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Solution of the stationary approximation for MT fields
in the layered Earth with 3D and 2D inhomogeneities

M. Hvozdara

Geophysical Institute of the Slovak Academy of Sciences, Dubravska cesta, 84228 Bratislava, Czechoslovakia

Abstract. The solution of the stationary approximation
for MT fields in the layered Earth with a 3D or 2D
disturbing body can be effectively performed by means
of generalized double-layer potential. This scalar poten-
tial expresses the effect of current dipoles distributed
over the surface of the disturbing body. The density of
the double layer (dipole layer) can be obtained by so-
lution of the scalar integral equation of the Fredholm
type with a weakly singular kernel. Formulae and re-
sults of numerical computations of the intensity of elec-
tric and magnetic fields on the surface of the Earth for
some block models are presented. The anomalous field
is similar to the field of a horizontal electric current
dipole oriented in the direction of the exciting electric
field and situated in the disturbing body. This method
gives general features of the disturbing field for long
periods of MT fields and is also applicable to geother-
mal potential problems.

Key words: Electromagnetic induction — Conductivity
anomalies — Electrical methods — Potential fields —
Geothermal anomalies

Introduction

In the last decade considerable progress has been
achieved in numerical modelling of MT fields for media
with 3D inhomogeneities of arbitrary shape. The most
advantageous method for the solution is the method of
vector integral equations, which was presented and de-
veloped, e.g., in Raiche (1974), Weidelt (1975), Stodt et
al. (1981) and Hvozdara (1981a, b). First the basis of
the theory is given briefly and then the useful long-
period (stationary) approximation for the MT field is
presented. Consider a 3D disturbing body embedded in
the L-th layer of the layered Earth. The conductivity of
the body is or, its volume 7 and surface S; the body is
assumed to be fully embedded in the L-th layer , with-
out penetration into neighbouring layers. The layered
Earth has planar boundaries z=0, hy, h,, ..., hy_, and
the electrical conductivity in the m-th layer is o,,; we
assume all layers and the disturbing body to be non-
magnetic. The air in the upper halfspace z<0 is consid-
ered non-conductive and non-magnetic. The undistur-
bed (primary) electric field we denote by E?(r) and
which is assumed to be have time dependence exp

(—iwt), where w=2n/T is the angular frequency. We
observe the electric field E(r) at the point P(r), which is
different from the primary one, due to the presence of
the disturbing body. The basic vector equation for the
E(r) field is (Raiche, 1974):

E(r)=E"(r)+(or—a)[T(r,r)E(r)d7, (1)

where I'(r,r) is Green’s tensor function (dyadic), the
element I;(r,1’) being calculated as the i-th component
of the electric field at a point P(r) due to the elementa-
ry j-oriented electric dipole located at point Q(r'). The
elements I;;(r,r') of the tensor satisfy the inhomo-
geneous Helmholtz equation:

V2Ei+k* L= —iwpoo(r—r') oy, (2)

i, j=1,2,3, (x,v,2), k=(1+i)(woue/2)** is the wave
number. J(r—r) is Dirac’s function and §;; is
Kronecker’s symbol. These functions satisfy well known
continuity conditions on planar boundaries z=0, hy, h,,

. of the layered medium. Details of the method for
calculating Green’s dyadic function are presented, e.g.,
in Raiche (1974), Hvozdara (1981a). It is proved that
the components of the dyadic are:

: J .. .
I;j(r,r/):iQ)ﬂojFéij+O'_l E—le]F. (3)

Xi

The vector potential of the j-th oriented dipole ’F has
horizontal and vertical components for the case of x-
and y-oriented dipoles (j=1, 2=x, y) and a vertical
(z—) component only in the case of a vertical dipole
(j=3=z). The component i=j of the /F contains the
source term

exp[ik(r—r)]-|r—r'|" - (47)" L.

If we consider the point P(r) to be in the volume t
of the disturbing body, then Eq. (1) is a vector integral
equation with a dyadic kernel which is weakly singular.
This singularity is integrable by the method given by
Weidelt (1975). According to experience, it is suitable,
in the numerical solution of the integral equation, Eq.
(1), to divide the volume 7 into cubic elements in order
to decrease numerical errors. After solution of the in-
tegral equation, the vector integral Eq. (1) can be used



for the calculation of the electric field outside the
body.

