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Calculation of synthetic seismograms for complex subsurface
geometries by a combination of finite integral Fourier
transforms and finite difference techniques

B.G. Mikhailenko and V.I. Korneev

Computing Center, USSR Academy of Sciences, Siberian Division, prospekt Akademika M.A. Lavrentieva, 6,

630090, Novosibirsk, USSR

Abstract. An algorithm for the calculation of synthetic
seismograms for complex geological structures is sug-
gested. Two versions of the algorithm are considered.

The first version is based on a combination of finite
integral Fourier transforms with respect to one of the
spatial coordinates (e.g. the coordinate corresponding
to the epicentral distance) and the finite difference
method. In this case the problem reduces to solving a
system of equations with partial derivatives with re-
spect to one spatial coordinate (say, the vertical one),
with coefficients which are finite Fourier integrals of
the elastic parameters varying along the epicentral
coordinate. The approach is an extension of the stan-
dard techniques of separation of variables to the so-
lution of problems for complex subsurface geometries.

The second version of the algorithm is based on
utilization of finite integral Fourier transforms with
respect to two spatial coordinates. A Cauchy problem
is obtained for a system of ordinary differential equa-
tions where the coefficients are double integrals of the
parameters of the medium. The problem is solved
numerically. The finite Fourier integrals of the parame-
ters of the medium are calculated analytically, if the
medium at nonuniform intervals is approximated, say,
by linear functions.

Calculated synthetic seismograms are given.

Key words: Synthetic seismograms - Finite differences
- Partial separation of variables - Finite integral trans-
forms

Introduction

During recent years, instead of the approximation of
space derivative terms by finite-difference expressions a
complete set of orthogonal basis functions, whose de-
rivatives are known exactly, has been widely used for
the solution of different problems of mathematical
physics. Trigonometrical functions are usually suitable
and the Fourier transform methods proved efficient in
solving many problems (see, for example, Kreiss and
Oliger, 1972; Gazdag, 1973, 1981; Fornberg, 1975;
Merilees and Orszag, 1979). This approach allows one
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to calculate spatial derivatives with high accuracy, but
requires substantially more computing per degree of
freedom. However, the use of the fast Fourier transform
(FFT) for the calculation of spatial derivatives makes it
possible to overcome this difficulty.

In this paper we will discuss an algorithm for the
calculation of synthetic seismograms for complex sub-
surface geometries, based on a combination of the finite
integral Fourier transforms with the finite difference
approach. The algorithm was suggested in Mikhailenko
(1978, 1979), then it was developed in a series of papers
inside the USSR. For the solution of elastodynamic
equations, see, for example, Mikhailenko and Korneev
(1983). In the following sections we will present some of
the results which have been obtained during recent
years. Following Mikhailenko (1978, 1979), we will de-
scribe two versions of the algorithm.

The first version is based on the combination of
finite integral Fourier transforms with respect to one of
the spatial coordinates (e.g. the coordinate correspond-
ing to the epicentral distance) and the finite difference
approach. In this case the problem reduces to solving a
system of equations with partial derivatives with re-
spect to one spatial coordinate (say, the vertical one),
with coefficients which are the finite Fourier integrals
of the elastic parameters varying along the other coor-
dinate, corresponding to the epicentral distance. For
the calculation of the Fourier integrals, at fixed spatial
wave numbers, a model of the medium given along the
epicentral coordinate is approximated at nonuniform
intervals by a linear function. The Fourier integrals of
the linear function are analytically calculated within
each nonuniform interval. The number of the nonuni-
form intervals depends on the complexity of the me-
dium along the epicentral coordinate. The calculation
of the Fourier integrals of the elastic parameters is
performed with the help of a special subroutine, there-
fore the complexity of the medium along the epicentral
coordinate does not practically increase the compu-
tation time of the basic program. The order of decrease
of the magnitude of the Fourier coefficients can be
changed by using splines of different order to approxi-
mate the medium. The system of equations obtained
with partial derivatives with respect to one spatial
coordinate is solved by the finite difference method.

If the parameters of the medium vary along the
epicentral coordinate according to some special law (for
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example, the sine or cosine law), the system of equa-
tions degenerates. In that part of the medium where the
Lamé parameters are independent of the epicentral dis-
tance (parameters of the medium vary along the verti-
cal coordinate), we arrive at the classical separation of
variables in combination with the finite difference
method. This algorithm was developed in a series of
papers (see, for example, Mikhailenko, 1973; Alekseev
and Mikhailenko, 1976, 1978, 1980).

