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Restoration of broad-band seismograms (Part I)

D. Seidl! and W. Stammler?>

! Seismologisches Zentralobservatorium Gréfenberg, Krankenhausstr. 1, D-8520 Erlangen, FRG
2 Lehrstuhl fiir Nachrichtentechnik, Cauerstr. 7, D-8520 Erlangen, FRG

Abstract. Restoration includes all steps of seismogram
processing applied in the time or frequency domain to
compensate for the signal distortion caused by the seis-
mograph. Restoration of broad-band seismograms is
demonstrated using recordings of the Graefenberg
(GRF) array. For this purpose a comprehensive de-
scription of the characteristics of the GRF seismograph
system in the time and frequency domain is presented.

To investigate signal distortions and the effective-
ness of restoration algorithms, a program for the digital
simulation of a wide class of seismograph systems is
described. Using some theorems about first arrival time
and first motion sign of a wavelet, the accuracy of
arrival time measurements as well as the determination
of first motion signs are discussed and illustrated.

Key words: Restoration - Broad-band seismogram -
Graefenberg array - Digital simulation - Arrival time -
First motion sign

Introduction

Restoration as described here includes all steps of seis-
mogram processing in time or frequency domain ap-
plied to compensate for the signal distortion caused by
the seismograph system. In general, an exact recovery
of the input signal from the output response of a linear
causal system is possible for systems which are strictly
minimum-delay, that is, all zeros of the transfer func-
tion lie in the open left s-plane (Robinson, 1962). Since
the transfer function of a seismometer with a pendulum
sensor has a multiple zero at s=0 and due to non-
linearities, instrument noise and limited resolution of
the seismograph and recording system, the true ground
motion can be recovered only approximately. Two ap-
proaches are usually applied: band-limited restoration
of seismogram segments in digital processing and cor-
rection of single seismogram parameters in the usual
domain analysis of analog seismograms. Both methods
exhibit some special features for digital wide-band feed-
back seismograph systems.

In digital processing a band-limited restoration can
be performed by dividing the complex seismogram
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spectrum by the gain-and-phase characteristics of the
seismograph system. This compensates only for the lin-
ear distortions. Since the signal distortion due to the
nonlinear behavior of the mechanical sensor is strongly
reduced in a feedback seismometer of the force-balance
type, a wide-band recovery of the spectrum or signal
form of true ground motion is possible over a larger
range of amplitudes. The degree of approximation is
limited mainly by the low frequency instrument noise
and by the resolution of the recording system. Appli-
cations of wide-band restoration are, for example, the
interpretation of broad-band recordings with theoreti-
cal seismograms or the determinations of displacement
pulse area (proportional to source moment) and ve-
locity pulse energy (proportional to radiated energy).

In the usual time domain analysis of analog seis-
mograms, only a correction of single seismogram pa-
rameters can be performed. Examples are the esti-
mation of narrow-band spectral amplitudes for magni-
tude determination and the correction of group-delay
or phase-delay in the dispersion analysis of narrow-
band surface wave groups. For standard time domain
analysis broad-band seismograms must usually be pre-
filtered. This improves the signal-to-noise ratio for sig-
nal detection and arrival time measurement and en-
hances the spectral amplitudes in the conventional
short and long period frequency bands used for magni-
tude determinations. To avoid a bias in magnitude due
to improper equalization of the prefilter response, sim-
ulation filters (Seidl, 1980) for standard seismograph
systems can be applied in place of simple band pass
filters.

This paper is the first of two dealing with the re-
storation of Graefenberg broad-band seismograms.

Paper I describes the frequency and time domain
characteristics of the Graefenberg seismograph system.
To investigate linear distortions and the effectiveness of
restoration algorithms a program for the digital simula-
tion of seismograph systems is presented. Some theo-
rems about arrival time and first motion sign of signals
are discussed and illustrated.