A similar volume integral formula holds for the
magnetic field too:
H(r)=

H?(r)+ (o7 —o) [h(r,r) E(r) d 7, (4)

where H?(r) is the prlmary magnetic field correspond-
ing to EP(r), h(r,r') is the dyadic of the magnetic effect
of the dipoles induced in the disturbing body,
hij(r,r') = (curl’F),. (%)
Numerical calculations by the vector integral equa-
tion method is rather computer time consuming, be-
cause we have to deal with a system of three scalar
integral equations of Fredholm type for components
E., E, and E,. Both I}(r,r) and E;(r) are complex
numbers, which increases demands on computer memo-
ry and time. Nevertheless, calculations were performed
by this method for some cases of prismatic bodies
embedded in a halfspace or in a two-layered Earth.
They show that the disturbing EM field is like the EM
field of a horizontal electric dipole oriented in the
direction of the inducing electric field and situated near
the centre of the body.

Long-period asymptotics

In solving EM problems it is often very useful to know
long-period asymptotics, which in our problem, is
equivalent to the stationary current approximation. We
can obtain this approximation by putting the angular
frequency w to zero in time-harmonic formulae, le.
k?—0. For this case we have, according to Eq. (3):
Irr)=c""! —a—diij
15} b aXL
It can be proved that vector potentials /F have the
following form in the stationary case:

)~ HIr—r'["le;+d¢/0xje.}, (6)

j=1, 2, 3=(x, y, z), where ¢ is a harmonic function
satisfying pertinent boundary conditions imposed on
vector potentials F: e.g. for the halfspace

¢=In[R,; +(z+ 2],

F=(4

where
Ri=[(x—x)+0—y)+(z+2)]"%

We find that each element of the Green’s dyadic I'(r,1’)
can be derived from a single scalar Green’s function
g(r,r’), which corresponds to the point current source in
the L-th layer. Similarly, as in Hvozdara (1983a), we
obtain

2

Ej(r»r/)= a a ’

—(@noy) ' ——grr), (7

and Eq. (1) for the i-th component gives:
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Or—0yp, 0

E;(r)=Ef(r)—-

d -g(r,r)drt. (8)
6Xj

E(r
dno; O0x; ' (
The scalar Green’s functions g,(r,r’) satisfy the equa-
tions:

m=L

m=L, ©)

0,
V2 gnr, 1) = { —47é(r—r),

and the known boundary conditions for the scalar po-
tential of the stationary point current source embedded
in the point Q(r')et of the L-th layer; index m specifies
the Green’s function g(r,r’) for the individual layers
where point P is considered.

It is well known that the stationary electric field can
be obtained from the gradient of the scalar potential
Ul(r), ie.:

U (r) o Up(r)
E~ = -— . / = —
1 axi ? J(r) ax; >
(10)
oV
EF= — (r), Q(r)er,
axi

Ur(r) denotes potential inside the body t and V(r) is
the potential of the primary electric field. Equation (8)
then gives:

1—
Ur)=V(r) +-§;/£ jgrad'g(r, r')-grad Up(r')dt'. (11)

Now we can apply Green’s formula for the volume
integral containing the scalar product of two gradients,
Van Bladel (1964):

fgrad A-grad'Bdv' =[A0B/on'dS' —[AV?BdY,  (12)
T S T

where 0B/dn’=n"-grad'B is the derivative with respect
to the outward pointing normal n'. We put 4=U(r'), B
=g(r,r') and with respect to Eq. (9) the potential out-
side the body 7 is given by:

1 _O'T/O'L .

ndS',
ype (r,1)

P(r)¢r.
(13)
If we consider the point P(r)et, we have to take into

account that V2g,(r,r')= —4nd(r—r’), for m=L, and
therefore:

JUr(r) VgL (r,r)dv
= —4nfUr(r)o(r—r)d7 = —4n Up(r).

Then we obtain, for P(r)ezt:

I_O'T/O'L‘.(U( ) 0

yp ! T -g.(r, r)dS'}

(14)

Ur(r)=(or/o7) {VL(Y) +

In this way, we have proved that long-period asymp-
totics of the time-harmonic fields give the same for-
mulae as were obtained by another method (in Hvoz-
dara, 1982; 1983) — using Green’s theorems and per-



216

tinent boundary conditions for the electrical potential
fields. Both Egs. (13) and (14) show us that the poten-
tial of the anomalous electric field is given by a surface
integral, which is, in principle, the generalized dipole-
layer (double-layer) potential — instead of the classical
kernel d|r—r'|~!/on’, we have dg(r,v')/dn’. Each surface
element dS' at the point Q(r’) of the boundary S pos-
sesses a current dipole oriented in the direction normal
n and of moment dM(r')=(c.—0o7)Us(r')dS’. The
anomalous potential is a superposition of potentials
due to all dipoles distributed over the surface S of the
disturbing body. It is advantageous that, in contrast to
time-harmonic problems, we deal with surface integrals
of scalar functions, which saves a lot of computer time
and memory.

