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The inverse scattering problem for reflection
of electromagnetic dipole radiation from Earth

with vertical variation

H.J. Vidberg and D.O. Riska

Department of Physics, University of Helsinki, Siltavuorenpenger 20 D, SF-00170 Helsinki, Finland

Abstract. The inverse scattering problem of determining
the electromagnetic profiles of layers with vertical
variation from surface measurements of the electromag-
netic field for electric and magnetic dipole radiation is
formulated and solved. It is shown that the surface data
for dipole radiation, if known at two fixed frequencies
and at all transmitter-receiver separations, contain suf-
ficient information for the complete determination of
the permittivity, permeability and conductivity distri-
butions of the subterranean layers. The problem is sol-
ved by an integral equation formulation and the so-
lution is illustrated with some analytical and numerical
examples.

Key words: Inverse scattering method - Electromag-
netic dipole radiation

Introduction

The fundamental problem of electromagnetic sounding
methods in prospecting work is the determination of
the subterranean distribution of the electromagnetic pa-
rameters from surface reflection data. This problem is
quite complex even in the simplest situation where the
subterranean strata have only vertical variation. In the
case of reflection of vertically incident plane wave ra-
diation, the inversion problem can, in principle, be sol-
ved by the coupled integral equation method of Jaulent
and Jean (1972) and Jaulent (1976) or by the less
powerful but simpler iterative method of Riska and
Vidberg (1983). A drawback of this solution is the fact
that the reflection coefficient for plane wave radiation
does not, even when known at all frequencies, contain
sufficient information for the determination of the per-
mittivity, permeability and conductivity profiles of the
subterranean structure. Furthermore, the solution of the
inverse scattering problem for plane wave radiation is
of limited practical usefulness as most sounding work is
carried out with finite-size radiation sources - e.g. di-
pole antennas. It is, therefore, well worth investigating
the corresponding inverse scattering problem for in-
cident dipole radiation.

* Research supported in part by the Institute of Physics,
Outokumpu Oy

Offprint requests to: D.O. Riska

In this paper we formulate the inverse scattering
problem for reflection of electric and magnetic dipole
radiation from layers with purely vertical variation.
We consider in detail the cases of vertical and horizon-
tal electric and magnetic dipole sources above ground
which approximate typical radiation sources used in
electrodynamic prospecting work. In contrast to the
situation for incident plane wave radiation, the elec-
tromagnetic field for dipole radiation depends on po-
sition at the surface as well as the radiation frequency.
This position- and frequency-dependent electromagnetic
field contains sufficient information for the complete
determination of the subterranean permittivity, perme-
ability and conductivity profiles. Furthermore, the de-
termination of these profiles is possible from a knowl-
edge of the surface field at only two fixed, but arbitrary,
frequencies. Hence no extrapolation into the unmeasur-
able high-frequency regime is required.

The formulation of the inversion problem for re-
flection of dipole radiation is mathematically more
complicated than that for plane wave radiation, the
essential difference being caused by the finite distance
to the radiation source. The solution of this inversion
problem and the solution algorithms developed in this
paper are, on the other hand, simpler. While the inverse
scattering problem for plane wave radiation involves a
Sturm-Liouville equation with a complex eigenvalue-
dependent potential, the corresponding problem for di-
pole radiation can be formulated in a way that avoids
explicit dependence on the eigenvalue in the poten-
tial.

In this paper we reduce the inversion problem for
dipole radiation to the determination of the complex
potential in a Sturm-Liouville equation from the spec-
trum. The problem is solved by the usual methods of
inverse scattering theory. We give a solution based on a
Marchenko-type integral equation (Agranovich and
Marchenko, 1964), relying on the derivation of the for-
malism developed by Weidelt (1972). The resulting in-
verse scattering transform is mathematically very simi-
lar to that developed in the work of Coen (1981) on the
inverse scattering problem for reflection of elastic
waves.

