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Plate dynamics and isostasy in a dynamic system
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Earth Sciences Department, Dartmouth College, Hanover, N.H. 03755,USA . .

Abstract. A quantitative description of plate dynamics
and related upper mantle effects is given. The principal
driving force for the upper mantle convection is the
longitudinal density gradient in the upper mantle be-
tween the spreading ridge and subduction zone. The ef-
fects of plate forces, asthenospheric-lithospheric cou-
pling, lithospheric density changes, and viscosity vari-
ations as a function of depth are considered and in-
cluded in the derivations. The results are applied to a
description of the observed plate velocities, plate ve-
locity variations as a function of plate geometry, asym-
metric seafloor spreading, spreading ridge migration,
global gravity anomalies, ocean floor relief, and asym-
metric variations in ocean floor relief.
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Preface

Introduction

The purpose of this paper is to present a quantitative
description of plate dynamics and associated effects of
isostasy in a dynamic system. The principal driving
force for the upper mantle convection that is proposed is
that related to the longitudinal density gradient in the
upper mantle between the spreading ridge and the sub-
duction zone. Although such longitudinal density gra-
dient circulation is a familiar feature of other geophysi-
cal fluid dynamic problems, it has only recently been
emphasized by Rabinowicz etal. (1980) and Hewitt
et al. (1980) in their theoretical investigations and by Ir-
vine (1979), Froidevaux and Nataf (1981), Nataf et al.
(1981), and Carrigan (1982) in their experimental inves-
tigations as an explanation for plate tectonics.

Our description is restricted solely to plate dy-
namics and related upper mantle effects. It does not cov-
er possible whole mantle convection. It is also restrict-
ed to the drifting phase of plate tectonics. It is not in-
tended to apply to the beginning, or rifting, phase of
plate tectonics where the description originally given by
Pekeris (1935) may be applicable.

In this description the plates are carried along as in-
ertial elements by the convective motion in the upper
mantle between the spreading ridge and the subduction

zone. The effects of plate forces, asthenospheric-litho-
spheric coupling, and lithospheric density changes are
also considered and included in the quantitative de-
scription as well as possible depth variations of vis-
cosity in the upper mantle.

The results are applied to a description of the ob-
served plate velocities, plate velocity variations as a
function of plate geometry, asymmetric seafloor spread-
ing, spreading ridge migration, global gravity anom-
alies, ocean floor relief, and asymmetric variations in
ocean floor relief.

Defining equations and model parameters

The Navier-Stokes motion equation and the appropri-
ate continuity equations are used with the usual reduc-
tions to upper mantle motion as delineated, for exam-
ple, by McKenzie (1968) and Richter (1973). Only anal-
ytic solutions are given here. We ascribe to the premise
stated by Richter (1973) that unless simple models are
first understood, complex cases will not be interpretable
in terms of the contributions to the overall flow that
each possible source of motion provides. It is essential
to have an adequate understanding and explanation of
the various plate dynamic observables in terms of sim-

ple theory before the requisite numerical compu-

tational procedures can appropriately be made.

Again following McKenzie (1968) and Richter
(1973) as well as others, the earth model and parame-
ters chosen are summarized in Table 1. A nominal
lithospheric plate thickness of d =100km, a depth extent
for the upper mantle convection of h=600km with a
viscosity of v=3x10*'cm?s~', and a nominal upper
mantle density of p,=3.5gmcm~> are chosen. The
depth extent of the upper mantle convection is taken to
coincide both with the depth extent of the subducted
slab in the upper mantle and a corresponding depth ex-
tent of the density anomaly associated with the spread-
ing ridge region and with the depth extent of the low
viscosity region of the upper mantle. A nominal, av-
erage, density deficit of 6=0.02 gmcm™2 over the depth
extent, h, is taken for the spreading ridge region and a
corresponding density excess of the same amount for
the subducted slab. It is appreciated that there are dif-
ferences of opinion as to the depth variations of vis-
cosity in the upper mantle as discussed by McKenzie
(1966), McConnell (1968), Cathles (1975), Peltier and



Table 1. Values of mantle parameters used in calculations
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Fig. 1. a Density profiles and velocity distribution in central
portion of flow regime for longitudinal density gradient circu-
lation in an estuary. b Corresponding profiles and velocity
distribution for upper mantle circulation

Andrews (1976) and Sammis etal. (1977) as well as
others, and this is a critical parameter in the descrip-
tion of any upper mantle convection. We consider the
effects of such extended depth variations in viscosity re-
taining the same depth extent for the driving forces.

Longitudinal density gradient circulation

At the outset it is appropriate to consider some of the
characteristics of longitudinal density gradient, or
gravitational, circulation. A particular example which
has relevance to the proposed upper mantle circulation
is that of gravitational circulation in an estuary. The
longitudinal density gradient is related to the density
difference from the freshwater river end of the estuary
to the more saline waters at the ocean end of the es-
tuary, a contrast with a characteristic value of
0.02gmcm~2. The corollary to the upper mantle is
the spreading ridge region, maintained at a density def-
icit as compared with average upper mantle conditions
because of its higher temperature related to the con-
tinuing plate forming process, and the subduction zone,
maintained at a corresponding density excess because
of the continued subduction of the cooler slab into the
upper mantle. These relations are shown schematically
in Fig. 1. The length of an estuary has a characteristic
value of 10 km or more and a depth of 10m, or an as-
pect ratio of 1000:1; for the upper mantle the aspect
ratio is of the order of 10:1.

The theoretical description of gravitational circu-
lation in estuaries has been given by Rattray and Han-
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Fig. 2. Diagram of net horizontal forces across a vertical slab
for longitudinal density gradient circulation
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Fig. 3. Driving forces for upper mantle convection and litho-
spheric plate coupling

sen (1962) and Hansen and Rattray (1965) using simi-
larity solution procedures and a simplified description
applicable to the central regime of an estuary where the
longitudinal density gradient and surface slope may be
considered constant by Officer (1976). A more detailed
numerical model description of the same process has
been given by Festa and Hansen (1976). The character-
istic circulation velocity profile for the central regime of
an estuary and also for the upper mantle have been in-
cluded in Fig. 1. With the much lower eddy viscosity
coefficient values for estuarine waters, the circulation
flows have characteristic values of 10cms~!, down-es-
tuary in the upper part of the water column and up-es-
tuary in the lower part of the water column.

The physics of gravitational circulation can be
understood from a consideration of the horizontal force
balance across a vertical slab normal to the flow, as
shown in Fig.2. The driving forces for the circulation
are the longitudinal surface slope force, acting in a di-
rection from the river (spreading ridge) toward the
ocean (subduction zone) and the longitudinal density
gradient force, acting in the opposite direction. The sur-
face slope force is constant as a function of depth, and
the density gradient force increases essentially linearly
as a function of depth. The net effect, then, is that the
surface slope force will be dominant in the upper por-
tion of the water column (upper mantle), producing a
net circulation flow to the right in the diagram, and
that the density gradient force will be dominant in the
lower portion, producing a net circulation flow to the
left in the diagram within the constraints of the depth
averaged continuity relation.

For both cases there can be an additional force at
the upper surface, as shown in Fig.3. For an estuary
this is the wind stress and for the upper mantle it is the
net lithospheric plate force. If this force is in the direc-
tion of the surface slope, it will increase the circulation
velocity near the upper surface and correspondingly the



resultant lithospheric plate velocity. Without such a
surface drive, or drag, force, the lithospheric plate will
move as a passive element with the upper mantle con-
vection. With the addition of a plate force, the plate ve-
locity will be increased or decreased accordingly as the
force is a net drive or drag.

Upper mantle variations

An essential feature necessary for gravitational circu-
lation is the continued maintenance of different den-
sities at each end of the circulation regime. This is, in-
deed, the case for the upper mantle at the spreading
ridge and the subduction zone. For an assumed average
temperature excess of 140°C over a depth extent of
600km at the spreading ridge, a density deficit of
0.02gmcm~2 would result. From Minear and Toksoz
(1970) and Toksoz (1975) as well as others, an average
temperature deficit and corresponding density excess of
the same magnitude is anticipated at the subduction
zone. We have chosen an average density anomaly of ¢
=0.02gmcm™? at each end of the convection cell and
consider this value to be reasonable and, if anything,
on the low side. Ringwood (1982), for example, dis-
cusses average density anomalies in excess of this value
for the subducted slab including the combined effects of
temperature and phase changes.