Paper II (in preparation) is concerned with the wide-
band recovery of true ground motion and with the
determination of narrow-band spectral amplitudes
(magnitudes), displacement pulse area (source moment)
and pulse energy (radiated energy) in time or frequency
domain.



Frequency and time domain characteristics
of the Graefenberg seismograph system

The seismograph system of the Graefenberg array (Har-
jes and Seidl, 1978) consists of the feedback seismom-
eter STS-1 (Wielandt and Streckeisen, 1982) and an
antialiasing filter. The seismometer has two outputs: a
broad-band (BB) output proportional to ground ve-
locity and an integrated long period (LP) output pro-
portional to ground displacement. The transfer function
of the BB-output for ground velocity is therefore the
same as the transfer function of the LP-output for
ground displacement.

The transfer function of the BB-output for velocity
is given by

3 G, =52 (s+a,) w?
sP+2hgwos+wi sP+2h; w5+

H(s)

(1)

The gain factor G, (Gyyz3=2,400V s/m for the BB-
output and G,,,=780 V/m for the LP-output respec-
tively) is omitted in the following formulas. The BB-
output is used for the array data acquisition system
with sampling rate f;=20 Hz, the LP-output is record-
ed for selected channels with fg=0.1 Hz.

The first factor in Eq. (1) corresponds to the transfer
function of a conventional seismometer. The denomi-
nator of the second factor can replace one stage of an
antialiasing filter, when the zero at s= —a, in the nu-
merator (caused by the resistance of the feedback coil
in the differential path) is cancelled by an additional
pole in the transfer function of the antialiasing filter.

The transfer function of the antialiasing filter used is

1 ) < w?
Hp(s)= ! l—[ !

Tsta, stw, b S22k o stw?

(2)

The overall transfer function of the seismograph system
becomes

H(s)=H,(s)- H,(s) 3)
where
H,(s)

and

H (s)

Sﬂ
s2+2hy w5+ w0}
3 2
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Therefore, the seismograph system can be considered to
be a conventional seismometer with transfer function
H,(s) in series with a 7-th order Butterworth antialias-
ing filter with transfer function H,(s). The relationship
of output to input as determined by the exponent r in
the transfer function H(s) is as follows:

Output
BB LP
Input
DIS n=3 n=2
VEL n=2 n=1
ACC n= n=0
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Im(H)

Re(H)

Fig. 1. Polar diagram of the complex gain-and-phase vector
|H(jw)| - exp(je(w)) of BB-output for ground velocity or LP-
output for ground displacement of the Graefenberg seismo-
graph system. The numbers indicate frequencies in Hz. Circles
are drawn for the attenuations 0db (pass band), 3 db and
6 db, respectively

The numerical values for the angular frequencies w,
and damping factors h, are:

w,=2nf, [f,=005Hz
w,=2muf, fi=50Hz
h,=0.707

h,=0.623

h,=0.223

hy,=0.901

Substitution of s=jw into Eq. (3) yields the complex
gain-and-phase characteristics H(jw) with gain |H(jw)|
and phase-shift ¢(w):

H(jw)=|H(jo)| /"' =H(jw)- H,(jw). 4)

Figure 1 shows the polar diagram of H(jw). For an
harmonic ground velocity i, exp(jwt) with amplitude
liis)=1 and phase-shift arg(ii,)=0 (represented by a
unit vector along the real axis), the absolute value and
argument of the complex vector H(jw) give the ampli-
tude and phase-shift of the BB-output voltage. H(jw)
intersects the 3-db circle at frequencies close to 0.05 Hz
and 5.0 Hz.