This paper falls into eight sections. Firstly we for-
mulate the inverse scattering problem for a vertical
magnetic dipole antenna above ground. Then we solve
the problem by means of an inverse scattering integral
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equation. In the subsequent section we discuss the
numerical implementation of the solution and then gen-
eralize the treatment to the case of a horizontal mag-
netic dipole source and to the cases of horizontal and
vertical electric dipole sources. Following this, we illus-
trate the solution algorithm for the case of a step
function discontinuity which can be handled analyti-
cally, and then demonstrate the utility of the solution
by some numerical examples. The final section contains
a summarizing discussion.

The inversion problem for magnetic dipole radiation

We first consider reflection of the radiation from a
vertical magnetic dipole source of strength me~'®' at
height h from the flat ground surface (Fig. 1). The con-
ductivity, permittivity and permeability distributions
below ground are assumed to depend only on depth (z).
The situation is then axially symmetric around a verti-
cal axis through the dipole which we choose as the z-
axis (we take the downward direction as positive and
the position of the dipole as the origin). The electric
field is purely azimuthal and depends only on depth (z)
and horizontal distance from the dipole (p).

The azimuthal electric field amplitude E(p,z) satis-
fies the wave equation

o 1 5E 1 01
— E 2 1
0z u(z) oz u(z) 6p p ap (p )+’ KA E=0, ()
where we have defined the quantity K(z) as
2 a(2)
K*(z)= s(z)+z £o Mo ()
0

Here w is the angular frequency of the dipolar ra-
diation source and o, ¢ and p the vertically varying
conductivity, relative permittivity and permeability pa-
rameters. This wave equation may be simplified by
introducing the Hankel transform of the electric field:

E(z, )= [dppJ,(ip)E(p,2). 3)
0

The transformed field E then satisfies the differential

equation

0 1 0E A* N
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Finally, the first-order derivative of E in Eq. (4) may be
removed by the field transform

E(z )=V 12) Z(z2, ). ()

The transformed field Z then satisfies the generalized

Sturm-Liouville equation
dz
727 —+{k?—22—V(z,k)} Z=0, (6)

in which k is defined as

4
Fig. 1. Vertical dipole source above vertically layered earth

with ¢ being the velocity of light in vacuum. The poten-
tial function V in Eq. (6) is defined as

V(z,k)=k*{1—e(2) u(2)}
_H/@d_z _ikU(Z)/i(Z)_

1
dz? V@) £0C

The potential function thus defined has support in the
region z>h, where h is the position of the ground
surface, and it is well defined for continuously differ-
entiable permeability profiles.

The differential equation, Eq. (6), has the con-
tinuously distributed eigenvalues

®)

]/lz—kz, k<A
v= &)
—iyk?—A*,  k>A

In the following we shall treat the frequency variable k
as a fixed parameter and only consider the real branch
of the eigenvalue (4>k), i.e. only the components of the
field with non-oscillatory dependence on depth. By Eq.
(3), this implies that the near-field is used in the in-
version.

Once k is taken to be fixed, the potential V has no
dependence on the variable eigenvalue v and then the
differential equation, Eq. (6), may be treated as a stand-
ard Sturm-Liouville equation with a complex potential:

d2
d——[v +V(2)1Z=0. (10)

As the potential V' vanishes above ground (z<h), the
general solution to Eq. (10) above ground is a linear
combination of exp(vz) and exp(—vz). Below ground
(z>h), the general solution to Eq. (10) may be formed
as linear combinations of two linearly independent so-
lutions with exponential behaviour above ground. Such
solutions are given by the Jost solutions

z

etV 4 0z — h)j ,sinhv(z—2)

f:(2)= V() fe(2). (1)
These solutions are well defined provided the potential
V is constant or decreasing beyond some arbitrary fi-
nite depth d. The boundary condition relevant to the
geophysical case is that in which the potential becomes
constant at large depths beyond the region of prospect-
ing interest.