As in most hypotheses of plate dynamics and upper
mantle convection, the ultimate cause for the driving
forces is presumed to be heat. Implicit in the upper man-
tle gravitational circulation discussed herein is the as-
sumption that the major heat related effects are restrict-
ed to the spreading ridge and subduction zone re-
gimes. This assumption is confirmed, at least in part, by
the results of Sclater etal. (1981) that more than 609
of the heat loss from the earth results from the creation
of oceanic plates.

Further, for gravitational circulation in the upper
mantle there will be a resultant longitudinal density
change increasing from the spreading ridge to the sub-
duction zone for a given plate. As discussed by Jordan
(1975, 1979) as well as others, such upper mantle
changes can be inferred from seismological obser-
vations. Jordan (1979) shows longer ScS travel times
from a depth of 700km to the surface of 2s under
young oceanic crust as compared with old oceanic
crust. This change is in the correct direction and order
of magnitude as would be anticipated for lower average
density, upper mantle material near a spreading ridge
as contrasted with higher density, upper mantle ma-
terial near a subduction zone with a total average den-
sity change of around 2¢=0.04 gmcm~3.

Plate dynamics

Linear approximation

The linear approximation assumes that the longitudinal
dimension, I, of the upper mantle convection is large
with respect to the vertical dimension, h. The interest,
here, is in examining the central region of the convec-
tion cell where it is reasonable to assume that the
longitudinal variation in density, p, and the upper and
lower surfaces, £, and &,, of the convection cell are lin-
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Fig. 4a+b. a Geometry for linear approximation. b Geometry
for two dimensional flow

ear with respect to the horizontal dimension, x, over
limited distances. The geometry is shown in Fig. 4. Fol-
lowing Officer (1976) the motion equation reduces to

op 0%v

= X 1
dx PoV azz ( )

under steady state conditions and with the assumption
that the upper mantle motion is sufficiently slow that
the inertial terms may be neglected with respect to the
viscous and buoyancy terms. In this equation p is the
pressure, v, the horizontal velocity, v the upper mantle
kinematic viscosity coefficient, and p, an upper mantle
reference density.

For the definition of the convective cell under the
linear approximation there are two boundary con-
ditions at the upper surface of the convection cell, one
boundary condition at the lower surface, and a con-
tinuity condition. At the outset we shall take a con-
dition of normal stress balance at the upper surface of
the convection cell, i.e., no normal stress contribution
from mass variations in the overlying lithosphere. Also,
in this first instance we shall take a condition in which
there are no plate drive or drag forces, i.e., inertial plate
motion with no tangential stress coupling to the man-
tle, or 0v,/0z=0, z=0. At the lower surface we shall
take a condition of no motion, or v, =0, z=h. For the
continuity relation we shall take ah condition that the

mantle motion is self contained, or [v, dz=0.

0
From the first boundary condition at the upper sur-
face we have

p=pgz—E)+p, )

where p, is a reference, constant normal stress or in
this case of a linear approximation, constant pressure.
We, then, have for the longitudinal pressure gradient

0¢,
X

=giz—p0gis (3)



4

where we have ignored the second order term in
£ (0p/0x) and where i(=0&,/0x is the upper surface
slope and A=0p/0x the longitudinal density gradient,
taken in this initial example to be independent of z.
Substituting Eq. (3) into Eq. (1), we have a simple or-
dinary differential equation. The second boundary con-
dition at the upper surface and the boundary condition
at the lower surface determine the two integration con-
stants and the continuity condition provides the re-
lation between the surface slope, i, and the longitu-
dinal density gradient, A, giving

Lo

32h
v, = 2z
T 48 pov

(1—9n*+8n%), i;==
8 po

where n=z/h is the scaled depth. It is to be noted that
the magnitude of v, is proportional to Ah*/v. The hori-
zontal velocity, v, ,, at the upper surface of the convec-
tion cell is then

. 1 gin?
0748 pov

(4)

©)

As another example we take the case for which
there is infinite plate resistance to the upper mantle
motion, changing the second boundary at the upper
surface to v, =0, z=0. The corresponding solution is

1 gih’
v =— g4 (4n—12n%48n?), is=1@. (6)
48 pov 2 po

The tangential stress, 7,,,, at z=0 is then a maximum,
given by

ov, 1
szozpov—a7=-1_2g)'h2 (7)

As two further examples we take extreme cases for
which there is a z dependence in the 4 term such that
0p/0x=24[1—(z/h)] and 0p/0x=2A,(z/h). The solutions
for v, corresponding to relation (4), are respectively,

1 gagh? ETUN
- 33302 4+40n® — 10n%), i = — 20"
=315 Doy (3—33n*+40n n"), i 40 pg (8)
1 gl h® o1 Agh
= 8% (1 _6n? 4 5n* S LT
7120 PoV ( ne+ S, 710 Po ®)

It is to be noted that the horizontal velocity, v, at the
surface is reduced to 0.6 and 0.4 the value given by re-
lation (4) for the two cases, as might be expected for
the corresponding reduction in the longitudinal density
gradient forcing term.

The first boundary condition at the upper surface of
the convection cell requires additional attention. For a
lithosphere in isostatic equilibrium the combined verti-
cal stresses of the mass per unit column and the litho-
spheric strength stresses related to regional isostatic
equilibrium will be the same everywhere at the depth of
the upper surface of the convection cell. The normal
stress condition of Eq. (2) remains the same. It is appre-
ciated that for time periods comparable to lithospheric
adjustment times, such as that for the Fennoscandia
uplift following deglaciation, there will be a lithospheric
loading contribution to the upper mantle motion.
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Fig. 5. Geometry of lithospheric forces

The continuity relation also requires additional at-
tention. We have assumed that the upper mantle con-
h

vection cell motion is self contained, or that |v,dz=0.

0
We could choose an alternative continuity relation that
both the plate formation and destruction are confined
to the upper mantle so that the continuity relation
h

would, then, v, d+[v,dz=0, where d is the plate

0
thickness. The results corresponding to Egs. (4) and (5)
are

1 gik? [1—9n2+8n3—125(n2—n3)]

xT48 pov 1+1.50
3446 Ak
0 A8 (10)
8+126 p,
and
1 gih’ 1
_ L 1
0748 pov [1+1.55] (11

where 0=d/h is the ratio of the lithospheric plate thick-
ness to the depth extent of the upper mantle convec-
tion. For values of d=100km and h=600 km, as given
in Table 1, v,, will be reduced by 209, over the value
given by Eq. (5). The inclusion of this continuity con-
dition has a small effect on the circulation, reducing the
circulation velocities at all depths. The dominant effect
is still that of the longitudinal density gradient.

Asthenospheric-lithospheric coupling

To this point we have considered the lithospheric plate
as a passive element, moving along with the inertial ve-
locity, v, ,, of the upper mantle convection as driven by
the longitudinal density gradient. We must also consid-
er the active effects of the drive and drag forces on the
lithospheric plate itself and the coupling of these forces
with the upper mantle convection.

From Forsyth and Uyeda (1975), Chapple and Tul-
lis (1977) and Backus etal. (1981) the principal plate
forces are the negative buoyancy drive force of the de-
scending slab, Fyp, in the subduction zone and the cor-
responding viscous resistance, Fgp, to its descent, as
shown in Fig. 5. We have included a mantle drag force,
E ., to the force balance. The slab pull force is given

zXx?

simply by
Fsp=gaVsinf=godh (12)

where V is the volume of the descending slab and ¢ the
average density contrast and where, for convenience, we
have taken the depth of descent to correspond with
that for the upper mantle convection, h. The slab resis-
tance force is taken to be proportional to the plate ve-



locity, v, q, OF
Fer=Ru,, (13)

where R is a resistance coefficient. For unaccelerated
plate motion the plate forces must balance, giving

Fsp—E = Ruv,,=0. (14)

The tangential stress condition at the upper surface
of the convection cell, then, becomes

ov F, Fsp—Ru,,
—p yox . _f — _zx_ _TSPT7x0 15
T:x0=PoV oz zx l i ( )

where [ is the plate length. From Officer (1976) the so-
lution, corresponding to Egs. (4) and (5), is

3 1h
v _L gAh (1—9n2+8n3)+—L‘—(l—4n+3n2),
T 48 pov 4 pgv
3Ah 3
= ——= Jax (16)
8 po 2 pogh
and
3 2
_lgoh +6godh 17

0T8T 4p,vI+hR

where in Eq. (17) we have substituted for ,,, from Egs.
(15) and (12) and where we have also made the substi-
tution for the linear approximation that A=0p/0x
=20/l where ¢ is the average density deficit at the
spreading ridge and the corresponding density excess at
the subduction zone over the depth interval of the up-
per mantle convection.

