression applied to one cycle of the
function (A4 cos 6+ Bsin ) will give an estimated linear
drift of (—6B/x) per cycle, when in fact none exists.

The purpose of this paper is to suggest a simple
modification to the real-time stacking process so that
relevant information is not lost, thus allowing optimal
estimation and removal of a linear drift. An analysis of
the statistical properties of this process is presented so
that a better understanding of the results can be
achieved. Finally some examples of synthetic and ac-
tual field data are presented to show how effective the
method is.

Formulation of the Problem

The signal may be considered merely as some periodic
function F(6) such that

F(0+2m)=F(0) (1)

and the measurements of F(6) are performed at n equal-
ly spaced positions per period for N consecutive per-



iods. The period number will always be indexed as i (i
=1 to N) and the position in the period as j (j=1 to n)
so that

F;=F(0;+2n(i—1))=F(0)),

2nj
0,=2, @
Evidently there will always be random noise and so
any direct measurement of F; would give an obser-
vation f;,

fu=F+e, 3)

where ¢ has expectation zero and variance of For the
present it is assumed that this variance is constant for
all i and j. We now assume that any measurement of F;,
is corrupted by a linear drift of D per period and a DC
offset C. There will also be random noise in the drift
and so any direct measurement (i.e. no signal) of D
would give an observation d,

91' P 6]'

where 0 has expectation zero and variance ¢’. Again
we assume for the present that this variance is constant.

With this model a particular observation, y;;, of the
voltage will be given by

+i-—1)+5, @)

0;
f,,+d( +1—1)+C

—f,,+d( +1—1)+C. 5)

If these observations are stacked in real time to obtain
a composite waveform over a single period the result-
ing observation is obtained by summing over i from 1
to N as

Z V=

giving the average values, y; and fj, for each stack as

Zfﬂ+—~—+ N(N—-1)d+NC, (6)

— jd
=l AN -1 d+C. (7)
These n observations y; are then the only observations
available, as the individual y;; are lost in the stacking
process, and so_the signal Fi é) must be estimated from
the n values of f; given by

fi=y;=——3(N-1)d—C. ®)

The term 4(N —1)d may be considered merely as an
additional DC offset but the drift still enters through
the term (jd/n). Hence the drift must be estimated and
removed.

Estimation and Removal of the Drift

In order to simplify the notation the subscript j will
now be dropped from double subscripts so that y,=y,,,
fi=f;; and the summation signs are for i from 1 to N
unless otherwise specified. Considering a particular
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stack j an unblased estimate for the variance in the f; is
given by s where

(N=1Dsi=2(f,~1) ©)

where f f Any drift unaccounted for will inflate this
sum and so the drift D may be estlmated as that value
of d in Eq. (8) which minimises s . Substituting from
Egs. (5) and (8) into (9) gives

(N=1)s2=3%(N>~N)d> +[(N+1)Zy,—2Ziy]d
+2(y;—y)’ (10)

where y=y,;. Differentiation with respect to d then
gives

0
(N—1) asd LN3=N)d+(N+1)Zy,—2Ziy, (11)
and so dj, the value of d for which the above differen-

tial is zero (and therefore the value of d which minim-
ises s7), is given by
L~ 2Ziy,—(N+1)2y,
GTTTHNN)
Each of the n stacks will lead to an estimate d, and so

an overall estimate, d, of D will be given by tl'jle mean
value as

(12)

S d, (13)

In summary, in order to remove a linear drift it is
necessary to accumulate for each stack j not only the
sums of the measurements, Xy, but also the sums of
the measurements multiplied by the stack number,
2iy,. These are then substituted into (12) to give n
independent estimates d of the drift per cycle, D. The
overall estimate, d, of D'is then taken as the average of
the n values d (Eq 13). This value may then be sub-
stituted for d in Eq. (8) to remove the effect of the drift.
Further, if it is known that the mean of F(f) over a
cycle is zero then, without loss of generality, C may be
chosen as that value which makes the sum of the n
values f; (corrected for drift) equal to zero.