It is easy to see by forming the Wronskian of the
functions (11) that they form a linearly independent
pair of solutions to Eq. (10). They may, therefore, be
used to express the electric field due to a vertical mag-
netic dipole of strength m at height h above ground (z
=0) as

E(p.)= [ 410, p) Ez, ), (12
0

with
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This expression is valid for z>0 (below the dipole). The
function S(v) in Eq. (13) can be viewed as the surface
reflection coefficient.

The surface reflection coefficient S(v) may be calcu-
lated from the electric field at the surface using the
form of the Jost solutions above earth as

4y

S(v)= —e 2" e~ ""E(h, A). (14)
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Knowledge of the electric field at the surface by Eq. (3)
thus determines the reflection coefficient for all positive
values of A. The reflection coefficient of course also
depends on frequency (k).

The inverse scattering problem is the problem of
determining the complex potential function V, Eq. (8),
from the known reflection coefficient. The solution of
this problem is based on the properties of the Jost
functions (11) which carry the connection between the
reflection coefficient and the potential function.

A convenient integral expression for the reflection
coefficient S can be obtained by considering the follow-
ing alternative expression for the physical solution to
the differential Eq. (10):

E(z)=e"* —L})dz’e‘”"‘z'|V(z’)é(z’). (15)
2v

Comparing the behaviour of this solution to the com-
bination of Jost functions in Eq. (13) for O<z<h one
obtains the result

S(v)= —;—vofdz’e"’z' V(Z)E(Z). (16)
h

In a subsequent section we develop an iterative
algorithm for the determination of the potential from S
based on this expression and the iterative solution of
Eq. (15). In the following section we develop a more
powerful integral equation method for the determi-
nation of ¥ from S.

If the inverse scattering problem is solved for two
frequencies, the frequency-dependent components of the
potential (8) may be determined separately from the
frequency-independent component. The frequency-de-
pendent terms involve the products ey and oy, where-
as the frequency-independent component involves only
u. Denoting the frequency-independent (real) com-
ponent of V as W(z) we have
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The permeability distribution u(z) may be determined
from W(z) by iterative solution of the integral equation

W(z)=V u(z) (17

[u(Z)]‘”2=1+jz"dx(Z—X) W (x)[u(x)]~ 12 (18)

Here we have assumed that both the permeability and
its gradient are continuous on the surface. A discon-
tinuity in u or du/dz at the surface would lead to a
singular potential function V(z). The singular part
would have to be handled analytically by extracting the
starting values u(h) and y'(h) from the asymptotic ex-
pansion

v BO)=1 . W)
SWe wr T TV + 117
[v|> 00, Rev>0. (19)

Once p(z) has been determined from Eq. (18), &(z) may
be determined from the frequency-dependent real part
of V(z) and ¢(z) from the imaginary part of V(z).

Integral equation for the inversion problem

The determination of the potential (8) from the re-
flection coefficient S, Eq. (14), may be carried out by
means of a linear integral equation similar to that
considered by Weidelt (1972). In order to derive this
integral equation we write the Jost solutions, Eq. (11),
in the alternative form (Weidelt, 1972)

fo(@=e*24+0(z—h) | dze*** A(z,2), (20)
2h—z
where the function A(z,z') is a function independent of
v with support in the region 2h—z<z'<z.
Substituting this representation for the fundamental
solutions into the differential Eq. (10) and exploiting
the v-independence of A(z,z) gives the conditions

A, (z,2)V—A, ,(2,2)=V(2) A(z, 2), (21a)
24,(z,2)=V(z), (21b)
A(z,2h—2)=0, (21¢)

for the function A(z,z’). Equation (21b) can be used to
determine the potential ¥(z) once A(z,z') has been de-
termined.

