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Introduction

Since the first investigations of the magnetic fields of
stationary current distributions, the problem of pro-
viding almost uniform artificial magnetic fields has tou-
ched many branches of physics. For different appli-
cations different solutions were found (see, for example,
the proposals of Garrett, 1967 and the review of Ser-
son, 1974). Here, the following problem is stated: How
can one generate a magnetic field which is as uniform
as possible in a long (as compared with its diameter)
cylmdrlcal volume, while the length of the field generat-
ing device cannot be much longer than that volume but
might be much broader for practical reasons?

The weak fields used in some applications, e.g. cali-
bration coils for geomagnetic micropulsation sensors,
can best be controlled if a moderate excitation current
(about one milliAmp) is allowed. For this, single-lay-
ered solenoids with equally spaced turns, of the order of
one hundred, are in use. As the axial magnetic field of a
uniformly wound solenoid decreases from the center to
the ends, the idea of increasing the winding density
towards the ends or - more generally - of choosing the
winding density as a function of distance from the
center is suggested.

In the next section, a numerical method for calcu-
lating this winding density function will be presented,
and in the last part, the result will be applied to an
arbitrarily chosen example.

The Calculation

A single-layered solenoid can be modelled by a series
of concentric circular filamentary currents which for
practical reasons (easy but precise construction) should
have equal radii and carry equal currents. Keeping in
mind the symmetry of the solenoid, we choose a cylin-
drical coordinate system with its centre at the centre of
the coil and its z-axis along the central axis.

Let a be the radius of the solenoid and 2z, its
length, and let 2N +1 current filaments be in the (gen-
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Fig. 1. On the calculation of the magnetic field at the point z
on the z-axis caused by circular currents in the planes z=z,
and z=z,

erally not equally spaced) planes z,=const. (n=
—N, ..., N). Let us consider now the (longitudinal) field
along the z-axis between the limits —z_, and z,_,,
(remarks on the off-axis field will follow later), for
which scalar notation can be used. Following Biot-
Savart’s law, a current strength I in each turn will
produce a field at the point z on the axis (SI units used)

Ia N
H(z Y [a*+(z—z,)*] 732 (1)
n= —N
Let all spatial dimensions be normalized with respect to
a and the magnetic field with respect to I/2a, and let
©,(z) be the angle between the z-axis and a straight
line from z to the filament z, (see Fig. 1), then we
obtain Eq. (1a) instead of (1):

N

Y sin?@,(z)= i H,(z). (1a)

n= —N n=—-N

H(z)=
If H denotes the arithmetic mean of the field between

the limits —z_,, and z_,, and

D(z)=H(z)—H )

the error at the point z, then the requirement for an

almost uniform field between —z,, and z,, means
finding the minimum of
| D*@)dz=zp, j D?(Zpg )L &)

—Zmax



under the condition

Zmax 1

L= | DElde=z. | Dz Odl=0 4
— Zmax -1

which is identical with taking H as the arithmetic mean

between the limits —z__ and z,..

(We should use the relative errors instead of the -
easier to handle - absolute errors, but we will see later,
that H, once chosen, will hardly be changed by the
minimization procedure.) As neither J, nor ¢J,/dz, can
be evaluated in analytical form, a numerical integration
has to be carried out. 2M +1 nodes will be chosen in
accordance with the integration formula. Let

M
Q =Zmax Z ngl%I (5)
m=—-M
be the sum of the absolute squared errors and
M
P:zmax Z ngm (6)
m=—-M

be the sum of errors, with D, =D(z .. -(,), (,.(m=
—M, ..., M) being the nodes in the interval [—1, 1]
and g, the respective weights. Writing &)=0,(z
-£,), we find

max

M
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N
g 2, Sin’@). (7)

n=—N

Minimization of @ and taking into account the sym-
metries of the problem

Z—n =_zl’l

8 _m =8&m

sin @, " =sin @™,
cos @, "= —cos@",

0Q/0z_,=—00Q/0z,

will lead to a N+ l-dimensional system of equations
(7=0,...,N)
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{(Summation index m or m has to be taken from 1 to M,
and n from —N to N.)

As the non-linear system cannot be solved directly,
we try to find a minimum by a gradient iteration pro-
cedure, 1e. we start with equally spaced loops, for ex-
ample, calculate 0Q/¢z;, and find after k steps im-

75

proved values
e+ 1) — (k) 3 k)
28+ D=z0_ . 00/02Y

(1=0,...,N; k=1,...) 9)

with a suitable k. After each step, the new values will
be stretched or compressed so that +z, keeps constant
to preserve the length of the solenoid and (nearly) the

mean field H. Furthermore, the gradient iteration pro-
cedure will guarantee to approach a minimum of Q.

A Numerical Example

Let us consider a solenoid with a length-to-diameter
ratio of 5 with 101 turns. We require an almost uni-
form field along the central 90 % of its length. Taking
1001 nodes and using the trapezoidal integration formula,
we find the residual sum of squares Q to be decreased
to 0.1% of that of equally spaced turn after 78 iter-
ations while the mean field H changed less than 5% . Fig-
ure 2 compares the relative deviation of the axial field
from the field in the center for equally spaced starting
values of z, with that after 78 iterations and after 250
iterations for one half of the cylinder (upper box). The
dashed-dotted line marks the 909 region. The (+)/(—)
signs indicate positive/negative deviation. Errors of less
then 0.19% are supressed for technical reasons: Let the
construction errors be normally distributed with a vari-
ance of (4a)? for the radial and (4z)? for the longitu-
dinal errors of the current filaments. From Egs. (1) and
(la) we get for the n-th turn

&H,/0a=(2—3sin* @,)-sin* @,.
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Fig. 2. Deviation of the axial magnetic field component from
the field in the coil's center with equally spaced turns and
with improved spacing after 78, and 250 iteration steps (upper
box). For the last case, envelope of the 0.1, 0.2%, and 0.4 %
error regions (lower box) as well as the shift magnitude of
each turn (bottom)
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Differentiation shows that the error reaches its maximal
absolute value at z=z,, decreasing to zero at |z—z,|
=ﬂ/2 and increasing again, but only to one fifth of its
maximum value before decreasing to zero when [z —z,|
reaches infinity. Therefore, in reasonable cases, the larg-
est error will be found at z,=0:

N
AZ(O) i{a [2 Y [(2—3sin?®))-sin @0]2"'1] -(10)

n=1
Similarly, we find
0H,/0z=3sin*©, cos O,

which is zero for z=z,, but increases quickly to its maxi-
mum at |z—z,|=0.5 and decreases again to zero.
Therefore, the largest error will be found at z,=0 (in
all reasonable cases)

AH(0) 34z
i

1/2
23 (sin® 0 cos 69 )] . (1)
n=1
Choosing a=10cm and 4a=A4z=0.05cm gives a total
construction error of 4 H(0)/H~0.1%.

The lower box of Fig.2 shows one half of the so-
lenoid scale-modelled, with equally spaced turns on the
the upper boundary, improved spacing on the lower,

and the amount of turn shift below. The undulation
of the latter is in accordance with the results of Mont-
gomery (1969, p. 260) for compound coils. The vertical
lines indicate the 0.1%-, 0.2%-, and 0.4 %-error limits
for an equally spaced winding, the contours mark the
error limits for the improved device, as calculated from
the tables of Hart (1967) for the z-component of the
magnetic field.
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