Properties of the Drift Estimator

The estimate d is a linear combination of the obser-
vations y; and consequently it has several useful prop-
erties. Using Eqgs. (3) and (4) Eq. (5) may be rewritten
as

F+e+D( +z—1)+6+ C
=(F+0O)+Y, (14)
where Y, is merely an observation of the drift corrupted
by both the noise (d) in the drift and the noise (¢) in the

signal. Substitution of the y; values in this form into
Eq. (12) gives

;> 2ZiY,—(N+1)ZY,
7 §(N*-N)

(15)
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If we now let x;=i and recognise that

(N+1)=%Zis%2xi=2f (16)
and

LN} -N)= 22(1—5—;—1) =23(x;—x)* 17
then

~ 2(x;—X)Y, Z(Y Y)x,

dj= X(x;—X)?  X(x;—X)? (18)

Hence dj is merely the slope of a least squares linear
regression of the drift. Expansion of Eq. (15) with the
error terms ¢ and ¢ shows that the expectation of d is
D and the variance, ¢, of d is given by

O'D-:m‘(ai"}' 0'3)
12
N3_N012 (19)

where a, is the overall variance of the noise. Each of
the d is an independent estimate of D and so an
unbiased estimate for the variance o3 is given by sj,
where

%:ﬁ Y (d;—a)>. (20)
j=1

Evidently an unbiased estimate for the variance in d is
given by (s3/n).

If the errors ¢ and 6 are normally distributed then
the d are normally distributed with mean D and vari-
ance oD Furthermore the estimate s, will have a chi-
square distribution with (n—1) degrees of freedom as

1)s
u_l) x(zn b (21)
UD

2

Here the symbol “~” is te be read as “is distributed

as”.
Finally, the fact that the d; are least squares linear
regressions means the overall estimate d is fairly robust

to deviations from a truly linear drift.

Applications when F(6) is a Single Sinusoid

If F(0) is a single frequency sinusoid then

F(0;)=Acos (2 )+B (?) (22)

and A and B are given by

;F(G cos (2 j)
iF(G sn(2 j) (23)

Havmg corrected the stacked data for the drift the
values f are estimates of F(6,) and so estimates of A
and B may be obtained. In terms of understanding the
estimates so obtained it is important to investigate the
statistical properties of these estimates.

:ll\) 3

If we define &
6=D—-d (24)

then ¢ is the error in estimation of the drift and so after
correcting the stacked results for the drift there is still a
drift of 6 per cycle left. We now consider a ?articular

stack j again. In Eq. (10) the term 2(y;,— may be
expanded as

_ 1
(=3 =2y = Cn)? (25)

and so if the sum of the squares of the observations is
also kept the value of X(f,—f)? for each stack may be
determined from Eq. (10) after substituting d for d.
Using Eq. (10) in this manner it follows that

po— f 2 <
<(%{z%)‘)>=<s}>=af+s—z<N2+N)<52> (26)

where the notation {(z) indicates the expectation of z.
In the general sense of repeating the whole experlment
many times, o is a random variable and {6?) is simply
the variance of d, ie. (¢3/n). Substituting from Eq. (19)
then gives

1
(s2y= (1 +h(—N——1)) o2 27)

and so even for falrly small N and n it may be consid-
ered that (sz> o?. However, for the case of a single
experiment (the usual case), 6 is not a random variable
but a constant and so (5?>=62 From the argument
leading to Eq. (27) it 1s evident that £5(N2+ N)§? will
be small compared to ¢7 and so for a smgle experiment
it may also be considered that (siy=0}

Using the f as estimates of F(6)), estlmates a and b
for A and B are obtained as

b=% S Jsin (%) (28)

The estimate, s2, for the variance, o2, of a is given by

4 2nj
s2= Y. s?cos? (%) (29)

since (s]?/N) is the estimate of the variance in fJ Fur-
thermore

4 1o 2nj
INL g2 st 2 (¢T]
H=ai= gD, ¥ cos (=)

2
Similarly

4 2 ., (2nj
e 24in? (=2
Sh=13 j;S’ sin (n ) (31)
and

2

<S§ =6§=W0tz=0’3. (32)



The residual drift § per cycle affects the estimates a and
b so that

{ay=4A; <b>=B—%5. (33)
Consequently a is an unbiased estimate of 4 but b is
not quite an unbiased estimate of B. However, the bias
in b is small enough that in practice it may be ignored.