The gain |H(jw)| follows from Eq. (4) for h,= l/ﬁ
as

N 0 1
U = oo T T+ @)™ )

|H(jw)| is plotted in Fig.2 for the BB-output for
ground velocity with the gain factor Gggp
=2,400V s/m. The low frequency values for the 3-db

frequency and slope are 0.05 Hz and 12 db/octave, the
high frequency values are 5.0 Hz and 42 db/octave. The
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Fig. 2. Gain of BB-output for ground velocity of the Graefen-
berg seismograph system (gain factor G, p=2,400 V s/m)

effective bandwidth of |H(jw)| defined by

Twz |H(jw)|*dew
Wr=4n* Wp="- (6)
[Hjo)|*dw
0

has the values W,;=4.16 Hz for n=3 in Eq. (4) and W,
=3.00 Hz for n=2. The phase-shift for n=2 is shown
in Fig. 3.

The group-delay for the BB-output and LP-output
is given by

do(w
Tg(w)= _%=TGU(W)+ g, (w) @)
where
_ 2hywg(0® + )
TG"(w)k(cuzfa)é)2+4h§ouf)wz
and

w, J h(w? + wi)

%o, (@) w*+w? +2m‘k; (0? — )P +4h vl w?’

The first term 1, (w) corresponds to the seismometer
Hy(jw) in Eq. (4), the second term t; (w) is related to
the antialiasing filter H,(jw). For f<2 Hz the group-
delay 7, is nearly constant (t; =0.13s). For f=0 the
overall group-delay 7,(0)=4.65s.

The mean group-delay, defined by

oo

[ 76(@) [ H(jo)* dow
Pt (8)
j |H(jw)*dw
4]

has the values 7; ;3 =0.22 s for n=3 in Eq. (4) and T,
=0.25 s for n=2, respectively. The overall group-delay
is shown in Fig. 4.
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Fig. 3. Phase-shift of BB-output for ground velocity or LP-
output for ground displacement of the Graefenberg seismo-
graph system
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Fig. 4. Group-delay of the Graefenberg seismograph system

In the time domain the seismograph system can be
described by the step response h,(t) (response to unit
step function ¢(r)) or by the impulse response h(t)
(response to unit impulse function é(t)) for ground dis-
placement or velocity, where h,(t)=d(h,(t))/dt and

hspp()=d(hs p(1))/dt.

Figure 5 shows the response of the BB-output (LP-
output) to a ground velocity (displacement) step func-
tion for the seismometer (Eq. (1)), the antialiasing filter
(Eq. (2)) and the overall system (Eq. (3)). The leading
edge of the step response is determined mainly by the
antialiasing filter. The rise time from zero to maximum
amplitude is T,=0245s (Ty=1; (0)+1/2 (1/2f), f,
upper 3-db frequency of antialiasing filter). The trailing
edge is determined by the seismometer. The decay time
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F Impulse response of antialiasing filter H(s)

S Impulse response of seismometer Hg(s) (BB-output for
ground velocity or LP-output for ground displacement)

SF Corresponding response of seismograph system H(s)
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Fig. 7.

I LP-output impulse response of seismograph system H(s)
for ground displacement

2 BB-output impulse response of seismograph system H(s)
for ground displacement

Response curves are normalized to maxima. The time axis is

scaled in sampling intervals of T=0.05s

from maximum to first zero is T,=3455s
(To= 1/2nf,)), f, lower 3-db frequency of seismometer
for damping factor h,=0.707 (T, increases slightly with
increasing damping factor).

Figure 6 shows the time derivatives of the response
curves in Fig. 5, which are determined mainiy by the
antialiasing filter. For the ground displacement impulse
response of LP-output the rise time to first maximum is
Te1p=0.165s and the time to first minimum T, .p
=0.290s. The times to first and second zero are Ty, p
=0.245s and Ty, ,,=0.351 s, respectively.

Fig. 5.

F Step response of antialiasing filter H(s)

S Step response of seismometer Hg(s) (BB-out-
put for ground velocity or LP-output for
ground displacement)

SF Corresponding response of seismograph sys-
tem H(s)

Figure 7 shows in a larger time scale the ground
displacement impulse responses for BB-output and LP-
output. For the ground displacement impulse response
of BB-output, the rise time to first maximum is Ty gp
=0.115s and the time to first minimum is T, pp
=0.220 5. The times to first and second zero are Ty, pp
=0.165s and T, 55 =0.290 s, respectively.