The second version of the algorithm is based on the
utilization of finite Fourier transforms with respect to
two spatial coordinates. In addition, the Cauchy prob-
lem is obtained for the system of ordinary differential
equations where the coefficients are double integrals of
the parameters of the medium. For the calculation of
the double finite Fourier integrals of the elastic param-
eters, at fixed spatial wave numbers, the whole domain
is partitioned into non-uniform segments, the number
of which, and their size and shape, depending on the
complexity of subsurface geometries. At each of these
segments the parameters of the medium are approxi-
mated by linear or bilinear functions. In this case the
double finite Fourier integral at each segment is calcu-
lated analytically. In this paper we also show an ap-
proach where one need not calculate these integrals.
The second version of the algorithm described here can
be related to the so-called spectral methods. In the
recent paper of Kosloff and Baysal (1982) a pseudo-
spectral or the so-called collocation method was sug-
gested for the calculation of synthetic seismograms. The
pseudospectral method is an approximation which uses
interpolating functions to evaluate derivatives repre-
sented on a grid in physical space. It is called a
pseudospectral method because the interpolating func-
tions used are the same as in the spectral method. In
the pseudospectral method, all operations except for
differentiation are carried out in the physical space
defined by a grid. In contrast to the familiar spectral
method we gain some advantage in computation time
since spectral multiplication is not necessary. The price
that is paid for this advantage is that the calculations
are aliased. The effect of aliasing may not be important
but we must keep in mind that aliasing has impli-
cations for the stability of a calculation for long in-
tervals of time (Merilees and Orszag, 1979).

When one uses the pseudospectral method the elas-
tic parameters are defined at the points of a uniform
grid. The FFT dimension in this case is determined by
the number of grid points. To approximate a medium
with complex subsurface geometries or a medium con-
taining thin layers it is necessary to use a large number
of grid points which leads to an essential increase in
computation time.

When one uses the second version of the algorithm
described in the following sections most of the com-
putation time is spent in computing double convolution
sums by means of the FFT. One can essentially save
computation time by using an array processor for the
calculation of the double convolution sums. As long as
the convolution coefficients, which are double Fourier
integrals of the parameters of the medium, are com-
puted beforehand for fixed wave numbers, the com-
plexity of the medium has an insignificant effect on the
computer costs of the basic programme.

The dimension of the double convolution sums is
determined by the size of the domain where the prob-
lem is solved, by the time dependence of the source and
by the minimum velocity in the medium.

The two versions of the algorithm described in the
paper have been developed in recent years in parallel.
The first version is most effective for thin-layer models
involving heterogeneities whose amplitude along one
coordinate (say, the vertical one) is much less than
along the other. These are models of typical petroleum
traps (anticlines, reefs, thrust faults, etc.) whose size in
the vertical direction is not greater than 8-10 dominant
wavelengths. This version of the algorithm is used to
calculate Rayleigh waves in two-dimensional hetero-
geneous media and synthetic seismograms for complex
subsurface geometries in a cylindrical coordinate sys-
tem. In this case one performs the finite Fourier trans-
form along the vertical coordinate and the finite-differ-
ence scheme with a non-uniform step is applied along
the radial coordinate.

The second version is suitable for use in calculating
synthetic seismograms for very complex subsurface
geometries including inhomogeneities which are much
less than the predominant wavelengths.

Method of solution

SH-wave propagation in
complex subsurface geometries

First we consider an elastic half-space in a Cartesian
coordinate system, occupying the region z=0, assuming
that SH-wave velocity v (x,z) is an arbitrary piece-wise
continuous function of two coordinates. For simplicity
the density p of the medium is taken constant. SH-
wave propagation in such a medium from a line source,
whose location is the point x=Xx,, z=z,, is given by
the equation
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with the boundary condition
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Here the function f(t) represents the time variation
of the source. For a finite source, the functions F(x
—x,), F,(z—z,) are of the form

n
T
m
Fy(z—z0)= |/ —2 g —molz-z0)?, (4)
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For n,, my— oo the functions F, and F, tend to delta-
functions. For the application of the finite integral Fou-
rier transform we introduce the boundary conditions
for x=0and x=>b

ou ou

§x=0_§x=b-—0’ (5)
and for z=a

ouU

@—Zz=a=0' (6)

We select sufficiently large distances a and b and con-
sider the wave field up to t=T where T is the minimal
time taken for the propagation of the wave front to the
reflecting surfaces introduced by conditions (5), (6).

Let us apply the finite integral Fourier transform
along the coordinate x from 0 to b:

R(z,n,t)= jU(z X, t)cos—dx (7)

b

1 2>
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Multiplying both parts of Eq. (1) by cos% and in-

tegrating from O to b we obtain:
b a b
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Here we made use of the following approximate equa-
lity:
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which is fulfilled with high accuracy for n, sufficiently
large.