It is instructive to examine the values for v, in cer-
tain limiting cases for the plate forces. For R=0, v,,
=0 and the tangential stress on the lithospheric plate
from the underlying mantle convection is given by Eq.
(7). For Fyp=Fgg, the preferred condition of Forsyth
and Uyeda (1975), the plate velocity is given by

’ 1 goh®
*0724 povl

(18)

the same as that of Eq. (5). For no slab resistance, R=0
and

3 2

va__—i goh®>+6godh . (19)
24 povl

In the model used in the following sections, d =100 km
and h=600km so that the first and second terms in the
numerator of Eq. (19) are equal. The plate velocity un-
der these conditions is twice that of no net lithospheric
drive or drag force. These various velocity relations are
shown graphically in Fig. 6.

Richter (1973, 1977) and Richter and McKenzie
(1978) have invoked an alternative driving mechanism
for the upper mantle convection. They have considered
only the net driving stress, f,,, with no longitudinal
density gradient circulation in the mantle itself. In
other words, they consider the upper mantle convection
as a passive element in the asthenospheric-lithospheric
coupling and that the upper mantle convection is a re-

v, 7(17a8)(gAh3/pyv)
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Fig. 6. Graph of scaled convection current velocity,
v,/(1/48) (g Ah*/p,v), versus scaled depth, n=z/h, for various
lithospheric plate conditions

sultant effect solely of the net plate forces. Their formu-
lation is an attractive alternative; for as shown above
in Eq. (19), the plate velocity, v, ,, can have comparable
contributions from both the upper mantle, longitudinal
density gradient effects and the lithospheric plate, net
driving force effects.

It is instructive to formulate their problem in the
same terms as given above and to compare the results
obtained therewith. They considered a continuity re-
lation in the same form as that used for Egs. (10) and
(11). From Officer (1976) the complete solution includ-
ing both the longitudinal density gradient and plate
stress contributions is

1 gn? [1—9n2+8n3—125(n2—n3)]

xT48 pov 1+1.56
+1 hf, . [1—4n+3n2—65(n—n2)]
4 pov 1+1.56 :

3+45 Ah 3+65 f,,

_ Ah 20
T84 126 p, 24306 pogh (20)
and
1 gakd[ 1 1 h 1
b= b [ ]+— f”[ ] 1)
48 pov L1+1.561 4 pov L1+1.56.

The second terms in each of these three expressions
correspond to the formulation given by Richter and
McKenzie (1978).

There is a basic objection to ignoring the first terms
in Egs. (20) and (21). The longitudinal density gradient
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contribution is an integral component of the formu-
lation in addition to the plate stress contribution. It is
incorrect to ignore it a priori. A more pertinent ques-
tion would be under what conditions are the second
terms dominant over the first terms. As we have shown
in the discussion of Egs. (17) to (19), the plate stress
contribution can be comparable to the density gradient
contribution only under idealized conditions of mini-
mal slab resistance, Fgg, for the model chosen. It is to
be noted, however, that with decreasing values for the
depth extent, h, of the upper mantle convection the
plate stress term effects will increase with respect to the
density gradient term effects. In order to maintain com-
parable plate velocities, v,,, this necessarily implies a
corresponding decrease in the viscosity of the upper-
most mantle, as elaborated by Richter (1977) and Rich-
ter and McKenzie (1978).

In addition there are the following three conside-
rations which argue against the dominance of the f,,
term over the 1 term. First, as delineated by Forsyth
and Uyeda (1975) and Backus et al. (1981), the principal
plate resistance force is Fgp which would argue for the
formulation given by Eq. (18) as contrasted with Eq.
(19) where Fgp=0 and F,, is the dominant resistance
force. Second, the contribution to the slope, i, of the up-
per surface of the mantle convection from the f,, term
i1s negative to that from the A contribution. This is
understandable since as shown in Fig. 3, both the slope
and plate stress forces are in the same direction; and an
increase in f,, will have the effect of decreasing i; to
provide the necessary balance with the A term in the
opposite direction in the continuity integral. If there
were no longitudinal density gradient effect, i; would be
negative, i.e., a slope of the upper surface down in the
direction from the subduction zone toward the spread-
ing ridge. For illustration, let us presume in Eq. (16)
that =0 and we wish to have the same value for v,,
under the condition of [, =0, or simply
(1/48)(gAh*/pov)=(1/4)(hf,./pov); then, the resultant
slope, i,,, will be such that i,=—(1/3)i;, where i,
=(3/8)(4h/py). The magnitude of the two slopes are
comparable but in opposite directions. As discussed in
a following section on ocean floor relief, the oceanic
depths for plate ages greater than 70 m.y. continue to in-
crease in the direction from the spreading ridge toward
the subduction zone and can be interpreted in terms of
the i;, slope term. Third, the formulation without the
first terms in Egs. (20) and (21) would argue that there
are no appreciable changes in the upper mantle density.
As discussed previously, the available evidence would
argue that there are, indeed, longitudinal density
changes which are associated with plate geometry.

Our conclusion is that the longitudinal density gra-
dient effects are an essential constituent to the under-
standing of upper mantle convection and plate motion
and that the net stress related to asthenospheric-litho-
spheric coupling can provide an additional contribution.

Plate velocities and plate geometry

Equation (18) expresses a simple relation between plate
velocity and plate geometry, specifically that the plate
velocity, v,,, is inversely proportional to the longitu-
dinal extent, I, of the plate. It is of interest to see if this
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Fig. 7. Graph of absolute plate velocities versus the ratio of
sum of effective ridge and trench lengths to total plate area

relation, derived from a linear approximation, is applic-
able to actual plate geometries and velocities, ap-
preciating that the relation does not include the actual
plate geometry and effects between plates.

Considering b, and b, as the lateral extents of a
plate and b’ and b, as their effective ridge and trench
lengths, the quantity, o, in Eq. (18) will be scaled to ¢
=(b}, +b%) a/(b, +b,). Equation (18) may then be rewrit-
ten as

b = 1 goh® b, +b,
X048 pov A

(22)

where A=(b, +b,)1/2 is the plate area. Forsyth and
Uyeda (1975) have summarized estimates of absolute
plate velocities, effective spreading ridge and subduc-
tion zone lengths, and total plate areas. Using the val-
ues in their Table 1 we obtain the plot shown in Fig. 7.
Considering the gross assumption made above and the
uncertainties in determining the plotted data, the agree-
ment is quite reasonable and in the right sense. For
those plates with low absolute velocities of around 1-
2cmyr~ !, the ratio (b, +b%)/A is small; for those plates
with high absolute velocities of around 5-8 cmyr~?, the
ratio (b} +b))/A is larger.

It is possible to carry the analysis a step further. A
value for h can be determined using the estimates for o,
po and v of Table 1. The solid line in Fig. 7 is the linear
least square fit to all the data and the dashed line the
corresponding fit to the data with the exclusion of the
Cocos plate. From Eq. (22), h=690km for the solid
line slope and h=_870 km for the dashed line slope. The
analysis procedure is, at best, crude but it is encourag-
ing that it comes out with reasonable values for the pa-
rameter, h.

This comparison of plate velocities with plate geom-
etry is neither intended to be definitive in itself nor to
exclude correlations with other geometrical parameters.
In particular, Gordon et al. (1978) correlate plate veloc-
ities with the effective ridge and trench lengths, con-
sidering the plate driving forces to be related equally to
a ridge push and a slab pull. In our formulation these
terms are also included as the effective driving forces
for an upper mantle, gravitational circulation in the
quantity, b, + b, of Eq. (22) with the exception that we



have applied b}, to both adjoining plates. Carlson (1981)
has made a similar comparison with the inclusion of a
continental drag component. Also, Carlson et al. (1983)
have correlated plate velocities with the ages, or thick-
nesses, of the lithospheric plates at the subduction
zones using simple but reasonable expressions for the slab
pull, Fp, and slab Fgg, forces. As discussed in the pre-
vious section, our analysis indicates that these forces
can provide an additional and important contribution
to the upper mantle, gravitational circulation in deter-
mining plate velocities.

Two dimensional approximation

The formulation and solution procedures used here fol-
low along the same lines as those used previously by
Allan etal. (1967) and McKenzie (1968). The motion
equation, corresponding to Eq. (1), is

poW?iv=Vp—pg (23)

or in vorticity equation form

1
——Vpxg (24)
PoV

V20 xv)=

From the continuity equation
V-v=0 (25)

the longitudinal and vertical velocity components may
be given in terms of a scalar stream function, ¥, by

oy oy
U"_—E’ 02_6; (26)

reducing the vorticity equation to

poV 0X
It is to be noted from Egs. (24) and (27), as has been
pointed out by others, that the important variable de-
termining the upper mantle convective motion is the
horizontal density gradient.