The consequences of the impulse response on the
accuracy of arrival time measurement is elucidated in
the last section. The significance of the displacement
step response of LP-output for the estimation of the

T

running time integral { f(z)dt for ground displacement

0
f(r) will be discussed in Paper II.

Digital simulation of seismograph systems

The accuracy of signal parameters extracted from seis-
mograms depends on many factors: transfer function,
dynamic range, resolution and time scale of the seismo-
graph and recording system, signal and noise spectra
and restoration algorithms. These relationships can be
investigated best by numerical experiments with syn-
thetic seismograms. For a wide class of input signals,
the response of a seismograph system with a rational
transfer function can be calculated analytically. If, for
example, the Laplace transform of the input signal is
also a rational function, the exact response is obtained
by partial-fraction expansion. However, for input wave-
lets of short duration as well as theoretical seismograms
and measured sampled data, a general solution by
digital simulation techniques is preferred. These meth-
ods are based on linear digital filtering of sampled
input signals and can be implemented on any minicom-
puter (Forster, 1980).

Simulation in the frequency domain

Basically, simulation in the frequency domain is per-
formed by multiplying the Discrete Fourler Transform
(DFT) of a finite length input sequence with H(w,) at
N equidistant frequencies

k-
T —fs

= L N—-1 ©)

w, =2

and applying the inverse DFT to the product sequence
of length N. Here f;=1/T is the sampling frequency
and T the sampling interval. N must be chosen greater
than or equal to the sum L, +L,, where L, and L
indicate the length of the input sequence and the length
of the sampled impulse response h;(k-T). Unlimited
input sequences are segmented into blocks of length L,
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and the results of subsequent blockwise convolutions
are added with an overlap of N—L, samples. With N a
power of 2, the FFT-algorithms can be applied (fast
convolution).

To simulate the response of a continuous system to
a continuous signal with this method: a) the input
signal must be bandlimited, b) the impulse response of
H(s) must be limited in time.

For the signals and systems considered here, both
conditions can be fulfilled approximately provided that
the sampling frequency fg and the transform length N
are chosen high enough.

Simulation in the time domain

Here Infinite Impulse Response (IIR) digital filters H(z)
with the following characteristics are considered: the
error between the output y,(k) of the discrete system
and the sampled response function y (k- T) of the con-
tinuous system should be minimized for a given driving
function x(¢f) and the corresponding sequence Xx,(k)
=x_,(k-T). Out of a large variety of methods, which are
referenced by Renn (1976) and Schiissler (1981), we
select those three s — z transformations where either the
impulse response, step response or ramp response of
the discrete and the continuous filter are identical at
times t,=k-T(k=1,2,3,...).

These s— z transformations, the impulse (IIT), step
(SIT) or ramp (RIT) invariant transformation, yield the
coefficients of difference equations by which the digital
filter H(z) will be realized.

The advantage of time domain simulation is that
the impulse response hy(t) is not required to have a
finite length.

Impulse invariant transformation

Starting with a partial-fraction expansion of H(s) and,
for the sake of simplicity, considering only simple poles
and lim H(s)=0 (for other cases, see Schiissler, 1981),

L R
H(s)= > 10
©=% T (10)
where R,= lim (s—s_,) H(s).

S=Spov

The impulse response is then given by
hy(t)= > R,e*=>""-g(t). (11)
v=1

At the sampling points t, =k - T, the continuous impulse
response hy(t) coincides with the impulse response se-
quence h,(k) of the desired discrete system

hy(k)=h,(kT)= Zl R

where ¢, is the step sequence (g, =
for k=1).

With z_,
leads to

e e, (12)

0 for k<0 and ¢, =1

=exp (S,  T), z-transformation of h;(k)

i (13)

v T z—zy,

Here the subscript I stands for Impulse Invariant
Transformation.