There is no separation of variables in Eq. (9) since
velocity vy(x,z) is an arbitrary function of two spatial
coordinates. Integrating the first term of Eq. (9) by
parts and making use of condition (5) we have

b0 (,0U nmx nnb U .| nmx
ga—( )cos ; —7§v gsmTa{x. (10)

We integrate this expression once again. Then the first
term of Eq.(9) can be written in the form
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Equation (9) with the account of (11) reduces to
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Here ©2? is the derivative of the squared velocity with
respect to x. Substituting series (8) in (12) instead of the
function U(z,x,t) and factoring out the terms inde-
pendent of x from under the integral sign we obtain the
system:
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For m=0 the factor 1/b replaces 2/b in this system. The

boundary conditions are of the form

OR(z,n,t)
0z

_0R(z,n,1)

=0. 14
> 0 (14)

zZ=a

Problem (13), (14) is solved with zero initial values

O0R(z,n,t)

R(Z’ I’l, l)|t=0= 0t

=0. (15)

t=0

The system has a simpler form if we integrate by parts
the first term of Eq. (9) only once. Then the system is of
the form
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As is seen, this system is more convenient for numerical
implementation although the factor m is under the
summation sign, which affects the character of con-
vergence of our problem. Let us consider the ways of
solving system (13) or (16) with boundary conditions
(14) and initial values (15). As in the work by Mikhai-
lenko (1978, 1979) we consider two versions of the
method. The first version is the use of an explicit differ-
ence scheme for solving problem (14)-(16). The second
version is based on the application of a finite integral
cosine transform in the variable z from O to a and the
reduction of our problem to the Cauchy problem for a
system of ordinary differential equations with constant
coefficients.

First version of the method

The first version of the method is based on the finite
difference representation of problem (14)-(16). The
scheme used here is explicit, with a truncation error of
second order with respect to time and space. System
(16) in a finite difference form can be written as

1
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where z=k- Az, t=p- At,
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The infinite system (17) is replaced by a finite system
and is solved numerically. Boundary conditions (14) are
approximated in a familiar way. For the nodes k of the
difference scheme (z,=k-Az) where the velocity v, is
constant along the lines parallel to the x axis from 0 to
b, system (17) degenerates into one equation with the
parameter n:

1
S [RET —2RE+RE™]

n ﬂ

1
= =7 Vs RE+ 5 S IRE  —RDv;
+(Rf, —2RE+RE_ vl —(RE—RE_ )02, ]
_n2n2
—F,, e%m cos 7:“0- 1. (20)

Here the velocity v, varies from point to point along
coordinate z. In this case we have a classical separation
of variables as in the method based on a combination
of partial separation of variables and finite-difference
methods, developed in Mikhailenko (1973), Alekseev
and Mikhailenko (1976, 1978, 1980).

In the nodes k of the finite-difference scheme where
the velocity v, (x) varies arbitrarily along the lines
parallel to the x axis from O to b the finite system (17)
is solved.

In the calculation of the coefficients of the system
(17) the quantities

1 b
hy(s)=+ | v2(x) cos o dx. 1)
by s b

are needed. At the fixed points k of the scheme, the
function v(x), arbitrarily varying from O to b, is appro-
ximated on nonuniform intervals by the linear function
v, =V, (1+ f,x). Here v, is the initial velocity at each
interval [ and B, is the coefficient of velocity variation.
At each interval, the integral (21) is calculated analyti-
cally. The coefficients h,(s) of system (17) are calculated
with the help of a special subroutine.

The complexity of subsurface geometries in the di-
rection of the coordinate x does not cause additional
computational difficulties in solving system (17). De-
pending on the complexity the interval of integration
between the limits O and b in (21) is partitioned into a
sufficiently large number of parts in which the function
v(x) is approximated well by a linear function. It
should be noted that the dimension of the finite system
(17) is independent of this partitioning. Later we will
show that the dimension of the system depends on the
spectral width of the signal f(t) in the source as well as
on the spatial dimension of the source. Moreover, the
decrease of the coefficients h,(s) with increasing param-
eter s can be changed if one uses splines of different
order for smoothing the function v (x). In the numerical
solution of system (17) with the explicit difference
scheme most of the computing time is taken for the
calculation of the convolution type sums
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> RE(m)-[h(n—m)+h(n+m)]. (22)

These sums are calculated with the fast Fourier trans-
form (FFT). The use of an array processor allows one
to substantially decrease the computer time of synthetic
seismograms for complex subsurface geometries.

The convergence of a series of the type of (22) is
determined by the behaviour of the function RY(m) with
m increasing and the extent of decreasing the coef-
ficients h,(n+m) as well. One can show that in the
approximation of the velocity v (x) by piecewise linear
functions we obtain the order of the decrease of the
coefficients h,(n+m) as 1/(n+m)>. Obviously the de-
creasing character of the coefficients h,(n+m) with m
and n increasing is determined by the smoothness of
the function v?(x) according to the well-known theo-
rems of the decrease of the Fourier series. Thus, mak-
ing use of splines for smoothing the given function
v2(x), we obtain an additional convergence of the con-
volution type sums (22).