Invoking the central limit theorem the estimates a
and b will be normally distributed independent of the
original distributions of the noise. Consequently it is a
simple matter to obtain error limits for 4 and B.

Testing for a Non-linear Drift

If the original noise in the signal and the drift is nor-
mally distributed then the estimates s will each have
chi-square distributions with (N — 1) degrees of freedom.
The average of the n values of s? will also have a chi-
square distribution but with n( 1) degrees of free-
dom. However, it is s and s,f Wthh are calculated
rather than the average of the s? values. Consequently
it is more useful to determine the dlstrlbutlon of these
estimates. Reference is made here to s2 but because of
the equlvalence of s and s} it is immaterial whether we
use s2, sz or ¥(s? +sb)

In determmmg s; the individual values of s} are
multiplied by different factors and so the distribution of
s2 cannot be exactly chi-square. However, it will be
approximately chi-square distributed and because n(N
—1) will represent a large number of degrees of free-
dom this approximation will be very good. Hence we
can choose as the approximating chi-square distribu-
tion that which has the same mean and variance as the
statistic s2. Thus, as a very good approximation,

3 o?
2 N(N )an(N 1) (34)
Combining Egs. (19) and (21)
1267
2 t XZ .
SD (n_l)(N3__N) (n—-1) (35)

It then follows from Egs. (34) and (35) that

2 6n

s2 N2—1

where F[m,,m,] is the F distribution with m; and m,
degrees of freedom The statistic G of Eq. (36) is merely
the ratio of o} estimated from the scatter in the f
values to o} estrmated from the scatter in the individual
drift estlmates dj Evidently in practice m, must be
chosen as the integer nearest 2n(N —1)/3.

If the drift was in fact non-linear then systematic
errors due to mrsflt of the model will cause an apparent
inflation of ¢ and so, from Eq. (19), will cause an appar-
ent inflation of ¢} as estimated from scatter in the
individual drift estlmates This apparent inflation will
also appear in the s? through o7 in Eq. (26). However,
the second term of Eq (26), (N24N) (52>/12, will be
replaced by the term (Z(i—3[N +17)*67)/(N —1) where
the 6, represent the systematic errors due to misfit of
the model. Consequently the second term of Eq. (26)
would no longer be small with respect to the first term

EG~F[§n(N—1),(n~1)], (36)
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but would instead be of the same order. Hence if o7 i
estimated from the scatter in the f; values then thrs
estimate would be inflated substantrally more than the
estimate of 67 determined from scatter in the individual
drift estimates. Under these conditions the statistic G of
Eq. (36) would not have an F-distribution and we
would expect an observed value of the statistic to be
substantially greater than unity. Thus if the observed
value of G exceeds the critical value of the F-distribu-
tion then the hypothesis of a linear drift may be re-
jected.

It is important to recognise that the statistical abil-
ity to reject the hypothesis of a linear drift does not
invalidate the procedure suggested here for removal of
drift. If the random noise in an experiment is very
small then a very small amount of non-linearity in the
drift will cause rejection of the linear drift hypothesis.
Conversely, if the random noise in an experiment is
large then a moderate degree of non-linearity in the
drift will not cause rejection of the linear drift hy-
pothesis. Equation (28) for estimating A and B is mere-
ly the fundamental frequency term of a DFT applied
to the data and, as noted previously, in a stacked
waveform a linear drift contributes to the power ob-
served in this fundamental frequency. This is a con-
sequence of the stacking process and holds true for a
non-linear drift as well. Estimation and removal of the
drift as if it were a linear drift will effectively remove
most of the apparent power in the fundamental fre-
quency consequent upon stacking a non-linear drift.
However, it should be clear from the preceding argu-
ment that the estimate of the variance in the result will
be artifically inflated.

Examples of Drift Removal

Synthetic data

In order to show the effectiveness of the drift removal
process, synthetic data were generated from

i—l)

+Q ( +i— 1) + Gaussian noise (variance ¢}).(37)

0,
yi=Acos0;+Bsinf;+ C+D(§é+

Here Q is a quadratic drift per cycle to simulate a non-
linear drift and the other terms are as previously de-
fined.