Sampling of h,(t) results in a periodic repetition of
H(jw):

) 1 +x 2nk
H,(e’9)=— z H(](u+] T) (14)

where Q=T

Spectral overlapping will produce a frequency re-
sponse H (exp(jQ)) which may differ significantly from
H(jw).

Step invariant and ramp invariant transformation

The transfer functions Hgp(z) and Hy(z) are determined
such that the step response or the ramp response of the
discrete and the continuous system agree for t,=k-T.
This condition leads to
" R, z,—1
H — v . ooV 15
st(@) Z s T—2 (15)

v=1 Yoov ooV

for SIT and to

"R, M Ryz.,—1) z—1
HR(Z)_ —vgl Scov +v;l Sgov -T 2= 2y (16)

for RIT.

The invariance of either type holds not only for a
single impulse function J(t), step function &(t) or ramp
function y(t) but also for combinations of time delayed
input signals 6(t—k-T), e(t—k-T) or y(t—k- T), which
include all types of step functions or polygons.

For different input signals, discrepancies between
the responses y (k- T) and y,(k) will be observed if the
sampling theorem is not satisfied for the input signal
and for the impulse response of the filter. In most cases
of practical interest, the simulation error can be kept
very low by choosing a sufficiently high sampling rate.
The question, whether IIT, SIT or RIT produces a
lower simulation error, can be answered for a given
H(s) only for certain classes of driving functions. Im-
pulse Invariant Transformation proves to be best, if
two conditions are met (Geisser, 1983): a) X(s) is a
rational function with simple poles, different from those
of H(s), b) x(t) and h4(t) are continuously differentiable
at t=0.

The complete simulation program (Fig. 8) consists
of a “design segment”, which determines the coef-
ficients of the digital fllters H,(2) and H,(z) for a given
continuous system H(s), and a flltermg segment”,
which computes the output signal y (k) for a given
input x,(k).

The design may be based either on the coefficients
of H(s) or its poles and zeros. Residuals and poles
could be prescribed as well. If they are not given in
advance, they must be determined to perform the s—z
transformation. After a transformation according to Eq.
(13), (15) or (16), blocks of second order are constructed
from the (B,z+A4)/(z—z,,) by the combination of
complex conjugate or two real terms. The resulting
transfer function

M 2

v dyz7+dyz+dy,
2, .

iZ1 Z7Hcz+cy;

17
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Fig. 8. Digital simulation of seismograph systems

leads to a digital filter in parallel form which is im-
plemented by the following difference equations:

Vilk)= —cy;- yilk—=1)—cq; - yi(k—2)
+dyulk)+du(k—1)

tdguk—2) i=1,2,...M (18)
M
y)= Y vi(k) (19)

The “filtering segment” includes further digital filters
H,(z) and H,(z) for digital band limitation and res-
toration filtering, respectively.

All computations are done in double precision arith-
metic to assure that truncation and rounding errors
have little effect on the result for high sampling rates.

Time domain restoration
Arrival time

It is not possible to give a general definition of a
seismic onset which can be used for the actual measure-
ment of first arrival time and first motion sign from a
sampled band-limited signal in the presence of noise.
Signals propagating in a medium with absorption and
dispersion can be considered to be wavelets, that is
causal time functions (f(1)=0 for t<0) with finite

energy (f fAode< oc). The Laplace transform of a
0
wavelet is then analytic in a right half-plane. The discon-

tinuity at the wavelet front t= +0 is called an onset of
order p, if f*"(+0) is the first nonzero derivative. The
front velocity of the wavelet is determined by the
asymptotic limit of the phase velocity for high frequen-
cies., This follows from the Signal Front Theorem in
Eq. (20). The sharpness of the wavelet front depends on
the counteracting influences of dispersion and absorp-
tion as a function of distance and frequency. For short
distances the absorption is small and the dispersion
tends to sharpen the wavelet front. With increasing
distance the effect of absorption becomes dominating
and the wavelet front is correspondingly smoothed.