Let the interval of integration from 0 to b in in-
tegral (21) be partitioned into L non-uniform parts. If
for the approximation of the function v}(x) one uses
fifth order splines S(x), the expression for the coef-
ficients h(s) takes the form:

b* STX STX
h(s)=—— M, M, si —1]
(s) [ sin——— b b
b3 M,—M,_, STX,_4 STX,
S6n6,zz(x,—x,_1 )(cos oS )
(23)
1
0) = [ ho (M, xi— My x)
L
—71%Z(M,—M,_1)(xf—x,6_1)/(xl—xl_1)].
1=2
Here
4*$(x)
M,= I x=xl, s=(n+m). (24)

The coefficients h(s) decrease asymptotically as 1/s®
(the first term in (23) equals zero).

Let us now consider some models for complex sub-
surface geometries for which system (16) degenerates.
Let for example the velocity be

Av(z)( lnx)
5 1—cos 5 )

v(x,2)=v,(2) +
Take for definiteness

v2(x, z)= A(z) — B(z) cos l”—x, (25)

b
where

A(z)=vy(2)+ 4v(2)/2, B(z)=A4v(z)/2.

Figure 1 presents velocity variations given by formula (25)
with fixed values 4, B and /=1, 2, 3, 8. By changing the
values of coefficients A and B along the coordinate z
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a) b)
Velocity (km/sec) Velocity (km/sec)
0 1 2 0
OW 04
b/2 b/2
b b
X X

c)
Velocity (km/sec)
0 1 2 0

0 iy I 0 4 +
b/2 b/2
b b

X X3

Velocity (km/sec)

Fig.1a-d. Variation of the velocity v (x,z) given by the for-
mula v2(x, z)= A(z) + B(z) cos Lb{’ depending on the epicentral

coordinate x, for various values of [: a [=1, b [=2, ¢ |=3,
d /=8. The values of A(z) and B(z) are fixed.

and by fixing ! one can obtain sufficiently complex
models of media. Substituting the velocity v?(x, z) given
by formula (25) in system (16) we obtain:

ot? "0z
190
20z

02R(z,n, 1) 0 [A(?R(z, n, t)]

0z

{BEER(Z, n+Lt)+R(z,n—|, t)]}
0z

—A (n_b1£)2 R(z,n,t)

nn?
BW[(rH—l)R(Z,n-H, t)+(m—lR(z,n—1,1)]

—n2n2

—F,(z) ¢ cos ’;x‘) 7). (26)

Integrals of the form

(n+l)nx for m=n+l,

dx= 1
10 for mEn+l,

2b
5l oo

based on the orthogonality of sine- and cosine-functions
in the interval [0, b], have been used and reduce system
(16) to (26).

Equation (26) with fixed value of I can be solved by
the finite-difference method for n=0, 1, 2, 3,.... Equa-
tion (26) is solved for boundary condition (14) and zero
initial values (15). The displacement U(z,x,t) is de-
termined by summing up of series (8).
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System (16) can be simplified if the velocity v(x, z)
is expanded into the Fourier series

(

02 (x,2)=—2 +Zd()cos b (27

d(z)= jzﬂ(x 2 cos ™ dx, 28)

b

and we take a small number of terms in (27). One can
do it if the function v?(x) is slowly varying along the
coordinate x.

One can avoid the calculation of integrals (21) if the
velocity v (x) is given in the nodes of a uniform grid. In
this case the number of nodes should coincide with the
number of terms M of convolution type sums (22). Let

M-1

y(n)= ZOR(m)[h(n—m)+h(n+m)] (29)
where
h(nim)zlf (x) cos MEMTX (30)

Sum (29) can be calculated with the help of the FFT.
For this purpose we determine the functions R(m) as
follows:

R(m)= {R(m)

The function h(m) is represented in a similar way. We
then apply the discrete Fourier transform to Eq.(29):

for m=0,1,2,...,
for m=M,M+1, ...,

M—-1
2M—1.

2M-12M-1 Znink
Y(k)= ) ) Rm)[h(n—m)+h(n+m)]e2M . (31)
n=0 m=0
Here
b ﬂrlk
Y(k)=) y(n)ezM
n=0

Equation (31) is presented in the form:

2M—12M—1 2mi 2
YW= Y Y Rmed™ h(n—m)en
n=0 m=0
2M-12M-—1 27” 2mi Z_(n+mk
+ Y Y Rime ™M hin+m)ed
-0 m=0
2M -1 ﬂmeM 1 21:1(’l mk
Y. R(m)ezM Z h(n—m)e2M
m=0
2M—1 —2mm ZM 1 27 G myk
£ Rome ™Y hnemyen
m=0 n=0
2M-1 2mkn
=H(k)- R(m) cos (32)
mgo 2M
Here
2M -1 27:1(" m)k
H(k)= Y h(n+m)eM (33)
m=0

Taking the real part of (32) we have:
Y(k)=2Re{R(k)}-Re {H(k)}. (34)

The values of j(n) can be obtained by the inverse
discrete Fourier transform:

1 2M-1 2ni nk
J(n)= M Z Y(k)e 2M (35)
k=

where Y (k) is determined by formula (32). The real part
of (35) is obtained in the following way:

y(n)=2Re{j(n)}, M-—1 (36)

If one assumes that in formula (33)

n=0,1,...,

b

h(m)== j (%) cos X jx
0 b

~0 for m=M,M+1,...,
the integral can be replaced by the discrete Fourier

series (see, e.g. Gold and Rader, 1969). Hence, from (33)
we have:

H(k)=vl(k-Ax), k=0,1,2,....M—1, (37)
Here
Ax=b/M.