The Green’s function for the simplest case (a dis-
turbing body surrounded by an unbounded conductive
medium) is well known:

gr,r)=R '=|r—r|!
=[(x—=x)2+(y—y) +(z—2)]"'? (15)

and was used for electrostatic problems, e.g. Van Bladel
(1964), and for elastostatic problems by Jaswon and
Symm (1977).

For the case of a halfspace (N=L=1), we have
Green’s function in the form:

glrr)=R™!'+R7", (16)

where R, =[(x—x)?>+(y—y)*+(z+2)*]"* is the har-
monic term which expresses the mirror effect of the
halfspace surface. We use this function in numerical
calculations for a block body embedded in a halfspace.
Results are given in Hvozdara (1983a).

For the case of a two-layered Earth with a 3D body
in the substratum we have derived Green’s function in
the form:

gi1(nr)=2(1+0/0,)""

C 2 (—@)"{[p® +(2nh+z—2)?] 712

n=0

+lp? +@nh+z+2)2]712, ze<0,h), (17)
and
g2(nr) =R~ +q[p* +(z+2 —2h)*]" 1

+(1=g") Y (—qV'[p*+Qnh+z+2)2]1"12,  z>h, (18)
n=0

where

p?=(x=xP+( =y  q=(1-01/02)/(1+0,/0,),

o, and o, are electrical conductivities of the layer
ze{0,h) and substratum z>h, respectively. In a similar
way we can obtain the necessary scalar Green’s func-
tions for other models of the layered Earth.

For calculation of the potential by Egs. (13) and
(14), it is necessary to know the distribution of the
potential Ur(r') over the surface S. It can be calculated
by means of an integral equation, which we obtain in
the limit P(r)—»S_ (from the interior) in Eq. (14), and
considering the discontinuous properties of the double-

f)=(—or/oL)[Ur(r) —qo],

layer potential on the surface S. Then we obtain the
following integral equation with weakly singular kernel:

B
_ vy i
l+oq/0L L(r)+2n

-)(UT(r’)agL(r, r')/on'dS’, P(r)es, (19)
5

Ur(r)=

where f=(1—oy/o.)/(14+0y/o;). The integral on the
RHS of Eq. (19), denoted by f, is understood in the
sense of the principal value; it means that a small area
around the point P(r)eS is excluded from integration
with the singular part [r—r'|~! of g,(r,x') because this
integrable singularity has been taken into account in
the limit P(r)-»S_. The harmonic part of g;(r,r) is
integrated over all the surface S. It is convenient to
define the function f(r), P(r)eS in the form:

P(r)es, (20)

where qo=S"'{V.(r)dS is the mean value of the excit-
S

ing (primary) potential on the surface S. Using this
function we can rewrite Eqgs. (13), (14) and (19) in the
form:

Un(0)=V,u(0)+ @)~ " [f () 0gn(r,x)/0n dS',  P(r)¢r,

(21)
Ur(r)=(ar/o7) {V(r) —qo+(4m) "}
-jf(r’)agL(r,r’)/@n’dS’}+q0, P(r)er. (22)
S
SO =2B[VL(r)—qo]+(B/2m) - §f (') dg,(x,¥)/n'dS,
s PeS.  (23)

Since |B|<1, the integral equation, Eq. (23), can be
solved by an iteration method, as performed by Hvoz-
dara (1983a) for a block body in a halfspace.