Consider now the function £, Eq. (15), which, by Eq.
(11), may be expressed as

$E@)=/_(+SM) [, (). (22)

Here S(v) is the reflection coefficient, Eq. (14). From
Eq. (20) one then obtains

E(z)—e " =S(v)e* +0(z—h) | dZ A(z,z)e™""
2h—z

dz A(z,z')e"* S(v). (23)

h—z

+0(z—h)
2
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Taking the inverse Laplace transform of this equation
with respect to v gives

1 ico+y
— I dve'{&(z)—e™ "%}

27” —ioo+y
=S(z4+1t)+0(z—h)A(z,1)

+6(z—h) § dz' A(z,2)S(t+2). (24)

2h—z

Here S is the inverse Laplace transform of the re-
flection coefficient S(v):

S(v)=°jodze-” S(2). (25)
0

For t<z the left hand side of Eq. (24) vanishes. This
can be proven by evaluating the inverse Laplace trans-
form of the successive terms in the iterative expansion
of Eq. (15). Note that by the same method one can
prove that
S(t)=0 for t<2h, (26)
since for t<2h the integral in Eq. (28) may be closed in
the right half v-plane and S(v) is analytic for the real
part of v sufficiently large and positive. Exploiting the
well known analyticity of the Jost solutions, Eq. (20),
one can show using Eq. (22) that the iterative expan-
sion of the function & Eq. (15), converges and that

hence S(v) is analytic when Rev>71/sup|V(z)|.
For 2h —z <t <z one then has the integral equation

Sz+1)+ Az, 1)+ j dz' A(z,2)S(t+2)=0, (27)

2h—t

for the determination of A(z,t). Since both S and A4 are
complex functions, Eq. (27) actually represents two cou-
pled integral equations. The solution of the inverse
scattering problem thus involves: (1) determination of
S(v) from the surface data at a fixed frequency (k) by
Eq. (14); (2) Laplace inversion of the thus determined
reflection coefficient, Eq. (25); (3) solution of the in-
tegral Eq. (27) and, finally, determination of the poten-
tial ¥ from the function A(z,t) by Eq. (21b).

In practice, while the solution of the integral Eq.
(27) can be carried out by straightforward numerical
techniques the calculation of the inverse Laplace trans-
form of the reflection coefficient can be difficult. Fur-
thermore, the inversion of the Laplace transform is an
ill-posed problem and is the origin of the general in-
stability of the solution to the inverse scattering prob-
lem.

Numerical implementation of the inverse scattering
solution

The integral equation for the kernel function A4, Eq.
(27), from which the final solution to the inverse scat-
tering problem is obtained, is a Fredholm equation of
the second kind and hence may be solved by standard
matrix inversion methods. The main problem in the
numerical implementation of the inverse scattering so-
lution is associated with the need to evaluate the in-

verse Laplace transform of the reflection coefficient, Eq.
(25). The explicit Mellin formula for the inverse Lap-
lace transform:

S~(z)=——y+fi Oodve” S(v) (28)

270, i

requires integration along a line parallel to the imag-
inary axis in the complex v-plane. As S(v) is calculated
from the surface field as a Hankel transform, Eq. (14),
that converges only for real A, use of the Mellin for-
mula, Eq. (28), requires analytic extrapolation of S(v)
into the complex v-plane. This is a procedure beset
with instability. It should also be noted that the usual
methods developed in the literature for numerical so-
lution of the integral transform, Eq. (28), (McWirther
and Pike, 1978) only apply for such functions § (z) that
vanish as z—oo, a condition not satisfied in the
geophysical case with absorption.

To determine the function S(z) numerically we con-
sider here the simple approach of parametrizing S(v) by
a Padé approximant (Baker, 1975)

B, (v)

QN(V)’
where the degree N of the denominator polynomial Qy
is two units larger than the degree M of the numerator
polynomial F,. With the Padé approximant, Eq. (29),

the function S(z) may be calculated directly from Eq.
(28). The function S(z) will be of the form

S(z)=Y. A, exp(7,2), (30)

S(v)= (29)

where vy, are the poles of the rational function P/Q and
A, their corresponding residues. In the cases of
geophysical interest there will appear poles with posi-
tive and negative real parts.