In the first example A=0 and there is only a linear
drift, with the drift per cycle being twice the signal
amplitude. Figure 1 shows the estimated signal and
data both before and after estimation and removal of
the linear drift. The details of the parameters are given
in Table 1. In the second example there is still only a
linear drift (but twice that of the first example) and 4 is
now non-zero. The fits are shown in Fig.2 and the
details are given in Table 2. In both examples it may be
seen that the presence of a linear drift affects the esti-
mation of B far more than the estimation of 4, as is to
be expected from Eq. (33) with 6 replaced by D. In
neither example can the hypothesis of a linear drift be
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Fig. 1a and b. Synthetic data with a linear drift. a before and
b after estimation and removal of drift. See Table 1 for details

Table 1. Synthetic data with a linear drift. See also Fig. 1

Fig. 2a and b. Synthetic data with a linear drift. a before and
b after estimation and removal of drift. See Table 2 for details

Table 2. Synthetic data with a linear drift. See also Fig. 2

Actual Estimated parameters Actual Estimated parameters
parameters parameters
Before drift After drift Before drift After drift
removal removal removal removal
A=00 a =0.0001 a =—-—0.020 A =025 a= 0268 a =0.228
5,=0.2720 s, = 0.022 s,= 0.543 s, =0.023
B=1.0 b =0.39 b= 1028 B =1.00 b=-0.297 b =0.980
s, =027 s, = 0.022 s, = 0.544 s, =0.023
c=20 ¢ =12.03 c = 203 C=1.00 ¢ = 2105 c =0973
D=20 d = 1998 D=4.00 d =4.012
sp=0.054 sp=0.057
0=00 0 =0.00
g,=0.5 s;= 0489 a,=0.50 s, =0.518
. s,= 0490 5,=0.514
n =100 — 106 n =100
N=10 N=10 G =0.992
Notes Notes

1. s, is an estimate of g, obtained by substituting s}, for ¢} in
Eq. (19)

2. s2=1nNs? and so s, is also an estimate of g, (see Eq. 30)
3. Critical value of G at the 959% level of confidence=1.29

rejected (as expected). Both of these examples show that
the presence of a linear drift can produce serious errors
in signal estimation and that the drift removal process
suggested here is very effective in such instances.

In the third example a fairly severe quadratic drift
has been used. The fits are shown in Fig.3 and the
details are given in Table 3.

Since a stacked quadratic has even function com-
ponents the estimation of 4 is now also affected se-
riously. As expected, the hypothesis of a linear drift
may be rejected and this has some consequences which
are of interest.

First of all, the DC component, C, is incorrectly
estimated (even after removal of a least squares linear

1. 5, and s, are as defined in Table 1
2. Critical value of G at the 959 level of confidence=1.29

drift), but this is of little importance unless C is itself a
desired parameter. Secondly, the noise, s,, estimated
from s, is much larger than the estimate s,, from sp,
and both of these are much larger than the actual
noise, o,. Thus, as expected from the theory, if the
hypothesis of a linear drift can be rejected then the
calculated errors on the parameter estimates are in fact
too large. However, it may be seen from this example
that the drift removal process is very robust, the overall
amplitude of the signal being estimated to within 27
and the phase to within 0.6° (without any drift removal
the amplitude estimate is only 359 of the correct
amplitude and the estimated phase would be in error
by 39°).



Fig. 3a and b. Synthetic data with a quadratic drift. a before
and b after linear estimation and removal of drift. See Table 3
for details

Table 3. Synthetic data with a quadratic drift. See also Fig. 3
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Fig.4a and b. Field data. a before and b after linear esti-
mation and removal of drift. See Table 4 for details

Table 4. Field data. See also Fig. 4

Actual Estimated parameters Before drift removal After drift removal
parameters
Before drift After drift a=-0316mV a =-0324mV
removal removal s,= 0438 mV s,= 763V
b= 101l mV b= 179mV
A=0.25 a =0.290 a = 0265 sp= 0336 mV s, = 80.6 pV
5,=0.351 s, = 0.091 c=-0930V ¢ =—0968V
B=1.00 b =0.219 b= 1017 d = 248mvy
5,=0.351 s, = 0.091 sp= 712V
s,= 3.66mV
C=1.00 ¢ =9.304 ¢ =-3.230 s,= 541 mV
D=0.00 d = 2504 G= 218
sp=0.159
0 =025 Notes
o =0.50 s, = 1.444 1. s; and s, are as defined in Table 1
s,= 2035 2. Critical value of G at the 959 level of confidence=1.16
n =100 3. n=300 and N=30
N=10 G= 1979
Notes phase shifted and corrupted by a large drift. In both
e