After solving the integral equation we can calculate
potentials outside or inside the disturbing body, using
Egs. (21) and (22). The intensity of the electric field can
be calculated as the negative gradient with respect to
unprimed coordinates:

E(r)= —grad U, (r)=E(r) + E}(r), (24)
where

E5(r)=—(4m)~ ' [f(r) grad[n'- grad, g(r,r)]dS’
S

is the anomalous electric field in the m-th layer. It is
clear that a magnetic field anomaly H}; corresponds to
the anomalous electric current density j*=o,E%, ac-
cording to Maxwell’s equations:

curlH} =0, E}, divH}=0. (25)
The formula for the vector H} can be obtained in the
limit w—0 in the volume integral equation, Eq. (4).
Using property (6) of the vector potentials and Green’s

theorems, we can reduce the volume integral to the
surface one:
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Fig. 1. Curves E,/E, at z=0, y=0 for 3D block a
=2km, b=1km, c=2km, hy=125km, o1/, =20
in a time-harmonic plane EM wave, incident on the
surface of the halfspace; E” is x-oriented, E, is
undisturbed electric field on the surface of the

00 10 17

3
Hi=0,[f(r) Y curl/F(r,r)n;dS". (26)
S

j=1

In a previous paper (Hvozdara, 1983a) formulae are
given for calculating the magnetic field H}; as the
superposition of the magnetic fields due to elementary
dipoles distributed over the surface S. For geophysical
purposes we usually need to know the magnetic field
on the surface z=0 of the Earth. For this plane, the
quite simple formula

(Hf)i=o,(4m) " [ () [hic(r,x) i+ hiy(r,x) 0] d S,
N

i=x,y,z, P(r)e(z=0). (27)
Here were obtained the following components of the
tensor of the magnetic effect due to x- and y-oriented

dipoles have been introduced:

heo=(x=x)(y =V)2Ro+2)R5*(Ro+2) 72,

hyy=z'R5>—R5 " (Ro+2z)"!
+(x—x)22Ro+2)R5*(Ro+12) "3,

h x (y y)RO 5

hyy = —hyx, (27a)

hy,=2R53 =Ry (Ro+2)""

+(=y)?2Ro+2)R5*(Ro+2) 72,
hzy= _(X—xl)RES,
Ro=[(x—=x)?+(y—y)*+(z)*]""2

It is interesting that the magnetic field Hf on the
surface z=0 is independent of z-directed dipoles on the
surface S, so that we do not have terms h;(r,r')n. in
Eq.(27). The tensor components, Eq.(27a), are inde-
pendent of the layer parameters o,,h,. The total
anomalous magnetic field on the surface z=0 depends
on these parameters via the density of the dipole layer
f(r).

These formulae and properties can also be useful in
the theory and practice of the magnetometric resistivity
method (MMR), which was developed by Edwards
etal. (eg. Edwards and Howell, 1976). Note that the

/o halfspace

possibility of calculating the anomalous magnetic field
is an advantage of the double-layer potential method,
in contrast to the single-layer method which is also
used for solving stationary current problems (e.g.
Okabe, 1981) but gives no formulae for the magnetic
field.

The derived formulae for the calculation of poten-
tials can be easily adopted for two-dimensional (2D)
bodies within 2D exciting fields. Let the surface lines of
the 2D body be parallel to the y-axis, so that a vertical
section s of the body in the (x, z)-plane is bounded by
a closed curve C. If the potential of the primary electric
field is independent of the y-coordinate, the disturbing
potential and the density of the double-layer f(r') will
be independent of y’ too. The potential at the point
P=(x, z) (we put y=0) can be calculated by integration
in Egs. (21)-(23):

+ o
f...dS’zj" f .dy'dly
S C —w

with respect to coordinate )’ of the source point
Q(x',y, z"). The functions to be integrated are the
Green’s functions in Eqs.(21)~(23). Then we obtain for-
mulae similar to the 3D ones, but instead of terms of
the form [(x —x)?+(y—y)* +(z+2)*]~"? we will have
In[(x—x)?+(z+2)*] "% and instead of 47, 27 in the
3D formulae we now have factors 2m, n. The two-
dimensional analogy for our basic formulae, Egs. (21)-
(23), will be:

Un(P)=V,(P)+(2m)~ "
[ w(Q)0gu(P,Q)/0ngdly, Pésy (28)
c
Ur(P)=(or/o7) {(V(P)—vo+(2m)~ 1}
~jw(Q)(7g_L(P, Q)/ongdlyg+ve, PeSy (29)
v
w(P)=2B[VL(P)—vo]
PeC, (30)

+(B/m) Fw(Q) 0gL(P, Q)/ongdly,
z

lj'VL

mary (y- mdependent) potential on the boundary curve
C; ng=(n.,n;) is the outward normal at point

where vy = )dlp is the mean value of the pri-
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Fig. 3a and b. Isolines of E,/E,,, E,/E,, (multiplied by 100) on the surface z=0 in the quadrant x=0, y=0. In other quadrants

E, is symmetrical, E, changes its sign like sign (x - y)

Q0=(x,zVeC, w(Q) is the dipole-layer density, which
must be determined by the integral equation, Eq. (30).
The functions g,(P, Q) are two-dimensional Green’s
functions — we can obtain them from 3D Green’s func-
tions g,(r,r’) by integration with respect to y' from
—oo to + oo and putting y=0. In the function g, (P, Q)
we have logarithmic singularity In[(x—x")*+(z
—2)3]~Y2; otherwise g, (P, Q), m=% L, are bounded har-
monic functions.