In general, the problem resolves to the solution of a
set of coupled partial differential equations, Eq. (27)
and the thermal and chemical continuity equations
with the appropriate nonadvective and advective trans-
fer terms. It is not our intention, here, to attempt to
solve this set of coupled equations but rather to assume a
reasonable form for the longitudinal density variation,
0p/0x, in order to be able to determine the principal
dependencies for the longitudinal velocity, v,. For the
inner, or near spreading ridge, regime there will be an
accelerated horizontal flow and for the outer, or near
subduction zone, regime there will be a decelerated hor-
izontal flow with a central regime of unaccelerated
flow, as given by the linear approximation solutions of
the previous section. Consequently, we have taken as a
first approximation that the longitudinal density varia-
tion may be represented by its first Fourier component

p=—cocoskx+f(z) (28)

or

Op .
a—;—ka sinkx (29)
where ¢ is the average density deficiency in the upper
mantle at the spreading ridge and corresponding densi-
ty excess in the subduction zone and where k is a wave-
number, defined by k=mn/l, with the geometry of
Fig. 4.

Upon substituting Eq. (29) into Eq. (27) with the
corresponding form for the stream function

Y=¢(z)sinkx (30)
we obtain

a* d? k

d‘i’ 2025 ¢ tktp= 8% (31)
z4 0oV

an ordinary differential equation. The four boundary
conditions used are 1,,=0, v,=0 at z=0 and v,=0, v,
=0 at z=h. The solution for y is

ink
U= _g031—n3x [kz sinh kz+2(1 —coshkz)
2povk
Lkzcoshkz— M sinh kz] (32)
kh—sinhkh coshkh
where

L=1-2coshkh+cosh?kh
M =k?>h?>—-2coshkh+2cosh?kh—2khsinh kh. (33)

The corresponding solution for the longitudinal ve-
locity, v,,, at the upper surface is

go

Vo TR N(n)sinkx (34)

where N(n) is given by

24 sinhy —#n? —sinh?
N(p) =12 1 (35)
n—sinh# coshy

where n=kh. For y small, v, reduces to

) 1 gokh?
*0748  pyv

sin kx (36)

which is the same as the value given by Eq. (5), remem-
bering that Eq. (5) refers to the central regime where A
=0p/ox=kao.

Figure 8 is a plot of the amplitude of v, from Eq.
(34) versus plate length, I, and aspect ratio, I/h, using
the parameters of Table 1. The numerical formula for
these calculations is

U.0=230.441%> N(n)sin kx (37)

where [ is in 10°km and v,, in cmyr~!. For n small,
N(n) approaches the limiting value (1/24)n>. To first fig-
ure accuracy in v,,, this corresponds to values of
(I/h)=2.5, or to values of 1=1,500 km. Under these con-
ditions the formula (36) reduces to

Vo=8491"'sinkx. (38)
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Fig. 8. Graph of amplitude of mantle convection velocity in
cmyr~! versus longitudinal extent of convection cell, I, in km

It is to be noted that the calculated velocities are in the
observed range of plate velocities and that for the ma-
jor plates of the earth, v, , would vary inversely as .

The deformation of the upper surface of the mantle
convection cell, {,=¢,,cos kx, may be obtained from
the additional condition that the normal stress related
to the convective motion must vanish on this surface,
or

ov
[—po—p'+2p0v ] —0. (39)
Es

0z

The total pressure is given by p=p,+p’ where p,
=pogz is the hydrostatic pressure and p’ is the pressure
related to the convective motion. The quantity p’ may
be obtained from the reduced form of Eq. (24) and the
determined value of y, giving

L coshkz
kh—sinh kh coshkh

p= —g?" [sinh kz+

] coskz.  (40)

To first order terms, the result for £, is

g
=——P
o= = P @
where
2 coshn—2cosh?n+2n sinhy —n?
P(n)= , =1 42)
n—sinh# coshn
For n small, &, reduces to
30h
Cos= T8y (43)

which gives the same slope, i, for the central regime as
the second part of Eq. (4), remembering as before that 1
=0p/0x=ko in the central regime.

A plot of &, versus | and I/h using the parameters
of Table 1 is shown in Fig.9. The elevation is positive
at the spreading ridge and negative at the subduction
zone. It is to be noted that for the major plates of the
earth, the amplitude is around 1,300 m. For any given
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Fig. 9. Graph of amplitude of deformation of upper surface of
mantle convecting layer, £, in km versus longitudinal extent
of cell, [, in km

plate the regional slope, i, of this surface in the direc-
tion from the spreading ridge toward the subduction
zone is given by i;=2¢&, /1.

As an additional example we consider the case for
which the lithospheric plate is motionless, changing the
first boundary condition to v,=0, z=0. The solution
for Y is

ink
Y= —w [1 —coshkz
povk
L,(kzcoshkz—sinhkz)— M kzsinhkz
* K*h? —sinh? kh ] @

where
L, =sinhkhcoshkh—khcoshkh—sinhkh+kh,
M, =sinh? kh—khsinh kh (45)
and the solution for 1, is

go sinkx sinh®* kh+k*h?>—2khsinh kh
Texo =" p (46)

sinh? kh—k?h?

which reduces to Eq. (7) for # large.

Horizontal lithospheric density change effects

Hales (1969), Jacoby (1970, 1978), Lister (1975), Hager
(1978), and Hager and O’Connell (1981) as well as
others have considered a driving related to lithospheric
plate gravitational sliding or density change effects, a
ridge push force. In particular, Hager and O’Connell’s
concern was with the density contrasts which result
from cooling and thickening of the upper thermal
boundary layer, or lithosphere, as it moves away from
the spreading ridge. They used the observed plate veloc-
ities to calculate the shear stresses through a numeri-
cal computational procedure. It seemed instructive to
rephrase their problem in the same terms as the so-
lutions of the preceding two sections and to determine
the relative importance of the lithospheric, longitudinal
density changes vis-a-vis the mantle density gradient.



They chose to approximate the increase in thickness
of lithosphere of essentially constant density by a
lithosphere of constant thickness and corresponding in-
crease in density. Following their model, as shown in
Fig. 10, the plate force balance for an incremental
length, 4x, will consist of the difference in the depth in-
tegrated forces normal to the two vertical faces of the
plates and the tangential mantle drag force. For the lin-
ear approximation the integrated normal to the faces
will be the integrated pressures, or

0 0
[ pogzdz— |
—d

—d+¢&s

0
(po +£Ax) gzdz 47)

which gives for the force balance, to first order terms,

pogid—3gid*—f, =0. (48)
For comparison with the linear approximation solution
of Eq. (4), the stress boundary condition at the upper
surface of the mantle convection cell will now be

ov, . 1
zx— PoV aZ _'fzxz_poglsd_'_igldz' (49)
Following the same solution procedures as before, we
obtain

gAd?h? .
_ BN 4ny3nd), =
= pov@h6d) LTI

Ad 4h+3d

p 4h+6d’ (59)

The comparison for the plate velocities in the two
cases is

1 Ad*h?
Do=5 — (51)
2 pov(4h+64d)
and
1 ghih?
- 2
UXO 48 pov (5 )

from Egs. (50) and (4). The value for A in the two cases
will be about the same; Hager and O’Connell (1981)
chose a value of 1=0.0665/] for extended plate lengths
and from Table 1 we have used a value of A=2g/l
=0.04/l. For values of d=100km and h=600km, the
ratio between the two v, values will be 0.6/45=139%;.
In other words, the lithospheric density changes are a
minor contribution to the plate motions as contrasted
with the presumed upper mantle density contrast from
spreading ridge to subduction zone. This is not an un-
expected result as the lithospheric driving force is ac-
tive over a depth interval of d=100km as contrasted
with the upper mantle driving force which is active
over a depth interval of h=600 km.

