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Improvements to Layer Matrix Methods
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Abstract. The problem of numerical instabilities at high
frequencies is solved for the case of a source of P—SV
waves buried in a layered halfspace. The solution is to
compute the high frequency layer matrices by multipli-
cation of low frequency layer matrices. It is only re-
quired to compute the problematic exponential terms
for a small frequency increment. A normalization is ap-
plied. A new analytical solution of the layer matrix
equation is also given. This solution separates com-
pletely the treatment of the layers below and above the
source.

Key words. Haskell matrices - Delta matrices -
Numerical instabilities - Theoretical seismograms.

Introduction

Haskell layer matrix methods for the propagation of
elastic waves in layered media have a wide range of
application. However, numerical instabilities are a
problem at high frequencies for phase velocities smaller
than layer velocities. This problem requires improve-
ments. Another problem is the large amount of com-
puter time required for these methods. The Haskell
layer matrix methods are an essential part of the re-
flectivity method for the computation of theoretical
seismograms. Fuchs (1968) and Fuchs and Miiller
(1971) have developed this method. Dunkin (1965) and
Watson (1970) have contributed to improvements in ac-
curacy and speed of the Haskell layer matrix methods.
Kind (1978) has published a computer program which
was faster than earlier versions. An error in that pro-
gram for the case of transmission was corrected by
Baumgardt (1980). Abo-Zena (1979) has reformulated
the layer matrix multiplication, resulting in improved
computational accuracy. Kennett and Kerry (1979) and
Woodhouse (1981) have developed different formu-
lations of the buried source problem. Besides the re-
flectivity method, layer matrix methods are also used in
mode summation methods for the computation of
theoretical seismograms (Harvey, 1981).
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The Layered Halfspace with a Buried Source

We consider P—SV plane wave propagation in a lay-
ered halfspace with a free surface. The source, represen-
ted by a discontinuity of the displacement-stress vector,
is buried in the medium, and we are interested in the
surface displacements. A layer n is bounded above by
the interface n—1 and below by the interface n. The
displacement-stress vector T, of the interface n is re-
lated to T,_,, the corresponding vector of the interface
n—1, by the relation T,=B, - T,_,, where B, is the Has-
kell layer matrix of layer n. The displacement-stress
vectors are 4 x 1 matrices, and the Haskell matrices are
4 x 4 matrices. For a stack of layers the Haskell matrix
is simply the product of the individual Haskell layer
matrices. The displacement-stress vector is continuous
at each interface, except at the source interface m,
where we have T, =T~ +S. The plus or minus sign
denotes location of T just below or above the interface
m. S describes the displacement-stress vector of the
source. This results in T,=B-S+B- T, where k in-
dicates the lowermost boundary, and B is the product
of all Haskell matrices below the source. T,” can now
be carried to the free surface, leading to 7,7 =4 T,,
where A is the product of the Haskell layer matrices
above the source, and T,=(u,w,0,0) is the displace-
ment-stress vector of the free surface with zero stress
components, and the radial and vertical displacements
u and w. Now we have

T,=B-(A-T,+5). (1)

This is the basic equation relating the displacement-
stress vector at the free surface to that at the lowermost
boundary and to that of the source. T must be ex-
pressed by the potential coefficients for up- and
downgoing waves in the halfspace, because we want to
set these coefficients for upgoing waves equal to zero.
This means we want no source at infinity. We have T,
=E,- K,, where K, is the vector of the potential coef-
ficients and E, is a matrix relating these two vectors.
The elements of E,, of the Haskell matrices, and of the
source vector S for some sources can be found in Hark-
rider (1964). Kind (1979) gave the elements of S for a
dislocation source. For only downgoing waves we have
K=(K,, K,, K,, K,), where K, and K, are the poten-
tial coefficients for P and SV waves, respectively. Then
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we may write

K, w

K, o X

K, =E "B Y 2)
K, Z

and

w u

X w

Y =4- 0 +S. 3)
Z 0

First we solve (2) for W and X. In order to do that we
multiply (2) with the matrix F, defined by

1-1 0 0
F= .
(0 0 1- 1)
Multiplication with F means subtraction of row 2 from

row 1, and of row 4 from row 3. Using P=F-E; "B,
we obtain

()-r

P is a two row, four column matrix. The solution of
(4) for W and X is

4)

N~ > I

_(P11'P22_P12'P21)'W
=Y(P13'P22_P12'P23)+Z(P14'P2_2_P12'P24)

_(P11'P22_P12'P21)'X
:Y(P11'P23_P13'P21)+Z(P11‘P24“P14'P21)~

)

Now we recognize that the coefficients in (5) are subde-
terminants of the P matrix (Dunkin, 1965). They form a
delta matrix. A good explanation of delta matrices can
be found in Zurmiihl (1964). All possible 2 x 2 subde-
terminants of the 2 x4 P matrix form a 1 x 6 delta ma-
trix R with the following convention for the indices:

12

lm PZl

R11=P( ):Plt'sz—le'

where t=1, 2, 3, 4, 5, 6 corresponds to the pair Im=12,
13, 14, 23, 24, 34. With these definitions we obtain from
®)

Ry;W=R,, Y+R5-Z
—R,"X =R, Y+R,;-Z.