On the basis of the mathematical similarity of po-
tential problems, we can state that the theory of in-
tegral formulae with double-layer potentials presented
here is applicable not only to geoelectric potential
problems, but to similar potential problems of magne-
tometry and geothermics. Some examples are presented
in Hvozdara (1983 b), Hvozdara and Schlosser (1983).

The solution for the disturbance of the stationary
geothermal field due to the presence of a disturbing
body with heat conductivity Ar%4; is similar to the
geoelectrical problem, but the pertinent Green’s func-
tion G(r,r’) has to satisfy the condition G(r,r'})._o=0,
in contrast to the “geoelectrical condition”
dg(r,1r')/0z]._o=0. For the case of a halfspace, we have

G(r,r)=R~'—R3' (3D body), (31)

G(P,Q)=%In [(x —x)’+(z+2)

(x—x)+(z—2)

] (2D body).  (32)

The computer program which was developed for the
geoelectrical problem, can be easily adopted to the
geothermal one.

Numerical calculation

We have proved the applicability of the method pre-
sented here for some cases of block-like disturbing bo-
dies, embedded in a conductive halfspace or in a two-
layered Earth. The primary electric field was considered
to be uniform, x-polarized, so that its potential is:

V(r)

_EO * X (33)
Such an electric field approximates the long-period MT
field with large penetration depth (in comparison to the
dimensions of the block). The method of computation

and results are given in Hvozdara (1983a). The results
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Fig.4a-c. Isolines of B,/B,, B,/B,, B,/B, (multiplied by 100)
on the surface z=0 in tﬁe quadrant x=0, y=0. In other
quadrants B, changes its sign like sign (x-y), B, is symmetri-

cal, B, changes its sign like sign () ’

show that, in the halfspace with an embedded block,
the potential (33) induces an anomalous field which is
given by the sum of the field of an x-oriented electric
dipole located near the centre of the block and the field
of the mirror image of the “block dipole” due to plane
z=0; i.e. its potential is:
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U*(r)~p,-(4noy) ' [R™3*+R37%] x, (34)

where R2=x%+y*+(z—h7)?, Ri=x*+y*+(z+hy)?
and hy is the depth of the block centre. The asymptotic
value for the dipole moment p, was given in the form:

px~x3vr(or/o,—1) - 2+or/oy)" ' 01 Eo, (35)

where vr=a-b-c is the volume of the block. This di-
pole moment can be used in the approximate calcu-
lation of the anomalous magnetic field on the surface z
=0, by means of Eq. (27a):

HE ()= po/(4T) - hey(r, 1),
H¥(r)~p,/(4m) - hy(r, 1), (36)
HY(r)~p/(4m) - h.(r, '),

putting the coordinates of the source point Q(r')
=(0, 0, hy).

For comparison of the time-harmonic field and its
stationary approximation, we present curves of the ra-
tio |E /E,| for profile y=0 at the surface of the half-
space in the case of a model of a well-conducting
block in a low-conductive halfspace, proposed by Stodt
etal. (1981); see Fig. 1. We have calculated the curves
for periods T=0.1, 1.0 and 10s by the vector integral
method, as in Hvozdara (1981a, b). The curves are close
to the curve for the stationary approximation (T = c0)
calculated by the scalar potential method. Similar
closeness was recognized in spatial distribution of other
components of the EM field as well. It is worthwhile to
note that the computation by the scalar potential meth-
od is about five times faster in comparison with the
vector integral method.