Hager and O’Connell (1981) also considered the
condition for which there is a finite viscosity, v,, for the
lithosphere with the same lithospheric driving force as
discussed in the previous paragraphs. With reference to
the geometry of Fig. 11 and Egs. (1) and (3), the defin-
ing equation for plate motion in the linear approxima-
tion is

2
Po"xdd%l= —pogis+84z (53)

0p/0x

X

zy
Fig. 10. Geometry for lithospheric density changes as driving
force for plate motion and upper mantle convection
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Fig. 11. Geometry for plate and upper mantle convection
with lithospheric driving force

and that for the upper mantle is

d*v, )
Ovﬁz—pog15+gld. (54)

Corresponding to the solution of Eq. (4), the boundary
conditions are 7,,,=0, z=0; 1,,,=1,,, U,,=0,, z=d;
v,=0, z=h and the continuity condition is the same as
before. The solution for v, is

1 gih?
b0 =gg ooy FBAN) (55)

where F(f,d, h) is given as

F(B,d,h)
_6d>(h—d)* + pd>(h—d) (16h* —17dh+7d*)+ p2d°
WH =&+ pdd)

and where f is the ratio of the two viscosities, defined
as f=v/v,. For a rigid plate, =0 and for a plate and
upper mantle of the same viscosity, f=1.

Taking d=100km and from the geometry of
Fig. 11, h=700 km, F =0.0663 at f=0 and F=0.1004 at
p=1. Comparing with results of Eq. (52) where h
=600km, the ratio between the v,, values will be
0.0663 (73/6 )=119% for f=0 and 01004 (73/6%)=16%
for f=1. Again, the lithospheric driving force contri-
bution for plate motion is small compared with that for
an upper mantle flow.

(56)

Extended upper mantle convection

In the previous derivations the upper mantle convec-
tion has been taken to be limited to the depth interval
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from z=0 to z=h where h is determined from a com-
bination of both an assumed zone of lower viscosity, v,
and a limited extent of plate associated driving forces
at the spreading ridge and subduction zone. It is of in-
terest to examine what effects may be anticipated for
an extended zone, h,, of finite viscosity, v,, in the lower
mantle with the same depth extent, h, for the driving
forces.

The one dimensional solution to this problem has
been given in the previous section. With reference to
Fig. 11, we make the following notational changes, v,
=v, v=v,,d=h and h=h,. From Egs. (55) and (56) we,
then, have

. 1 gan’
*0748 pov

F(ﬂ,h,hz) (57)

where F(f,h,h,) is now given by
F(B) hahZ)

_6(hy,—h)*+ Bh(h, —h)(16h3 —17hh, + Th*)+ B> h*
B Bh(h3 —h*+ Bh3)

(58)

and where f=v,/v. The result is the same as that given
by Eq. (5) multiplied by the quantity, F.

The anticipated values of viscosity for the lower man-
tle are such that f may range from §=1,000 to §=10.
For h=600km, as before, and h,=1,200 km, for exam-
ple, F=1.0, 1.3, 2.8 for f=1,000, 100, 10, respectively.
The effect of extended upper mantle convection can be
important for small values of § and can lead to an in-
crease in the value of v, by a factor of two or more.

Horizontal heating effects

Allan etal. (1967) considered upper mantle convection
driven by a horizontal temperature gradient imposed at
the top of the convection cell. They concluded that mod-
est temperature differences along the upper surface of
the cell were sufficient to produce upper mantle veloci-
ties of the order of 1 cmyr~!. In the derivation they as-
sumed that the nonadvective, or conductivity, heat
transfer terms were dominant over the advective heat
transfer terms. It is instructive to extend their deri-
vations using the perturbation procedure .of Babcock
(1930).
The defining equations are

_ag 0T

vy (59)
v 0x

and

kV*T=v-VT (60)

where the horizontal temperature and density gradients
are related by

0p oT
L= —apon (61)

and where « is the thermal diffusivity and o the volume
coefficient of expansion. The perturbation solutions
take the form

T=Ty+aT,+o*T,+...,
Y=y +oly,+... (62)

in terms of the small quantity a. The solutions are giv-
en sequentially to the equations

72T, =0 (63)
for terms in o°,
0T,
ity =28 20 (64)
v 0x
and
dT, 0y, OT, 0y
27 (2071, 770 TV
akV Tl—oc( 3x o2 + P 8x> (65)
for terms in !, and
29 9T,
o2pty, =28 001 (66)
v 0x

for terms in .

Following Allan etal. (1967), we take an imposed
temperature T=0coskx at z=0 and T=0 at z=h and
the same boundary conditions for  as in the solution
for Eq. (32). The T, solution is simply

sinh k(h—z)
0= W oskx (67)
or for large values of n=kh
Ty=6(1—n)coskx (68)

where n=z/h is the scaled depth. Sequentially, the so-
lutions for ,, T, and y, are

gkOh* s . .
- _ - —2n’ k
I/ 40, (3n—11n>+10n n>)sinkx, (69)
gk?0?h?
Tl=m(2.6n—21n2+14n3+38.5n4—58.1n5
+28n®—4n")
gk?0?h® 2 4 s
2 (—4.78n+6.3n*—11.55 13.23
T 0t6vk (T8 F6In noRien
—5.6n°+2.4n")cos2kx (70)
g2k392h9 3 ; 6
== (1892n—-17.1 —398n°+1.75
/R 100800v2k(189 n 6n n>+1.75n
—0.69n%4+0.44n° —0.11n*°+0.3n'?)
-sin2kx (71)
The value for v, will, then, be
agkOh® o?g2k30%h® |
Ux(): 80y lnkx—m—SIHka+.... (72)

The ratio, y, of the two Fourier components is

_agk?Oh’

73
67vk (73)



It is to be noted that the ratio, y, is in the form of a
Rayleigh number. Similar ratios with different numeri-
cal coefficient values hold for the succeeding terms. If
the first term for v, is to be dominant, ie., a single cell
convection over the length I, y should be small. Taking
as an extreme example that y=1, 8=0.6°C for repre-
sentative value of a=4x1075, g=103% v=3 x 102!, and
k=1x10"% in CGS units and for [=3,000km and h
=600 km. The corresponding values for the coefficients
in Eq. (72) are, then, 0.01 cmyr—!.

The result is not unexpected. It merely shows that a
solution in terms of conductivity heat transfer or per-
turbations thereto is inadequate to a description of the
observed plate motions. The advective heat transfer
terms are dominant over the conductivity transfer
terms. For an imposed thermal condition at the upper,
or lower, surface of the convection cell, the system pa-
rameters will lead to degradation of an original, and
slower velocity, large aspect ratio cell to smaller scale
cells. The results are shown in a more definitive manner
from the numerical model results of McKenzie et al
(1974) for the mantle and of Beardsley and Festa (1972)
for a similar geophysical fluid dynamic problem.

Adjoining plate motions and asymmetric spreading

There is a corollary to the relation of Eq. (22) that v,
varies as (b} +b%)/(b;+b,)l. Consider two adjoining
plates with a significant difference in their longitudinal
extents, [. As discussed by Morgan (1971) for a different
hypothesized plate driving force, the ridge forming ba-
salts would rise passively to fill the void created as the
plate are pulled apart. It would be anticipated that
plate accretion would occur symmetrically for both
plates under such passive conditions whether the plate
velocities, v, and v,, with respect to the upper mantle
convection cell are the same or are different and that
the magnetic patterns would retain a corresponding
symmetry, as indeed is the general case. As shown in
Fig. 12, the spreading rates with respect to the spread-
ing ridge will be equal and will be given by (v, +v,)/2.
In order for their velocities to be v, and v, with respect
to the upper mantle convection cells, a necessary impli-
cation is that the spreading ridge, itself, must move
with a velocity (v, —v,)/2 in the direction of the smaller
plate. If there is no change in the location of the sub-
duction zone relative to the spreading ridge, there will
be a tendency for the smaller plate to become smaller
and eventually disappear and for the larger plate to be-
come larger.

There is a further corollary to the above paragraph,
which relates to asymmetric seafloor spreading. Hayes
(1976) argues that if one accepts the basic premise of
Morgan (1971) that the minimum strength of the litho-
sphere is determined along the line of maximum tem-
peratures within a narrow injection zone, then it fol-
lows that an observation of asymmetric growth requires
the locus of accretion to be displaced from the median
position by some process which provides a lateral
asymmetric temperature profile. From Fig. 12 it can be
seen that the projected migrating spreading ridge will
provide such a temperature asymmetry with the tem-
perature on the larger plate side of the injection zone
being higher than that on the smaller plate side. It
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Fig. 12. Schematic representation of spreading and velocity
relations for a smaller plate (1) adjacent to a larger plate (2)

would, then, be anticipated that with respect to the
spreading ridge, itself, there would be a faster spreading
rate on the smaller plate side than on the larger plate
side. Further, it would be anticipated that the heat flow
would also show a corresponding asymmetry with high-
er heat flows near the spreading ridge on the larger
plate side than on the smaller plate side.