The errors caused by the Padé approximation in the
function S(z), which is the input to the inverse scatter-
ing integral Eq. (27), will of course cause distortions in
the solution for V(z). Nevertheless, we shall demon-
strate by numerical examples in a later section that the
Padé approximant method appears to yield reliable
results for V(z) down to depths of the order of the
average skin depth of the subterranean structure stud-
ied. This limitation is of course very natural on physi-
cal grounds as one cannot in general expect any meth-
od of solving the inverse scattering problem to yield
information for depths much beyond this average skin
depth.

Given the restriction that the Padé approximant
method for calculating the function S(z) is reliable only
up to the average skin depth, one may be content to
solve the inverse scattering integral Eq. (27) iteratively.
The solution for the potential V(z), Eq. (8), will then
take the form of a series expansion

Vi)=Y V() 31)
n=1

with the terms

V,(z)= —2ii—§(2z), (32a)
dz
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(=" _‘ dy,
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z

§ dy,_ Sz+y)Sy+y)...S8(._1+2. (32b)

2h=yn-2

We have verified up to n=3 that this expansion, Eq.
(31), is the same as that obtained by using the iterative
Jost-Kohn formula (Jost and Kohn, 1952) for solving
the inverse scattering problem.

To obtain an estimate of the conditions for con-
vergence of the series (31) we note that the iterative
solution A(z,x) of the integral Eq. (27) converges if the
norm of the kernel S is less than unity. This condition
may be expressed as

1> Sl =fdyfdx|S(x+y) (33)
h h
By Eq. (32a), this condition is satisfied provided

132
C=N p v, @i<1. (34)

2]/5 h<u<z

This result shows that there will always exist a region
in which the integral Eq. (27) may be solved by iter-
ation. Even when condition (34) is satisfied, the poten-
tial series (31) which is derived from the iterative ex-
pansion of A(z,x) by differentiation [Eq. (21b)] does
not necessarily converge. Following the method by Jost
and Kohn (1952) one can prove, however, that the
series (31) does converge when the norm of S is suf-

ficiently small [the factor 2]/3 in Eq. (34) replaced by
(2log2—-1)/2]. ,

In the analytical example treated later we show that
the convergence depth is of the same order of magni-
tude as the skin depth, which, e.g. for granite with
6~10"*S/m, exceeds 600m for frequencies below
1 kHz. From the point of view of prospecting work this
will often be quite sufficient. We shall illustrate the
convergence properties and the utility of the iterative
solution of the inverse scattering integral Eq. (27) by a
set of numerical examples with synthetic data using the
Padé approximant method discussed above for deriving
the inverse Laplace transform of the reflection coef-
ficient.

The inversion problem for radiation from a horizontal
magnetic dipole and vertical or horizontal electric dipoles

The inverse scattering problem for reflection of ra-
diation from a vertical magnetic dipole treated above is
particularly simple because of the axial symmetry. In
general, one may split the electromagnetic field in a
vertically varying medium into a transverse electric (E,
=0) and a transverse magnetic mode (B,=0). With
radiation sources that excite the transverse electric
mode one can formulate the inversion problem as an
inverse scattering problem with the same potential
function as in Eq. (8) by using appropriate field ampli-
tudes.

In the case of a horizontal magnetic dipole source
(Fig. 2) the vertical component of the magnetic induc-
tion can be written as
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Fig. 2. Horizontal dipole source above vertically layered earth

B.=B(p,z)cos ¢, (35)

where the field amplitude B(p,z) satisfies the reduced
wave equation, Eq. (1). In analogy with the develop-
ment after Eq. (1), this equation may again be reduced
to the Sturm-Liouville form by introducing the trans-
formed field

l o0
Z ,;» Ry d J A B s L) 36
(z,7) 1/,1(2)({ ppJy(ip)Blp,z) (36)

The transformed field Z then satisfies Eq. (6) with the
potential function V given in Eq. (8) and the branches
of the eigenvalue v chosen as in Eq. (9).