1. s, and s, are as defined in Table 1

2. Critical value of G at the 959 level of confidence=1.29

3. If ¢’ +d'i is a least squares linear fit to the quadratic drift
(before stacking), then ¢'= —3.179 and d'=2.503, in excellent
agreement with the estimate from the stacked data

Field Data

It is to be expected that in the real world a truly linear
drift would be a rare phenomenon. However, as has
already been shown, the drift removal process is robust
to non-linearities and therefore provides a very useful
tool in the analysis of real data.

Figures 4 and S5 show two examples of field data
obtained using a computer controlled electrical sound-
ing system. The details are given in Tables 4 and 5. The
input signal is a very low frequency, in-phase sinusoidal
current. The recovered voltage signal is very noisy,

cases the hypothesis of a linear drift may be rejected
but the great improvement in signal recovery after drift
removal is immediately apparent.

The final example of real data is quite interesting,
the fits being shown in Fig. 6 and the details given in
Table 6. Here the noise is very small, a drift is readily
apparent and there is a distinct “kink” in the data.
Because the noise is small this “kink” appears as a
strong non-linearity in the drift and the hypothesis of a
linear drift is rejected (very strongly so in this case).
Again, the improvement in signal recovery after drift
removal is apparent.

Conclusions

A method for removal of a linear drift from stacked
data has been presented. In addition it has been shown
that the method is robust to non-linearities (because it
is a least squares fit) and thus is a useful tool in the
analysis of real data.
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Fig.5a and b. Field data. a before and b after linear esti-
mation and removal of drift. See Table 5 for details

Table 5. Field data. See also Fig. 5

Fig.6a and b. Field data. a before and b after linear esti-
mation and removal of drift. See Table 6 for details

Table 6. Field data. See also Fig. 6

Before drift removal After drift removal

Before drift removal After drift removal

a=-0429 mV a =—0456 mV a =-0.549 mV a =—-0535mV

s,= 0.688 mV s, = 622uv s,= 0.636 mV s, = 56.6 uV

b =-0575mV b= 196mV b= 802mV b= 671mV

s,= 0.628 mV 5, = 63.0puV s,= 0327mV 5, = 55.6 uvV

¢c==-207V c ==211V ¢ =-0306V ¢ =—0285V
d = 796mV d =—-412mV
sp=0.205mV sp= 740 pv
s;= 186mV s;= 0.672mV
s,= 244mV s,= 215mV
G= 172 G= 103

Notes Notes

1. s, and s, are as defined in Table 1
2. Critical value of G at the 959 level of confidence=1.17
3. =300 and N=10

The process of stacking reduces the required mem-
ory space by keeping only the sums of the obser-
vations at each stack point rather than retaining all of
the individual observations. In order to estimate and
then remove a drift the sums of (observations multi-
plied by cycle number) must also be kept at each stack
point. The drift may then be estimated using Egs. (12)
and (13) and then removed by using Eq. (8). Although
this doubles the memory required for the same number
of stack points the improvement in accuracy of signal
recovery fully justifies the process.

In order to perform a statistical analysis of the
signal estimation the sums of the squares of the obser-
vations at each stack point must also be retained.
Again this increases the memory required for a given
number of stacks and in many applications it may be
felt that this increase in memory requirement is not
justified.

Naturally it is possible to obtain a least squares

1. s, and s, are as defined in Table 1
2. Critical value of G at the 959 level of confidence=1.17
3. n=300and N=10

quadratic fit, from stacked data. However, this would
require that the sums of (observations multiplied by the
square of the cycle number) also be kept for each stack
point. Since the simpler process suggested here is ro-
bust to non-linearities the increased requirement in me-
mory size is probably not justified.

Finally, it is important to note that the statistical
analysis presented here estimates only the precision of a
particular measurement. Repeated measurements may
show that larger errors are indicated due to a non
Gaussian and/or a non stationary noise process. Above
all, it must be realised that “geological noise” (the
consequence of real geology being more complicated
than models used to describe it) cannot be estimated by
the processes described here.
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