Using the wavelet model for body waves and apply-
ing the Signal Front Delay Theorem and the Initial
Value Theorem (Papoulis, 1962), some general con-
sequences about time delay and distortion of the
wavelet leading edge by a seismograph system can be
derived.

The Signal Front Delay Theorem states that the
response of a linear causal system to a wavelet f(¢)- &(¢)
with arrival time t,=0 is a wavelet u(t)-e(t —t,) with
onset time tg=1,. The signal front delay 7, is given by
the high frequency limit of the system phase-delay
Tp(w):

. . )

W= 00 w—oo W

(20)

For seismograph systems with rational transfer func-
tions 1, =0, because ¢(w)— constant as w — <0,
Given a wavelet f(t) with onset order p and Laplace
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Transform F(s), the Initial Value Theorem states that

f™(40)=lim s"*! F(s) (21)

5= 00

holds for all m<p. Since f®(40) f is the first non-
zero derivative, F(s) has the asymptotlc form

F(s)~f, s~V (22)
as s—o00. The behavior of f(¢f) near t=+0 then be-
comes

fo~2n e @3)

If this wavelet with onset order p is recorded by a
seismograph system with transfer function

SeE
RS
m—-

H(s)= m=n (24)

uM:
S
=
ioe}
=

=
—-

then the Laplace Transform U(s)=H(s)- F(s) of the
seismogram wavelet u(t) has the asymptotic form

am m-—n-—
U(5)~b_.fp.5 (p+1) (25)
as s—oo. The behavior of the seismogram near the
onset time t= +0 is then

am fP n—m+p

Thus the seismograph system increases the onset order
of the input wavelet by n—m.

According to the Signal Front Delay Theorem,
there is no time shift between the signal front arrival
time and the seismogram onset time. The precision of
visual detection of the onset depends on curvature and
rise time of the seismogram’s leading edge as well as on
noise level and recording scale. The sharpest possible
onset, the response to a J-impulse in ground displace-
ment (upper cutoff frequency f,= co), is shown in Fig. 7
for the LP-output and BB-output. For LP-output,
hs p(t)~1° as t >0 (Egs. (22) and (23)), since H,p(s)~s’
as s—oo (Eq. (3)). The rise time from zero to 1% of
maximum amplitude is Ty, o, p~ T (sampling interval
T=0.05s). For  BB-output, hygzp(t)~t>  and
Tro.0188~X05T )

Figure 9 again shows for the BB-output the dis-
placement impulse response as well as the synthetic
seismograms for input signals f(t)=t exp(—a-t) (order
of onset p,=1) with f,.=1Hz and £.=02 Hz respec-
tively. Since F(s)=(s+a)~"*~s~ % as s — o0, ugg(t)~t' as
t—0. Thus, an apparent delay in the arrlval time of the
order of magnitude 0.1 s may be introduced for a noise
level of 109 of maximum first motion amplitude.

As an example, the Figs. 10 and 11 show the arrival
time measurement for the P-wave of the Albstadt earth-
quake. For the BB-recording, the first maximum is
about 35 db above noise level and forms the strongest
onset yet observed at the Graefenberg Observatory.

5 y ) 3 TIME(sec)

Fig. 9.

I BB-output impulse response for ground displacement

2 Simulated response of BB-output for displacement input
t-exp(—a-t)-&(t) (e(t) unit step function). Upper 3-db fre-
quency of input spectrum f,=1Hz (a=9.76 s~ ')

3 Corresponding response for f,=0.2 Hz (a=1.95s"1)

Al Z [ t
B sPp

5:?:0 10 S |

Fig. 10. Broad-band recordings of the P,—sP, wave group for

the Albstadt (Swabian Jura) earthquake on 3. September 1978

(05Sh08m 31.8s; 4828°N, 9.03°E, 6.6km depth, 59 M,,

224 km distance).