The physical solution for Z may be expressed as a
linear combination of the Jost solutions (11) as

pomA

2z )= - @+50)f, (@)}, z>0. (37)

The reflection coefficient S(v) can finally be calculated
from the measured vertical component of the magnetic
induction using Egs. (36) and (37). The recovery of the
potential V in this case from the reflection coefficient
S(v) is performed as before.

In the case of a horizontal electric dipole source, the
vertical component of the magnetic induction has the
form

B,=B(p,z)sin¢, (38)

where the field amplitude B(p,z) again satisfies the re-
duced wave Eq. (1). Hence, a transformed field Z that
satisfies the Sturm-Liouville Eq. (6) with the potential
(8) may again be introduced as in Eq. (36). The physical
solution for this transformed field is, in this case,

pop, 4

Zlz e —i A
(4) 4 v

{/_(@+SM/.(2)}, (39)

where p is the strength of the electric dipole. The re-
flection coefficient S(v) can then be calculated from the
measured vertical magnetic field component on the sur-
face, and the recovery of the potential function V from
S(v) can be carried out by the method described ear-
lier.

We finally consider the case of a vertical electric
dipole source. As the magnetic field in this case is
purely azimuthal, only the transverse magnetic mode is
excited. This leads to a Sturm-Liouville equation with a
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potential function that is different from that in the
previously considered cases.

In the case of a vertical electric dipole source, the
azimuthal magnetic field amplitude H(p, z) satisfies the
reduced wave equation

0 1 6H 1 0 1
dz K*(2) 0z K (z) ap

a (ﬂH)+w u(z) H=0. (40)

The function K(z) is defined in Eq. (2). One may in-
troduce a transformed field Z as

EoHo

Z@N=1/ 42 @ fdpPJ(ip)H(p, z), (41)
which satisfies the Sturm-Liouville equation

2

z —
%;2— —[v?+V(z,k)]Z=0. (42)

Here the potential function ¥ has been defined as

V(z,k)=k*[1—e(z) p(2)]
. #(Z)G(Z) 1
—ik toc K(z )d K(z) (43)

The branches of the eigenvalue v are chosen as in Eq.
). _

A reflection coefficient S(v) for this situation may be
introduced by expressing the physical solution for Z in
terms of Jost solutions f,, defined as in Eq. (11) but
with the potential function V in place of the function
V:

Z(z, )= - f_(2)+S0) /. (2)}. (44)

This reflection coefficient S(v) may be calculated from
the measured azimuthal magnetic field component on
the surface using Eqgs. (41) and (44). The potential func-
tion V(z,k) may then be determined from S(v) by the
method described earlier. In this case one has, however,
to require that both the conductivity and the permit-
tivity profiles be continuously differentiable in order
that the potential function V, Eq. (43), be well defined.
As these conditions are not usually satisfied, use of a
vertical electric dipole radiation source is unattractive
in comparison to other orientations. The complex
structure of the potential function V(z, k), Eq. (43), also
makes the disentangling of the conductivity, permit-
tivity and permeability distributions from V a com-
plicated task, requiring information for more than the
two frequencies which proved sufficient in the pre-
viously considered cases.

Analytic treatment of a step discontinuity

In order to demonstrate the utility of the integral equa-
tion method for solving the inverse scattering problem
and the convergence properties of its iterative solution,
we treat the case of a step discontinuity at the surface
analytically. More precisely, we consider the case of a
vertical magnetic dipole source at height h above
ground which is assumed to have a constant conduc-

tivity ¢ and relative permittivity eé+1 and permeability
u=1. Assuming that the electromagnetic properties of
air are the same as in vacuum, the potential function V,
Eq. (8), will be

V(2)=k?[1—€] 0(z —h) —ik% 0(z—h)=U0(z—h). (45)

As the frequency (k) is taken to be fixed, U can be
treated as a complex constant.