Thus, it is not necessary to calculate integral (30).
Instead, we only need to specify the velocity in nodes of
the uniform grid on the interval from 0 to b. The
velocity vZ(x) is assumed to be a sufficiently smooth
function of the coordinate x. For calculating the values
of Y(k) and y(n) we make use of the forward and
inverse FFT.

Second version of the method

The system of partial differential equations (16) can be
reduced to a system of ordinary differential equations if
we use the finite integral cosine transform along the
coordinate z from 0 to a:

Wi, n, 1) = R(zn,t) cos ?dz, (38)
0

1 2 @ '
R(z;m ) == W(O,n,0+= Y W(in,1)cos % (39)

i=1

We multiply (16) by cos? and integrate by parts from

0 to a. Performing manipulations similar to those men-
tioned above and making use of condition (14) we
obtain:

d2W(i,n,t)
dt?

=S Y 8 Wm0 Dynm, i)

m=0j=0

——Z Zém, W(]mt)D(nmlj)
m=0j=0
—n2n2 i2n2

nmx lT[ZO
_e4b2no .e " %a2ig io COS

S, (40)

0 Cos
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1 if m=%0, j*£0

6= {3 il m=0,j#0 or m+0,j=0
Lif m=j=0

D,(n,m,i,j)=%4[h(n—m,i—j)+h(n—m,i+j)
—h(n+m,i—j)—hn+m,i+j)],

D,(n,m,i,j)=%[h(n—m,i—j)—h(n—m,i+}))
+h(n+m,i—j)—h(n+m,i+j)],

4 4 b
h(r, s)——bgg v3(x, 2) cos%cosy’;—{dxdz (41)
System (40) is solved with zero initial values
dWw(i,n,t
Wil =20 EmD g (42)
dt  |,_o

We obtain an analogous system, however without the
terms m and j under the summation signs, if we employ
the finite integral cosine transform (38), (39) for system
(13). In this case, besides coefficients (41) which are
double integrals of the velocity v2(x,z), there will be
coefficients which are double integrals of the derivatives
of the velocity v2(x,z) with respect to x and z. The
infinite system (40) is approximated by a finite system
and is solved numerically by means of the explicit
difference scheme:

1
Tl (i, n) = 2WP(E, n)+ WP~ (i, n)]

=Y iém WP*(j,m)D,(n,m,1i,j)
b o ™Mb
pMo1I-t
__Z Y o, —W(]m)D(nml])
amOJ

X0 inz
— ¢#5m gog 0 e4”210 cos —

f(@) (43)

The displacement U(z, x,t) is determined by summing
up the series (39) and (8).

For the calculation of integral (41) the integration
domain from 0 to a is partitioned into non-uniform
segments. In each of these segments the velocity is
approximated by the bilinear function vy ,=a,,+b;;x
+¢z+d,,xz. The coefficients ay,, by, ¢, d,, are de-
termined from the velocity values in the nodes of the
rectangle. In this way the value of the integral (41) in
each segment is easily calculated analytically. If we sum
up the values of the integrals for all segments we will
obtain the coefficients h(r,s). Due to the fact that the
function v (x,z) is continuous at all the boundaries of
the segments, the coefficients decrease as 1/(r*+s?). A
discontinuity in the velocity function is approximated
well by a gradient layer whose width is much less than
the wave-length. The number of segments used for the
calculation of the coefficients h(r,s) depends on the
complexity of subsurface geometries. Here, the coef-
ficients h(r,s) are calculated with the help of a special
subroutine.

In numerical solutions of system (43) double sums
of the convolution type
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M-1J-1

Y WE(G,m)-h(ntm,itj) (44)

m=0 j=0

are calculated with the help of a FFT. The use of an
array processor considerably reduces the computer time
for synthetic seismograms of complex subsurface
geometries. The convergence of the double sums of type
(44) is determined by the decrease of the function
W"(] m) and the coefficients h(n +m,i+j) while m and j
are increasing. The behaviour of the function W2(j, m),
as will be shown, depends on the smoothness of the
signal f(t) as well as on the spatial distribution of the
source. Moreover, using two-dimensional splines of dif-
ferent order for smoothing the velocity function vy(x, z)
in the integral (41) one can also change the decrease of
the coefficient h(r,s) in a similar way as in the one-
dimensional case (see formulas (23), (24)).