Rewriting this equation we obtain:

(x)=(c e (z)=c () ©
X c,, C,,/] \zZ z

where the elements of C follow from the previous equa-
tion. The elements of the delta matrix R are also given

by Harkrider (1970), for example. We have R, +=Ry3,
therefore C,,= — C,,. Since the delta matrix of a pro-

duct matrix is equal to the product of the individual
delta matrices, we can compute layer delta matrices
and multiply them through the layers. This procedure
is more stable numerically than the multiplication of
Haskell matrices.

Now we need to solve Eq. (3). Rewriting (3) we have

w S, u
(X)_ (SZ)_A1 (w)
Y S, u
(2)-(s2)=: ()
with the column vector S=(S,, S,, S,, S,)T and

Alz(jll le)’ Azz(j:” j32)'
21 22 41 42

(7

From (6) and (7) we obtain

camarl)-() <)

The solution of this equation leads directly to the de-
sired surface displacements. Equation (8) is a new so-
lution of Eq. (1), which separates the treatment of the
layers below and above the source completely. The so-
lution of (8) requires the computation of det(C- A,
—A,). This determinant can be computed in two dif-
ferent ways. In the first way it may be obtained from
the elements of C, 4, and A4,. Secondly it may also be
computed using delta matrices. Using the first method,
the accuracy of (8) is not better than the accuracy of
the solution by Kind (1978). The second method im-
proves the accuracy considerably.

Computing the determinant in terms of delta ma-
trices, we may define the 2 x 2 matrix

V-AI=C-A,— A, ©)
with

V_(—1 0 C,, cu)
V0 -1 ¢, C,,)

A is still the Haskell product matrix of all layers above
the source, and I is the two columns, four rows unit
matrix, containing a one in the 11 and 22 element and
zeros elsewhere. From (9) it follows that for the com-
putation of det(C-4,—A,) we may multiply the re-
duced 5x1 delta matrix of I with the reduced 5x35
delta matrix of 4 for each layer above the source. Finally
we must multiply the resulting 5x1 column vector
with the 1x5 row vector of the reduced delta matrix
derived from V. This procedure allows the direct com-
putation of the desired determinant without using the
squares of the elements of the Haskell matrix 4. The
solution of (8) still requires the computation of the first
two rows of 4. But there elements appear only linear in
(8), no squares of these elements are present anymore.
Now we summarize what matrix multiplications are
required for the solution of (8): Below the source we
need the 1 x5 row vector of the reduced product delta
matrix to obtain C. Above the source we need the 5x 1
column vector of the reduced product delta matrix to



compute the determinant in (8). And secondly we need
above the source the 4 x2 column vectors of the pro-
duct Haskell matrix. The elements of this matrix are
still in (8). Above the source appear the Haskell ele-
ments as quotients with the determinant. The appear-
ance of these quotients in (8) is very important for the
normalization. Without normalization the accuracy of
the solution of (8) is much reduced. The normalization
below the source is simple. Some care is needed above
the source, because delta and Haskell matrix elements
must be normalized there with the same constant.
Above the source a normalization is only possible if the
determinant is computed from delta matrices. The ad-
ditional computation of the required Haskell matrix
elements causes no problems.

The solution of Eq. (1) given by Harkrider (1964)
did not use delta matrices and was therefore only good
for fast phase velocities. Harkrider (1970) used delta
matrices but the stability of his second solution was
also by far not sufficient. Kind (1978) and Wang and
Herrmann (1980) found another solution, which was
more stable but still not satisfying. But the solution of
(8) is much more stable in connection with the method
described in the next section.