This corollary can be tested by examining the
geophysical measurements across a spreading ridge
bounded by a plate of smaller | or larger (b} +b3)/(b,
+b,) values on one side as compared with a plate of
larger [ or smaller (b} +b%)/(b, +b,) values on the other
side. Weissel and Hayes (1971) and Hayes (1976) ob-
served asymmetric spreading rates across the Southeast
Indian ridge of up to 309 over periods of 30 m.y. with
the Indian plate of smaller I and larger (b’ +b3})/(b,
+b,) values spreading at a faster rate as compared
with the Antarctic plate. Rea (1978, 1981) has summa-
rized various investigations for the East Pacific rise
bounded to the east by the Nazca plate of smaller [ val-
ue and to the west by the Pacific plate. The findings are
that (1) the east flank of the rise has been spreading at
a rate of 9.2cmyr~! as compared with 7.0 cmyr~! for
the west flank over the past 2.4 m.y., (2) there have been
a series of spreading ridge offsets to the east of 10-
15km occurring over periods of 0.5 m.y. or less, and (3)
the average heat flows within 300 km of the ridge axis
are 2.5+ 1.8 ucalem~?s~! on the west flank as com-
pared with 1.74+0.8 pcalcm~2s~! on the east flank. All
three findings are in accordance with the formulation
given in the previous paragraph. These two regions
were selected because of the definitive investigations for
each. It is possible that other regions may not show the
same dependency.

Isostasy in a dynamic system

Introduction

The consideration of isostasy, in general, and gravity
anomalies, in particular, for an earth system consisting
of convective motion in the upper mantle requires ad-
ditional attention beyond the concepts associated with
a static earth.
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The reference surface at depth for lithospheric iso-
static equilibrium is no longer a horizontal, or equipo-
tential, surface normal to the gravity vector, g, but rath-
er a surface for which the normal stress is constant. For
upper mantle convection this is the surface, £, dis-
cussed in the previous sections. Consideration, then, of
ocean floor relief changes related to cooling of a litho-
spheric plate in isostatic balance must be made with
reference to the surface, £, rather than to the horizontal.
This important condition was stated by Turcotte and
Oxburgh (1972) and Schubert and Turcotte (1972).

For calculations of the gravity anomalies related to
the elevation changes in the upper surface, £, and the
longitudinal density changes within the convecting
layer, consideration must also be given to the shape of
the lower surface, £,, as well. If there is no motion in
the lower mantle, then the normal stress must be con-
stant along the surface, &,. Otherwise, there would be a
longitudinal stress difference which would produce mo-
tion in the lower mantle. This normal stress condition
at the lower boundary is the counterpart of the normal
stress condition at the upper surface. Although it does
not affect the motion in the upper mantle, it is neces-
sary for the definition of the condition of the lower man-
tle. This important condition was brought forward by
De Bremaecker (1976). McKenzie (1977) objected to the
De Bremaecker formulation in that it added a third and
overdetermined boundary condition for the system; the
McKenzie objection is valid only under the assumption
that the lower surface of the upper mantle convection is
constrained to be horizontal.

Gravity anomalies

For the linear approximation of the previous sections
and under the assumption of no motion in the lower
mantle, the lower surface, &,, of the upper mantle con-
vection can be determined. From Egs. (2) and (3), we
have at z=¢,.

0

p . .
a=glh_Pogls+Pog’b:0 (74)

or, using the relation between i, and 1 of Eq. (4)

i__éﬁ 75
b 8p0' ( )

The slope of the lower surface is in the opposite direc-
tion to that of the upper surface.

The gravity anomalies related to the longitudinal
density variations within the upper mantle convecting
layer and the distortions of the upper and lower sur-
faces of the layer can be determined from the usual grav-
ity anomaly integral. To first order terms in &, ¢, and
A, we have for the convecting layer gravity anomaly, g’,

'z z
=7 [ G dVotip, | S5av (76)
Vo v T

where V, is the undistorted volume of the convecting
layer, V' the distortion volumes at the upper and lower
surfaces, p' the longitudinal density anomaly, y the
gravitational constant, and where r?=(x,—x)*+)?
+z%, as shown in Fig. 13. For the first integral we have
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Fig. 13. Geometry for gravity anomaly calculations

h+d 3] Ax
1

g, =2y £ zydz, |

it SR [V
R o x,=2nylhx (77)

and for the portion of the second integral related to the
upper surface, &,

00 d d+igxy

8= —27p0 Jmmdxl g dz,
==21yp,i.x (78)

and correspondingly

8:, =2mypolpX (79)

for the portion of the second integral related to the
lower surface &,. From Eqgs. (4) and (75), the gravity
anomaly gradient is given by

og’

3= 2m)(h = pois+ poiy) =0. (80)

In other words, in the central regime there are no grav-
ity anomalies related to the upper mantle convection
itself. This conclusion stems directly from the condition
(75). Were this condition relaxed and a horizontal sur-
face taken for the lower surface of the convecting layer,
there would be a substantial gravity anomaly gradient
given by 0g'/0x=5nyAih/4.

For the two dimensional approximation of the pre-
vious section, the lower surface, £,=¢,, cos kx, may be
determined in the same manner as given by relations
(39) through (42), from which we obtain

g

where

2 cosh—2 cosh? n+# sinh
0l =="" =

n—sinh# coshy

(82)

The convecting layer gravity anomalies may also be
determined in the same manner as relations (76)
through (79), from which we obtain

g =21 [Py +QUr) e —(1—e )] e M coskx  (83)
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where in the integral (77), Ax, is replaced by —o coskx
and where in the integral (78), the limit d+i,x, is re-
placed by d+¢&,,coskx. The first two terms in the
brackets represent the gravity anomaly effects related to
the elevation changes at the upper and lower surfaces
of the upper mantle convection cell, and the third term
in the brackets represents the gravity anomaly effect re-
lated to the density changes along the cell.

Following McKenzie (1968), the same relation for
the convection cell gravity anomaly may also be de-
rived from Poisson’s equation

V:U=4nyp,
=0, outside layer. (84)

inside layer,

Substituting U=U,+U'=U,+0(z)coskx and p=p,
+p'=p,—ocoskx into Egs. (84), solutions are ob-
tained for U, and U’ under the boundary conditions
that U and V' U are continuous at the upper and lower
surfaces of the cell. To first order terms in &, &,, and
o, the result for g'=—0U/0z at sea level is the same as
that given by Eq. (83).

Figure 14 is a plot of the amplitude, g, for the grav-
ity anomaly of Eq. (83) versus plate length, [, and as-
pect ratio, I/h, using the parameters of Table 1. For g
positive, the upper mantle convection cell gravity anom-
aly will be positive over the spreading ridge and
negative over the subduction zone. From Fig. 14 it is
seen that for most plates gj, is negative with a value of
around — 10 mgal. The density gradient effect is domi-
nant over the surface distortion effects, and the gravity
anomaly related to the convection cell, only, is predict-
ed to be negative over the spreading ridge and positive
over the subduction zone. It is important to note that
these calculations do not include the gravity anomaly
effects related to the plate, particularly those that might
be anticipated at both the spreading ridge and subduc-
tion zone®.

Also included on Fig. 14 is a plot of the amplitude
of the gravity anomaly that would be expected if the

I Much of what has been given here is covered in greater de-
tail and generality in a recent paper by Parsons and Daly
(1983)

lower boundary of the upper mantle convection cell
were horizontal rather than determined by a condition
of no motion in the lower mantle. The resultant gravity
anomalies would be very large with magnitudes of
around — 200 mgal and easily observable. Anomalies of
this magnitude are not found and support the notion
that any motion in the lower mantle is probably small
in comparison with the upper mantle motion.

The gravity anomalies of Eq. (83) and Fig. 14 relate
only to the upper mantle convection cell. They do not
have any obvious or direct correlation with the global
gravity anomaly pattern of, say, Williamson and Ga-
poschkin (1973). The association of broad positive anom-
alies with the subduction zones has been discussed by a
number of investigators including Minear and Toksoz
(1970), Oxburgh and Turcotte (1970), Griggs (1972),
Watts and Talwani (1975), McAdoo (1981) and Chap-
man and Talwani (1982) using a variety of regional
compensation forms for the plate and upper mantle.
Chase and McNutt (1982) have shown that only a
small part of the geoid anomaly pattern can be ex-
plained by the effects of compensated continental and
oceanic topography. We suggest that a substantial por-
tion of the remaining gravity anomalies are related to
time dependent variations in the upper mantle convec-
tive cell properties and lithospheric plate forces which
will result in unbalanced but time dependent vertical
stresses. In other words, the global gravity anomaly pat-
tern is time dependent with time scales related to the
reaction time of the lithosphere to unbalanced vertical
stresses, as exemplified by the glacial rebound following
the melting of the Fennoscandia and Laurentide ice
sheets. That such vertical intraplate movements do oc-
cur is shown by the investigation of Officer and Drake
(1982) in which rates of uplift and subsidence of 0.1-
0.5cmyr~—! were determined along a 3,000 km extent of
the East Coast continental margin from Nova Scotia to
Florida over the past 18,000 yr.