Note that in calculations of the double sums (44)
one can avoid the calculation of integral (41). As in the
one-dimensional case it can be done here for the func-
tion vy(x,z) which is given in the nodes of a uniform
grid, the number of nodes along the coordinates x and
z coinciding with the number of terms to be summed
up in (44).

For some particular models of two-dimensional me-
dia, e.g. for media given by formulas of type (25), the
system (40) degenerates.

Lamb’s problem for complex subsurface geometries

Consider Lamb’s problem for the elastic inhomo-
geneous half-space z>0, where P and SV wave veloci-
ties are arbitrary piecewise continuous functions spa-
tially varying along the coordinates x and z. For the
sake of simplicity we consider the density p constant
throughout the model. At the boundary z=0 a vertical
force is applied; then the boundary conditions at the
free surface are of the form

ou 0w
(03 = 203) 5+ 07 5 =F(x—x)-f (1)
(45)
6W+6U 0 for 0
zZ=
ox 0z

Here U and W are horizontal and vertical displace-
ments, respectively. As earlier, we take F(x —x,) in the
form

n
F(x—x,) =1/3 e~ nolx=x0)?,
T

Having selected the parameter n, large enough, we
will consider a source which is close to a point force.
The second order partial differential equations, describ-
ing P—SV wave propagation in a two-dimensional me-
dium with rectangular coordinates x and z, can be
written as

0 [,0U oW
5[ —+( )82]
ow oU 0*U
O 2 (Y LYV 2 4
+8z [vs (6x +8z)] ot? (46)
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d[,(0W U\ 0[,0W ., .,0U] &*W  &R(ni)
ox [vs (K-I- az)]JrE[ 5 T2 )_] ot? ot?
(47) nm? 20,
with zero initial values = Z m-R(z,m,1)- ‘.[ v5(x, 2)
W mnXx . nmx
Ul_o= W|t=0_a_U_ =€_ . (48) sstdex
Ot|_o Ot l_o

Let us introduce new boundary conditions

=0 for x=0 and x=b. (49)

We apply the cosine and sine integral transformations
with finite limits to the system of equations (46), (47):

b
R(z,n,t)=| W(z,x, ) cos %dx (50)
0

1
W(z, x,t)= 5 R(z,0,t)

2 o0
+2 Y R(z,n, 1) cos = (51)
b= b
b . MmX
S(z,n,t)={ U(z, x,t) sdex (52)
0
22 X
U(z, x, t)_B Z S(z,n,t) smT (53)

We multiply Eq.(46) by sin% and Eq. (47) by

nmx . .
cosT and integrate by parts from 0 to b, making use

of conditions (49). Then, substituting series (51), (53)
instead of W(z, x,t) and U(z, x, t) in the integral terms of
the system obtained, we have

028(z,n, 1)
ot?
2 ™ 2b
= _nnz Y m-S(z,m,t)-~ [ v2(x,2)
b m=0 bO i
nX nmx
cos cosde

zb
—_—y =2 E“ v2(x,2)—20}(x, 2)]
0

sm—bgsm%{dx (54)

nn aS(z m,t) 2%

2
3 SO 2 )
Smmnxs nTde
—b n b X

® 259 O0R(z,m,
Z B(j) Z[vf,(x,z) (gzm t)]

mmx nmtx

cosTcosde

n i 209 2

+y g E(j)a— (W2 (x, 2) =207 (x, 2))

- S(z,m,t)] cos ;t cosn%dx (55)

If we take the velocities v, and v, independent of
the coordinate x close to the free surface, the boundary
conditions for z=0 will be as follows:

OR(z,n,t
v;%ﬂvg—zﬁ)%s&,n,t)
= ¢ ¥ cos 0 £(r) L for z=0 (56)
aS t
M—ER(z, n,t)=0 (57)
0z b

Problem (56), (57) is solved with zero initial values

0S(z,n,t)
S(Z’n’t)lt=0:R(z’n’I)|'=0=(T
t=0
OR(z,n,t)
=~ |~ ° 58
o (58)

Problem (54)-(58) is solved in a similar way as the
problem of SH wave propagation in compelx subsur-
face geometries. We will not discuss all the details of
the two versions of the method used here, but focus on
the main features of the numerical techniques. In the
first version the finite difference scheme used to repre-
sent the problem, (54)-(58), is explicit with a truncation
error of second order. System (54)-(55) degenerates into
two equations in the nodes of the finite difference grid,
if the velocities v, and v, are constant form O to b
along the coordinate x.

Consider a particular case of complex subsurface
geometries where system (54)-(55) is of a simple from.
Let the velocities v2(x,z) and v}(x,z) be given in the
form (25) (see Fig. 1)

Inx
v2(x,2)=A,(2)+ B,(2) cos ——,

b (59)



v(x,2) = A,(2)+ B,(2) cos’”Tx. (60)

The difference of the compressional and shear wave
velocities is as follows:

[vp(x, 2)—2 vZ(x, 2)] = A ,,(z) — B () cos IETX (61)

where
A (2)=A4,(z) —2A4,(2),

B,(z2)=B,(z)—2B(z).