A Second Improvement of the Problem
of Numerical Instabilities

The Haskell matrices contain exponential factors with
the argument

P=+iw/c-r-d

with circular frequency w, imaginary unit i, layer thick-
ness d, phase velocity ¢ and the vertical wavenumber
w/c-r, where r?=c?/v?—1. The P- or S-velocity in the
layer is v. For a phase velocity larger than the layer
velocity P is imaginary and the exponential factor is
only a phase term, causing no numerical problems. For
a phase velocity smaller than the layer velocity, r is
imaginary and P is real. In this case the absolute value
of P increases with frequency, layer thickness and in-
verse phase velocity. The elements of the Haskell ma-
trices use linear combinations of the exponential func-
tions with positive and negative arguments P. The ac-
curacy limit of a digital computer is soon reached for
increasing P, when exp(P) and exp(— P) are added. The
use of delta matrices avoids unnecessary operations
with these exponentials, but it is in principle no so-
lution to the problem. We also have no fundamental
solution, but we suggest the following method, which is
a practical solution:

It is known that the numerical problems may be re-
duced by subdividing thick layers. That means we may
replace a thick layer, which causes problems, by two or
more thinner layers and multiply their layer matrices in
order to obtain the layer matrix of the thick layer. This
procedure reduces the numerical problems. The layer
thickness in the layer matrix is only contained in the
argument P of the exponential term, where it appears
as a product with the frequency. Therefore, a high fre-
quency can be treated in exactly the same manner as a
large layer thickness. That means we may obtain the
layer matrix for a high frequency by computing layer
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matrices for lower frequencies and by multiplication of
these lower frequency matrices. The sum of the lower
frequencies must be equal to the high frequency, exactly
as in the case of layer thicknesses. As a consequence we
only have to compute a layer matrix for the frequency
increment Aw, and then obtain layer matrices for
frequencies which are multiples of the frequency incre-
ment, by matrix multiplication. This method is appli-
cable for cases where layer matrices for an equidistant
set of frequencies are required. This is for example the
case for the computation of theoretical seismograms
with the reflectivity method. The computation time is
not increased with this method, if the computer pro-
gram is set up carefully, even for large numbers of
frequencies.

Now a few more details of the computation of layer
product matrices should be discussed. We have three
independent variables, which lead in the computer pro-
gram to three loops. These three variables are the slow-
ness (or the wavenumber), frequency and the layer in-
dex. Keeping in mind the method for the solution of
the numerical problems just described, we find the fol-
lowing order of the loops over the three variables
practical. First we keep the slowness fixed (this is the
outermost loop), then we keep the layer index fixed
(middle loop), and compute the layer matrices for a set
of frequencies (innermost loop). This has also the ad-
vantage that frequency independent terms may easily
be kept outside the innermost loop. A computer pro-
gram has been written using the described methods.
The program is applying the matrix multiplication in
the frequency loop (for slow phase velocities) and has
about the same speed as the complex version of the
program published by Kind (1976), but its accuracy is
much better. A speed factor of about two may be
gained by keeping the frequency independent terms out-
side the innermost frequency loop (not possible for
slow phase velocities with matrix multiplication in the
frequency loop). Almost another factor of two may be
gained on some computers, when the complex oper-
ations in the innermost loop are replaced by real and
imaginary operations. In test runs we have checked the
accuracy of the new method for frequencies up to
100 Hz, layer thicknesses up to 30 km and phase veloci-
ties smaller than 0.5 km/s and found for all these cases
no indication of numerical instabilities on our Hewlett
Packard 1000 minicomputer. The computations were
carried out in single precision mode, where the HP
1000 has six decimal digits accuracy. We have attempt-
ed to run Abo Zena’s (1979) case with a method simi-
lar to his method on a HP 1000 with no success. For
the method suggested in this paper, his case was no
problem at all for the same machine. It should be men-
tioned that Abo Zena’s method is also considerably
slower, because it does more matrix multiplications.

Conclusions

The most important result of this research is a practical
solution for the problem of numerical instabilities. The
new method computes high frequency layer matrices by
a multiplication of lower frequency matrices. This im-
plies that the method is most useful if layer matrices of
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a set of equidistant frequencies are required. The meth-
od also applies a normalization to avoid overflow. It
was attempted to apply this method without the use of
delta matrices. This attempt was not successful, so delta
matrices must be used where the results can be ex-
pressed in terms of delta matrices. The above technique
is not slower than earlier techniques and its accuracy is
much better. It is a solution for practically all frequen-
cies, layer thicknesses and phase velocities used in seis-
mology. It is clearly more accurate and also faster than
Abo Zena’s (1979) method.

As a second result a new analytical solution was
found for the case of a buried source in a layered me-
dium. This solution improves the computational speed
especially for deep sources. Applying these new meth-
ods and a number of other improvements in the pro-
gramming technique, we developed new layer matrix
programs, which are up to four times faster than our
earlier versions and much more accurate.
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