The calculation for the case of a two-layered Earth
is slightly more complicated because of more terms in
Green’s function, Eq.(18). The block was first consid-
ered to be fully embedded in the substratum z>h, and
then in contact with the upper layer as shown in Fig. 2.
This is the model of a block-like depression of the layer
into the substratum. For this “contact case” we must
be careful in the application of basic integral equations,
Egs. (19) and (23). They are applicable only to the part
S, <S8, which is not in contact with the planar bound-
ary z=h. Using the limit P(r)—S,_ in Eq.(14) for the
contact part S; S (S=S;US,), we obtain the follow-
ing integral equation:

Ur(r)=a, V(1) +b,/2m) - § Ur(r) 0g,(r, x)/on'dS’,  (37)
S

where a,=(0,+0,)/(c;+07), and b,=(l —oy/0,) a,/2
=f/(1 —qp). Here we have taken into account another
singular term q[(x —x')?>+(y—y)*+(z+2z —2h)*]" 2 in
g,(r,r') at z=h and z—z apart from term R~!; see
Eq.(18). Using the auxiliary function f(r), defined by
Eq.(20), we obtain, for P(r)eS,, the same equation as
Eq.(23), but for PeS,; we will have the integral equa-
tion with different coefficients:

f)=2b,[V5(r)—qo]+b,/2m)
~)(f(r’)6g2(r, r)/on'dS, P(r)eS;. (38)
5

For the depression model we put or=0,. Its pa-



Fig. 5. Model of a 2D block in the
halfspace with uniform inducing
telluric field and corresponding
curves E/E.q at z=0; for various
depths and for well-conducting

( solid lines ) or low-conducting
(dashed lines) blocks

Fig. 6. Surface heat flow profiles for 3D
block of the same geometrical parameters as
in Fig. 1 and Ap/A; =20
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Fig. 7. Surface heat flow profiles for
2D blocks of the same geometrical

parameters as in Fig. 5; A4/4; =10 —
solid lines, A/4,=0.1 — dashed lines

rameters are given in Fig. 2, the side a of the block
being chosen as a unit of length. Isolines of the x- and
y-components of the E=E,+E* are given in Fig 3a
and b. We can see that the spatial distribution of the
components corresponds to —grad [V (r)+ U*(r)],
where U* is given by Eq.(34); the depression has a
pronounced effect on the telluric field. The correspond-

25 a0 x/hy

ing anomalous magnetic field B=p, - H* at the surface
was normalized with respect to the magnetic field B,
=ug0, E,o - a, and isolines for x-, y- and z-components
are given in Fig. 4a—c. Their spatial distribution nearly
corresponds to Eq. (36) — to the x-oriented current di-
pole located in the centre of the block.

As an example of computation for 2D problems,



Fig. 5 illustrates graphs for the intensity of the electric
field due to potential (33) in a conductive half-space
with a 2D block. The central axis of the block — a well-
or low-conducting block — is considered at four depths:
hr/a=0.5, 0.7, 0.9 and 1.1. The results were obtained by
Egs. (28)—(30) using Green’s function for the halfspace:

g(P,Q)=In[(x —x")> +(z—2)*] "'
+In[(x —x)*+(z+2)*]" V2

The anomaly in the electric field is pronounced, but
the anomalous magnetic field in this case of 2D in-
homogeneity is zero at the surface. This is in agreement
with the H-polarization case in 2D induction problems.

Using the mathematical similarity with stationary
geothermal problems, the heat flow anomalies due to
3D and 2D blocks of heat conductivity Ay embedded
in a halfspace of heat conductivity 4, were calculated.
The undisturbed temperature distribution in the half-
space was assumed to be of the form V(r)=(q,/4,)- z,
qo now being the undisturbed heat flow density. For
the 3D case, a block of the same geometrical parame-
ters as for Fig. 1 was used and A;/4; =20. The disturbed
temperature field U(r) was calculated by Egs.(21) and
(23) using Eq.(31) as Green’s function G(r,r’), which
provides zero value of U(r) at z=0. The surface heat
flow g is given as g=4,[0U/0z],_o. Results of the
numerical calculations are given for three profiles in
Fig. 6.

Perturbation of the temperature field due to the 2D
block was calculated by Egs. (28)«30) using Eq. (32) as
the pertinent Green’s function. The geometrical param-
eters of the block are the same as in Fig. 5 and A;/4,
=10, or 0.1. The profile curves of g/q, for various
depths of the block axis are plotted in Fig. 7.

From the theory of solids it is known that the heat
conductivity A is proportional to the electrical con-
ductivity ¢ for semiconductors and metals. So we can
state that at least some part of the heat flow anomaly,
which is usually connected with the observed electrical
conductivity anomaly, could be explained in this man-
ner.
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In conclusion, we can confirm that the double-layer
potential method is a useful tool for the effective so-
lution of many geophysical potential problems.
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