For this model the system (54), (55) takes the form
@28(z,n, t)

ot?

_d [AsaS(z,n,t)] HT
0z 0z b
_EGR(z,n, t) #n T*

b dz ps p2

18

20z

n(n+1) 0
25 3z L0 R

n(n o
" 2b oz
AT 0

2 b oz

aa [A,R(z,n,1)]

A,5(z,n,1)

{Bs% [S(z,n+1Lt)+S(z,n—1, f)]}

n+11)]

[B,-R(z,n—1L1)]

(z,n—1L1)]
nm
p2b2[(n+l) (z,n+11)
+(n—1)-S(z,n—11)] (62)
92 R(z,n,t)
ot?

0 dR(z,n,t)] nm 0
-5 |4 T]*?@D“N‘S(Z’”’ 2

T, oS(z,n,t) n*n?

AT ARG )
;;Z{B aa [Rz,n+Lt)+ R(z,n— tr)]}
e (;;l)a [B,, S(z,n+110)]
- (2b I)aa [B,,-S(z,n—11)]
Bps;ba [S(z,n+1,1)+8(zn—1,1)]
+BS%[(n+I)R(z,n+I,t)

+(rn—=DR(z,n—11)]. (63)
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Selecting, for example, the parameter [=1 in formulas
(59)-(61) we obtain a stratified inhomogeneous model
where the velocities v, and v, also vary smoothly along
the epicentral coordinate x.

The second version of the method is the application
of finite integral cosine and sine transformations along
the coordinate z from O to a:

Y(i,n,t)=| R(z n, 1) cos ”%Zdz, (64)
(4]

1
R(z,n,t)=-Y(0,n,1)
a

2 o0
+2 3 ¥i,ncos ™2, (65)
aisy a
X(i,n,t)=[ S(z,n, 1) sin —— dz, (66)
0 a
2 = . imz
S(z,n,t)== % X(i,n,t)sin —. (67)
e a

To apply these transformations we introduce the
following boundary condition instead of boundary con-
ditions (45):

W
WEXD o wes, ), o =0. (68)
az z=0 Z=a

Z=a

The compressional line source is presented in the right-
hand side of system (46)-(47) through the components
of the vector

F=grad [F,(x —xo)- F3(z—20)] f(0). (69)

We multiply Eq. (54) by sin =2 and Eq. (55) by cos =2
a a

and integrate from 0 to a. Performing manipulations
similar to those mentioned above and making use of
boundary condition (68), we obtain

0* X (i,n, 1)
ar?

nt £ & mn _ . o
==3 XX TYU,m,t%DI(n,m,t,J)

m=1j=1
nt X X ir . o
+— 3 Y —8,-6;-X(j,m,1)- Dy(n,m,i,j)
b oj=0 @

o0 0

—3 45 -8, X (j,m,1)- D3(n,m,1,j)
a ,— 0j=0
_ Z Z _Y(; m,t)- Dy(n,m, i,j)
m=1i=1
4””“/7 :b::ﬂu‘l/73 ‘:-01;10
ab2
cos sin iz ; (70)
a
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02Y(i,n, t)
ot?
=_"T” 275 8,X(j,m,t)- D5(n,m, i, j)
=0

j=0

>
+25 5 S Z ¥, m, 1) Dy(nm,i,j)
b m=1 j= la

S Y s 6,XGm ) Dy m i)
mOJ 0o d

+_§ Z~——Y(]mt)D(nmlJ)
m=1j=1

4m
4b2no e 40210
"0

nmx, . inz,

- COs b sin P (71)

where

D,(n,m,i,j)=z[h,(n—m,i—j)—h (n—m,i+}))
+h(n+mi—j)—h,(n+m,i+j)],

Dy(n,m,i,j)=3[hy(n—m,i—j)=h(n—m,i+})
+hy(n+m,i—j)—hy(n+m,i+j)]
—5[hy(n—m,i—j)—hy(n—m,i+j)
+hy(n+m,i—j)—h,(n+m,i+j)],

Dy(n,m,i,jy=%4[h,(n—m,i—j)+h,(n—m,i+))

_hZ(n+m’l_.])_hz(n+m?l+j)],
h(r,5)=— jf 2(x, 2) cOs = cos o dxd (72)
r =— VX, Z E— —axaz,
e aboo a b
4 ab

halr,s)=— g (j)u (x,2) cos%cos?dxdz (73)

I, if m+0, j+0
0pj=143 if m=0, j£0 or m=0, j=0

1 if m=0, j=0

System (70), (71) is solved with zero initial values

. dX(i,n,t
Xm0l o =200 g, 74
t=0
dY(i,n,t)
Y(@,n0_o= =—5 | =° (75)
t=0

In the numerical solution of system (70)-(75) the in-
finite system (70), (71) is replaced by a finite one, and
we use an explicit difference scheme with a truncation
error of second order. Integrals (72), (73) are calculated
analytically after the velocities v,(x,z) and vy(x,z) are
approximated on nonuniform segments e.g by a linear
function. We can avoid calculating these integrals, as
mentioned in the foregoing, if the velocities v,(x, z),
v,(x,z) are given on a uniform rectangular grid and the
numbers of mesh elements along x and z coincide with
the numbers of terms to be summed up in series (51),
(53) and (65), (67).