1 BB-output proportional to ground velocity (marked ampli-
tude scale unit 29 um/s)

2 Recording proportional to ground displacement, calculat-
ed from BB-output (scale unit =1.2 pm)

3 BB-output (scale unit =0.06 um/s).

The arrow points to the sampled time 05h 09 m 04.55 s, the

dots indicate three successive samples

|

05:09:04.55 65 .75 .85

Fig. 11. Sampled values for the leading edge of the P-wave
group in Fig. 10 (scale unit =1.2 pm/s). The solid line shows
the simulated BB-output response for a half-cycle displace-
ment sinusoidal wave (frequency 0.33 Hz, onset time marked
by arrow)

TIME

The arrival time is 05h 09 m 04.55+0.05s. The ground
displacement of the P-wave calculated by integration of
the BB-seismogram can be approximated by a half-
cycle sine wave with frequency 0.33 Hz. Figure 11
shows the corresponding synthetic seismogram of the
BB-output. The best fit with the sampled data is ob-
tained for the arrival time 05h 09 m 04.575+0.025 s of
the input sine wavegroup. Hence, for this special case
the arrival time can be determined with an accuracy of
+0.025 s (half sampling interval).

To clarify some common misconceptions, a few re-
marks about the meaning of group-delay for broad-



band signals may be useful. The group-delay is usually
used to refer to the envelope delay of a narrow-band
signal (Papoulis, 1962). One application is the measure-
ment of the group velocity dispersion of surface waves
in the time domain. A generalization to broad-band
signals f(¢) is the signal-delay, defined by

P M 27)

Substituting for f(t) the impulse response h,(t) yields
=1 (28)

where 7, is the mean group-delay of the seismograph
system, defined in Eq. (8) (Morgenstern, 1971). 7,; can
be interpreted as the delay of the center of energy of
hs(¢). For low pass systems with |H(0)| 40 the delay of
the center of inertia

fha—Tt-hé(E)dI/T hs(t) dt=15(0)

(Kaufmann, 1959). The signal-delay for arbitrary wave-
lets is discussed by Mecklenbriuker (1982). Denoting
the group-delay of the input signal f() as 15 (w), the
signal-delay of the seismogram u(t) is given by

I [16 (@) +16(@)]- IF(jo) |H(jo)? do
7= (29)

[IFGo)P - [H(o)? do
]

Thus, for a given seismograph system, the signal-
delay of the seismogram depends on the shape of the
input wavelet. For wavelets f(t)=t-exp(—a-t) with
upper 3-db frequencies f,=0.102-a the signal-delay of
the seismograph system t3=r1,..—1,. can be given as a
function of f. In the interval 0.1 Hz<f <1.0Hz,
Tgp(f.) decreases from t5,p(0.1)=1.72s to t4.p(1.0)
=0.48s. For the BB-output t4;5(f) increases from
Topp(0.1)=—091s to 7545(1.0)=0.07s. The group-de-
lay is irrelevant in determining first arrival times.

First motion sign

The first motion sign of the input wavelet f(t) with p-
order onset is given by f, in Eq. (22) If the seismo-
graph system is calibrated "such that in Eq. (24) a, /b, i
positive, the first motion sign of the seismogram in Eq
(26) is also given by f,. Therefore, a seismograph sys-
tem with a rational transfer functlon cannot change the
first motion sign of the input wavelet.