Ocean floor relief

The variations in ocean floor relief, D(t), away from a
spreading ridge as a function of age, t, may be repre-
sented by a relation of the form
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where D'(¢) is the depth variation related to the change
in elevation of the reference upper mantle convection
cell, &, on which the normal stress is constant and
D”(t) is the depth variation related to cooling of the
lithospheric plate.

The change in elevation of the upper surface of the
convection cell is given by relations (41) and (42), and a
plot of its amplitude as a function of plate longitudinal
extent using the parameters of Table 1 has been given
in Fig.9. The regional slope of this surface will be
—2¢&,,/l. As contrasted with the depth changes related
to cooling effects, the elevation changes related to the
upper mantle convection cell are distance rather than
time dependent. However, it is convenient for compari-
son purposes to cast D’ in terms of ¢ rather than x. We
may, then, represent D'(t) by

D'(t):Dﬁ@x:DﬁMt

where {,,=—{,, and D, is a reference base level. The
quantity, vcosf, is a velocity parameter determined
from the relation dx/dt=v cos 6 where x is the distance
from the observation location to the present spreading
ridge in the direction of [, ¢t the age at the observation
location, and 6 the angle between the plate velocity, v,
and L.

At the outset it is instructive to ascertain what or-
der of magnitude the regional slope may have. For a
nominal longitudinal extent of a plate of /=6,000km
and a value of {,,=1,300 km from Fig.9, the slope will
be 430 m/1,000km. It is to be noted from Fig. 13 of
Parsons and Sclater (1977) that this is, indeed, the same
order as the depth changes in the North Pacific and
North Atlantic for ages greater than t=70m.y. It
would appear that ocean depth changes for t <70 m.y.
are dominated by the plate cooling effects and that the
depth changes for t>70 m.y. are dominated by the ele-
vation changes of the upper surface of the mantle con-
vection cell.

(86)

The plate cooling model of Sclater and Francheteau
(1970) and Parsons and Sclater (1977) is used for the
representation of D”(t), from which we have
— D//(t) — E”(t)

_4apydT, 1 .
(Po—pWT* m=o @m+1)?

n2Kt
2

—(2m+1)2
(2m+ 1) —

(87)

where p, is the plate density, p,, the seawater density, d
the plate thickness, 7T, the temperature along the ridge
axis at t=0 and along the base of the lithospheric
plate, x the thermal diffusivity, and o the thermal coef-
ficient of expansion and where the summation is taken
over a finite number of terms, M, for the rapidly con-
vergent series. For t small, the original expression of
Parsons and Sclater (1977) reduces to

E"(¢¥) 4
UM 8

and for ¢t large, to

EO_S (89)

E0) 7

where E"(0)=ap,dT,/2(p,—p,) and t=n’kt/d* It is
instructive to examine over what ranges of t the two
approximations are valid. This is given in Fig. 15. It is
seen that the first term approximation, Eq. (89), is valid
for 7>0.2. From our final results this corresponds to
t>6m.y.

We have followed the same general data analysis
procedure as Parsons and Sclater (1977) but with the
formulation of Eq. (85) and have used the depth vari-
ations for the North Pacific and North Atlantic given
in their Fig. 13. We look for a best fit to an equation of
the form

M 1
D(ty=A+at—B )

e ©0)
m=0



By successive approximations, initial values for 4 and a
were first determined from the linear slope of the D(t)
values for t>70m.y. separately for the North Pacific
and North Atlantic data. Then, initial values for B and
b were determined from a semilogarithmic plot of A
+at—D(t) versus t jointly for the two sets of data.
Next, the 4 and a values were corrected for the slope
given by the B and b term for t>70m.y. And, finally,
new values for B and b were determined from the cor-
rected semilogarithmic plot. For the North Pacific the
final result is given by

D(t)=5,300+5.11¢ — 2,600

M 1

',EO om+17 ¢

_@2m+1)2t

29.8 91)

and for the North Atlantic by
D(t)=5,300+4.71¢t—2,600

M 1

',EO em+1)2 ¢

_(2m+1)%t

29.8 . (92)

The resultant fits to the data are shown in Figs. 16 and
17. The heavy curves on the figures are from Egs. (91)
and (92) and the light lines from the first two terms of
these expressions, or the upper mantle elevation
change. It is also to be noted that the reference depths,
A, come out to be the same for the North Pacific and
North Atlantic, as might be expected.

We may also investigate the variation in heat flow,
q(t), as a function of age. From McKenzie (1967) and
Parsons and Sclater (1977), we have

k T N 2Tt
q(t)= ”d 1 [1+2 Y e a ] 93)
n=1
where k, is the thermal conductivity and where the

summation is taken over a finite number of terms, N,
for the slowly convergent series, valid except near t=0.
For t small, the original expressions of Parsons and
Sclater (1977) reduce to

q(t) _n'”
e .

and for t large, to

ﬂ=1+2e—* (95)
q(00)

where g(oo)=k, T, /d. Figure 18 is a plot of these three
expressions versus 7. It is seen that the first term ap-
proximation, Eq. (95), is valid for t>0.8. From our fi-
nal results this corresponds to t>24 m.y.

The heat flow data given in Table 1 of Sclater et al.
(1980) was used for comparison purposes. The g(o0)
value was determined from the heat flow data for
t>100 m.y. with the small correction given by Eq. (95)
and the value of 7 from Egs. (91) and (92). The final re-
sult is given by

N n2t
4(0)=117 [1+2 5 e—m]. 96)

n=1
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Fig. 16. Plot of mean depth measurements and standard de-
viation versus age for the North Pacific. Data from Parsons
and Sclater (1977). Heavy curve, Eq. (91) and light line, the
first two terms of the equation
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Fig. 17. Plot of mean depth measurements and standard de-
viation versus age for the North Atlantic. Data from Parsons
and Sclater (1977). Heavy curve, Eq. (92) and light line, the
first two terms of the equation
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Fig. 18. Graph of ¢(t)/g(o0) versus t from Egs. (93), heavy
curve; (94), light dashed curve and heavy curve; and (95), light
curve and heavy curve

The resultant fit to the data is shown in Fig. 19. As dis-
cussed by Sclater et al. (1980) as well as others, the de-
parture for t <50 m.y. may be due to hydrothermal cir-
culation effects.

Further, we have followed the same procedure as
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Parsons and Sclater (1977) for determining values of d,
T, and o. We use their given values of p,=3.33, P
=10, ¢,=028, and k, —75><10 * all in CGS units
from which =k »/PoC, 1s also given. Successively, d is
determined from the b value T, from the g(o0) value
and o« from the B value. We obtain d=86km, T,
=1,350°C and a=3.85x10"". All are reasonable val-
ues. The principal difference between our analysis and
theirs, which does not include the mantle elevation
changes, is in the time constant for the exponential.
They obtained a value of 62.8 m.y.”* as compared with
our value of 29.8 m.y.~*. This, in turn, leads to the dif-
ferences in their values of d=125km and g(0)
=0.8 pcalcm~2?s~' as compared with our values of
86km and 1.17 ucalcm~?s~!. In passing, we also note
that their result of g(t)=11.3t='/? for the approxima-
tion (94) is the same with our values.

Finally, we have calculated a value for the parame-
ter, v, from the relation, b=2{, v cos /I, of Eq. (86). It
is appreciated that the value of (,,=1,300m from
Fig. 9 applies only to the simplified derivations of the
previous sections and is not directly applicable to ac-
tual lithospheric plates of more complex geometry and
with varying lengths of bounding spreading ridge and
subduction zone. Nevertheless, we do anticipate that, as
with the plate velocities of Fig. 8, the values determined
for v will be of the same order of magnitude as actually
occur. The b values for the North Pacific and North
Atlantic are 5.1140.78 and 4.71 £0.43 mm.y.~!. Taking
nominal plate extents, I, of 13,000 km for the North Pa-
cific and 8,000 km for the North Atlantic and a value
of 8=60° for t>70m.y. for the North Pacific, the time
extent over which the b parameter was calculated, v is
5.1 and 1.5cmyr~*, respectively. These values are in rea-
sonable agreement with the present spreading rates
but are somewhat too low for the expected time av-
erage values for v.