On some aspects of convergence
and accuracy of the method

The convergence of the algorithms described here de-
pends on the following two factors: the smoothness of
the function f(¢) in the source (i.e. the decrease of its
spectrum with increasing frequency) and the extent of
spatial distribution of the source. Let us illustrate this
on problem (1)-(6) for a homogeneous medium. The
exact solution of the problem under study after the
application of finite integral cosine transforms (7), (8),
(38), (39) with respect to spatial coordinates is presented
in the form

nmtx

Ul(z, x, t)—ib Z W(z n,t) cos%co 5 (76)

IlMg

where the function W(i,n,t) is

n2n2 in2

nmwx inz
W(i,n,t)=e 4b*roe 4a*io cOS— 2 COS — >

. %(j)f(r)sinv(t—r)dr. (77)

Here

, , (n*n* i*n?
v _Us 7“"()—2 .

As is seen from formula (77), the convergence of series
(76) depends on the values of parameters n, and i,
which characterize the spatial distribution of the
source, and also on the smoothness of the function f(t)
in the convolution integral of (77).

Select the function f(t) in the source in the form

f(t): _2)’(I — to)e_y(’—lo)z

where ¢, is selected such that f(0)~0. The parameter y
determines the pulse width. In this case solution (77) is
of the form

L nmTX inz
W(i,n,t)=e 4b*noe 4a’nocos b O¢ o
T -2
- |/ —e 4vcosv(t—t,) (78)
14
for t>t,. In numerical calculations we selected the

parameters n, and i, large enough. In this case we deal
with a source close to a point source, and the con-
vergence of the method is fully dependent on the
smoothness of the signal f(¢) in the source.

In the numerical solution of system (43) the choice
of the step A4t is determined by the condition

(v "b’; +’ . )At<2 (79)

The necessary condition of stability (79) is obtained
when the velocity v, is constant.
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Fig. 2. The model of the medium and theoretical seismograms
of SH waves for different epicentral distances. The source empit-
ting SH waves is located at the point O,. The distances are
measured in terms of the predominant wavelength, WL, and
the time in terms of the predominant period, T. (v, =1.4v,, v,
=2v,)

The total error of the method consists of the trun-
cation error resulting from difference schemes and the
error of spatial frequency cut-off in Fourier series. The
method was tested against several problems for particu-
lar models of inhomogeneous media (see Alford et al,
1974; Alekseev and Mikhailenko, 1980). The results
obtained in these papers and the results obtained with
the algorithm described here are in satisfactory agree-
ment.

The purpose of this paper is not to study dynamic
peculiarities of seismic waves in two-dimensional in-
homogeneous media. In what follows we give examples
of calculation of synthetic seismograms for some media
with non-complex geometries.

Figure2 shows the model of the medium and
theoretical seismograms of SH waves for different epi-
central distances at the free surface. The source is lo-
cated at point 0. The distances are measured in terms
of the predominant wavelength, WL, and the time in
terms of the period, T The velocities of the medium are
v,=1.4v, and vy;=2v,. According to Fig.2, the direct
wave from the source is recorded as the first arrivals.
After that the wave reflected from the sections with
velocities v,, vy is recorded.

Figure 3 shows a more complex model and theoreti-
cal seismograms of SH waves for this model and dif-
ferent epicentral distances at the free surface. The
source is located at the point O,. According to Fig. 3,
after the direct wave from the source, the waves re-
flected from the flanks of the fault and later turning
into refracted waves are recorded. In addition, here one
can also see multiple reflections.
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Fig. 3. The model of the medium and theoretical seismograms
of SH waves for different epicentral distances. The source empit-
ting SH wave is located at the point O,. The distances are
measured in terms of the predominant wavelength, WL, and
the time in terms of the predominant period, T. (v,=2v,, v,
=1.5v)).

Conclusions

An algorithm for the calculation of synthetic seismo-
grams for complex subsurface geometries by a com-
bination of finite integral Fourier transforms and finite
difference techniques has been presented. Two versions
of the method for the solution of the SH-wave equation
and the elastodynamic wave equation have been de-
scribed.

One of the advantages of this algorithm is that it
allows one to compute synthetic seismograms for ma-
ximally complex sub-surface geometries, including in-
homogeneities which are much less than the predo-
minant wavelength. At the same time the complexities
of the geometry do not substantially increase the com-
puting costs. Moreover, the computing costs could be
reduced significantly by performing the computations
On an array processor.
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