Quite often body wave signals are superpositions of
low frequency and high frequency pulses. In this case,
broad-band outputs proportional to ground displace-
ment and velocity or narrow-band short and long per-
iod seismograph systems can separate these superim-
posed wavegroups. Even if the low frequency wavelet
and the first high frequency pulse have the same arrival
times but different first motion signs, the direction of

121

28 MRY 1980 WWSSN-LP 28 MAY ISSU SRO-LF
VMRX=1. 5K YMAX=20

-0

I
D
;
A1 z—%/\mﬁvw ALz

19:53: 0 1 M 19:53: 0 LM
| | I I | | | I | |

Fig. 12. WWSSN-LP and SRO-LP P-wave seismograms with
negative first motion sign for a Sicilian earthquake on 28.
May 1980 (19h 51 m 19.3s; 3848° N, 14.25°E, 55 M,, 11.4°
distance), simulated from BB-output of array station 41 —Z.
Maximum magnifications ¥, refer to marked amplitude

max

scale of 1 cm. Marked time scale units =1 min

28 MAY 1980 WWSSN-SP 28 MAY 1980 BROAD-BD
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Fig. 13. P-wave recordings for the earthquake in Fig. 12 for
several array stations with beams (SUM), indicating positive
first motion signs for the narrow band and broad-band re-
cordings. Maximum magnifications V¥, refer to marked
amplitude scale of 1 cm. Marked time scale units =10s

first motion is the same in all seismograms and is not
related to some characteristic frequency of the seismo-
graph system. The actual reading may depend on the
signal-to-noise ratio. When the latter is good, the first
motion can be interpreted as short period compression
and long period dilatation or vice versa. The Figs. 12 to
14 show typical examples.

In Fig. 12, the WWSSN-LP and SRO-LP seismo-
grams for an earthquake in Sicily are simulated from
broad-band data using standard amplitude and time
scales. In both cases, the first motion sign appears to be
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Fig. 14. Recordings of the P,— P, wave group for a Friuli

earthquake on 15. September 1976 (09 h 21 m 19.1s; 46.32° N,

13.13°E, 59 M,, 401 km distance). Marked time scale units

=10s

I Simulated WWSSN-SP seismogram (V,,, =93 K for 1 cm
marked amplitude scale) with positive first motion sign
(short period compression)

2 Broad-band recording proportional to ground displace-
ment (calculated from BB-output, scale unit =39 um) with
negative first motion sign (long period dilatation)

negative (long period dilatation). When the amplitude
and time scales are greatly magnified, as in Fig. 13, the
first motion sign is definitely positive on both broad-
band and narrow-band seismograms.

Figure 14 shows an analogous example for a Friuli
earthquake. Here the first motion sign of the P, - wave
of the simulated WWSSN-SP seismogram is positive
(short period compression), whereas the sign of the
broad-band recording proportional to ground displace-
ment can be interpreted as being negative (long period
dilatation), neglecting the tiny initial pulse with positive
sign.

The measurement of arrival time and first motion
sign is dependent only on the restoration of the signal
front. The estimation of various functionals of the input
signal such as running time integrals of true ground
displacement and velocity or spectral amplitudes for
the determination of magnitude and moment is dis-
cussed in Paper II.

Conclusion

The Signal Front Delay Theorem states that the linear
distortions caused by the seismograph system will not
introduce a delay in the onset time of the input wavelet.
However, the steep slope of the transfer function at high
frequencies, given by the antialiasing filter, will flatten
the curvature of the wavelet leading edge. In the case of
superimposed noise, the wavelet onset may appear to
be delayed. The delay depends mainly on the upper
corner frequency of the input wavelet and the signal-to-
noise ratio. For example, for a signal to noise ratio of
20 db, the BB-output of the Graefenberg seismograph
system has an apparent delay on the order of 0.05s for
f.>5Hz and 0.1s for 02<f <1 Hz If the signal-to-

noise ratio is much higher, fitting the leading edge of
the seismogram with synthetic responses can reduce the
arrival time error to less than 0.05 s (sampling interval).

A seismograph system with a rational transfer func-
tion cannot change the first motion sign of the input
wavelet. The reading of different short and long period
first motion signs is meanirigful only for overlapping
low and high frequency wavelets. From broad-band
recordings the first motion signs of the superimposed
pulses of different frequencies can be determined sepa-
rately by simulating wide-band seismograms propor-
tional to ground displacement and velocity, or narrow-
band long and short period seismograms.
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