There is a corollary to the ocean floor relief relation

2{yvcosl  4dap,dT
D(t)= Do+ =0 = - ’_)_Op ;
M @ l)zn:t
—(2m+
g‘ 2m+1 7

which provides an interesting test as to its general va-
lidity. The upper mantle elevation term varies inversely
as a function of I and directly as a function of v. In par-
ticular, for two plates adjacent to a spreading ridge for
which there is a significant difference in the longitu-
dinal extents, I, it is anticipated that the ocean floor re-
lief plotted as a function of t, or x, will show greater
depths on the smaller plate than on the larger plate at
the same values of ¢t with a linear variation in the dif-
ference as a function of distance away from the spread-
ing ridge. For the examples cited in the following two
paragraphs there is also a change in the v value for the
two plates of up to 309, However, the dominant
change is in the values for I. We may, then, represent
AD'(t) by

2C05(lz_l1)x_250s(12“ll)l’t

AD'(t)= -
O=""11, L,

(98)

where 0=0.
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Fig. 19. Plot of mean heat flow measurements and standard
deviation versus age for the North Pacific and North Atlan-
tic. Data from Sclater etal. (1980); ® - North Pacific and o -
North Atlantic. Curve from Eq. (96)
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Fig. 20. Plot of depth to basement versus age across the
Southeast Indian ridge from Hayes (1976). Indian plate to the
north and Antarctic plate to the south

Hayes (1976) discusses the ocean floor relief vari-
ations across the Southeast Indian ridge, bounded to
the north by the Indian plate and to the south by the
Antarctic plate. Figure 20 is his plot of basement
depths as a function of age. It shows a gradual increase
in the relief difference. At 40m.y., corresponding to
x=1,100km, the relief difference is 500 m. Using nom-
inal plate lengths of [=4,200km for the Indian plate
and 8,000 km for the Antarctic plate and {,,=1,300 m,
AD'(t)=300m at 40 m.y. from Eq. (98). The calculated
value is of the same order of magnitude as that ob-
served with the relief difference in the same direction,
greater depths on the smaller plate. The conjecture by
Weissel and Hayes (1974) that this relief difference is
related to upper mantle causes would appear to be cor-
rect.

A similar situation exists for the East Pacific rise,
bounded to the east by the Nazca plate and to the west
by the Pacific plate. Figure 21 from Mammerickx et al.
(1975) is a plot of the ocean floor relief as a function of
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Fig. 21. Plot of ocean floor relief versus age across the East
Pacific rise from Mammerickx et al. (1975). Nazca plate to the
east and Pacific plate to the west

age for the two adjoining plates. It also shows in-
creased depths on the smaller plate and an approxi-
mate linear increase in the relief difference. At 20 m.y.,
corresponding to x=1,600km, the relief difference is
500 m. Using nominal plate lengths of [=3,700 km for
the Nazca plate and /=10,000km for the Mid Pacific
plate and {,,=1,300m, 4D'(t)=700m at 20 m.y. from
Eq. (98). As for the Southeast Indian ridge, the calculat-
ed value is of the same order of magnitude as that ob-
served with the relief difference in the same direction.

Summary and discussion

A quantitative description of plate dynamics and re-
lated upper mantle effects has been given. The principal
driving force for the upper mantle convection is the
longitudinal density gradient in the upper mantle be-
tween the spreading ridge and the subduction zone.
Plate forces, asthenospheric-lithospheric coupling, and
lithospheric density changes have also been included in
the derivations as well as possible depth variations of
viscosity in the upper mantle, and their effects have
been assessed.

The derivations have been applied to the various
geophysical observables related to plate tectonics. It is
found that the derived plate velocities are of the same
order as those observed and that the predicted and ob-
served plate velocity variations as a function of plate
geometry show the same general dependence. The
theoretical formulation provides a mechanism to ex-
plain observed spreading ridge migration and asymmet-
ric seafloor spreading effects.

The computed gravity anomalies related to the up-
per mantle convection are small, being negative over
the spreading ridge and positive over the subduction
zone. The addition of the predicted upper mantle, refer-
ence surface relief to lithospheric plate cooling effects is
in agreement with observed ocean floor relief and pro-
vides an explanation for the observed relief at ages
greater than 70 m.y. The predicted variation in the up-
per mantle reference surface relief as a function of
plate geometry is in agreement with the related obser-
vations and provides an explanation for asymmetric
variations in ocean floor relief.
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A few comments are appropriate concerning con-
tinuing investigations by others along lines similar to
those given above. Richter and Parsons (1975) as well
as others have emphasized that two scales of motion
are possible in the upper mantle, one with a large as-
pect ratio related to the plate dimensions and the other
with a small aspect ratio related to Rayleigh-Benard
thermal convection. In their formulation the former is
associated with the plate motions and is attributed to
gravitational forces of the plates themselves without the
inclusion of the gravitational forces in the upper man-
tle, as discussed in this paper. Chapman etal. (1980)
and Hewitt etal. (1980) have shown that large aspect
ratio upper mantle convection can exist when the up-
per and lower boundary conditions for the upper man-
tle are given in terms of a constant heat flux rather
than a constant temperature condition. The constant
flux condition is also explicit in the derivations of Rat-
tray and Hansen (1962), Hansen and Rattray (1965),
Officer (1976) and Festa and Hansen (1976) for gravi-
tational circulation in estuaries; in this case the con-
dition is that of no salt flux at the surface and bottom
of the estuary. The principal difference between the ex-
positions given by Chapman etal. (1980) and Hewitt
etal. (1980) and that given here is the emphasis, here,
on the importance of the longitudinal density gradient
between the hotter and less dense spreading ridge col-
umn at one end of the convection cell and the cooler
and more dense subducted slab column at the other
end. It appears to us that their considerations and
those given here are headed in the same direction to-
ward an explanation of plate dynamics and the differ-
ences may be only a matter of degree in formulation;
both lead to a longitudinal density gradient in the up-
per mantle between the spreading ridge region and the
subduction zone. Also, the interesting experimental
work of Carrigan (1982) provides a clear demonstration
that both scales of motion can exist. The smaller scale,
Rayleigh-Benard, thermal convection is confined to the
region near the upper surface of the convecting fluid.
The larger scale motion consists of two cells, sinking at
the lateral walls of the experimental chamber and rising
in the central region. Carrigan suggests that the larger
scale motion may be related to loss of heat to the side-
walls of the chamber, along the same lines as given
here. Further, the detailed theoretical and experimental
investigations by Rabinowicz etal. (1980), Froidevaux
and Nataf (1981) and Nataf etal. (1981) on the effects
of the cooler subducted slab in creating large aspect ra-
tio convection in the subcontinental mantle follow simi-
lar precepts to those considered here. The principal dif-
ference between their description and that given here is
that we have also included the anticipated effects of the
hotter spreading ridge column, which effectively defines
the longitudinal extent of the upper mantle convection
related to the plate motions.

The emphasis in this paper has been on deriving sim-
ple analytic solutions for upper mantle, gravitational
circulation and associated plate motions and on apply-
ing these results to the various geophysical observables
related to plate tectonics. We appreciate that in some
cases the applications overextend the simple deri-
vations, but we considered that it was appropriate to
get at least some notion as to whether they were com-
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patible with the observables. We also appreciate that
fitting the data to our simple model, such as for the
case of oceanic depth variations greater than 70 m.y.,
does not in itself prove the validity of the model. It is
simply data fitting, and there are usually enough unde-
termined parameters that a good fit can be obtained to
various models. For example, Heestand and Crough
(1981) explain the oceanic depth variations for ages
greater than 80m.y. and Stein etal. (1977) explain
asymmetric sea floor spreading in terms of the hot spot
circulation model of Morgan (1972a, 1972b).

We have attempted to point out the relative impor-
tance of the possible plate driving forces in a coupled
lithosphere-asthenosphere system, viz., upper mantle
longitudinal density gradient, lithospheric density
changes or ridge push, and negative buoyancy of the
subducted slab or slab pull. The importance of each de-
pends in large part on the values chosen for the defin-
ing parameters. In particular, as a more realistic vis-
cosity versus depth relation is taken for the lithosphere
and asthenosphere, such as that proposed by Anderson
(1979), and as proper consideration is given to the
thickness variations of the plate itself, such as that pro-
posed by Chapman and Pollack (1977), the formu-
lations given by Hager and O’Connell (1981) and by
Richter and McKenzie (1978) for the lithospheric force
contributions and that given here for the upper mantle
circulation must all be included to arrive at an appro-
priate representation for the geodynamics of the coup-
led system.
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