The Jost solutions, Eq. (11), for the step potential
(45) are readily obtained by matching the solutions of
Eq. (6) for z=h using the continuity of the field Z and
its vertical derivative at z=h:

+tvh

fi(z)=9(h——z)ei"+9(z—h)7

AV ) etVEM L (y —y)eFVE-Mn, (46)
Here we have used the notation

v=)v+U. (47)

From Eq. (13) one obtains the reflection coefficient S(v)
as

S(y=e-24 =Y 48
()=e 22 (48)

The inverse Laplace transform of S(v) is, Eq. (25),

S(z)= -2_22 i [(z—2h))/ U] 6(z—2h). (49)

The kernel function A(z,t) in the representation for the
Jost functions, Eq. (20), may be obtained by taking an
inverse Laplace transform with respect to v of Eq. (46):

(t+z-2h)YU
Az, t)= 1, —h)? —(t—h)*]U }.
G VIz—h?—(=h?1U}
(50)

With the help of the power series expansions of the
Bessel functions J, and I, in the expressions for S and
A, it is then p0551ble to demonstrate explicitly that the
integral Eq. (27) is satisfied by the expressions (49) and
(50). One can also easily verify that A(z,t) does produce
the original step potential V(z) in Eq. (45) through Eq.
(21Db).

We turn then to the illustration of the utility of the
iterative algorithm described earlier. By the conver-
gence criterion (34) one expects that the step potential
(45) can be recovered from the reflection coefficient, Eq.
(48), by the iterative algorithm for depth values H
roughly satisfying the inequality

H*|U|<1. (51)

If the imaginary part of the potential U (the conductive
term) is the one of main importance, which is the case
in typical low-frequency prospecting work, it is easy to
see that condition (51) is equivalent to



2
H<5=|/ ) (52)
HoO W

where ¢ is the skin depth. This is a very natural result
as one ought not to expect any solution algorithm for
the inverse scattering problem to yield a reliable answer
for depths much beyond the skin depth where the ra-
diation does not penetrate.

The lowest-order potential (Born approximation) V;
is readily obtained from the reflection coefficient, Eq.
(48) or (49) using Eq. (32a) as

25
Vi@2)=U{Jo(p) —J4(p)} =U {1 —%+§8—4p4+0(p6)},
(53)

where the variable p has been defined as

p=2(z—hy)/U. (54)

As the first term in the power series expansion in Eq.
(53) gives the exact result, Eq. (45), the higher terms
represent the error of the Born approximation. The
Born approximation is obviously reliable for |pj<1,
which is equivalent to the skin depth condition, Eq.
(51).

The second- and third-order terms in the iterative
expansion of the solution may be obtained from Eg.
(32b) as

16U , U p?
V== a3o)= o* [ 15+ 00" (59)

8U . 4U &
V3(2)=-p—Jz(p)(D1 +3D;) —Tk;[(k+2)-’k+ 2(p)

11u

~(k=2)J (D1 =Dy =55, p

“[1+0(p?)]. (56)

We have used the notation

P J,J,
J, J —J,J _220n
D = 4——n2( th=T2d) n+2 (n+2) (57)

(1=J9)—3JP —4J3 (n=2),

where the argument of the Bessel function is p. By
adding V,, ¥, and V, as given by these expressions, we
obtain a result for the potential with an error that is
proportional to p°.

In order to illustrate the convergence of the iterative
expansion of the potential we have plotted the first,
second and third iterative results for the potential as a
function of the dimensionless depth variable |p| in
Fig.3. We have chosen U to be purely imaginary,
which corresponds to a conductivity step and makes

lpl=(z—=h)}fo{HzSm~'} /178 m.

The iterative method is seen to converge well up to
depth |p|<1. With a typical conductivity value o
=10"*S/m corresponding to granite and frequency
values f=100Hz and 1kHz the convergence depths
with three terms in V are of the order of 1800 and
600 m, respectively.
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°]
Fig. 3. First (I), second (II) and third (III) iterative results for
a conductivity step potential as functions of the depth vari-
able |p|. The solid lines denote the real and the dashed lines
the imaginary parts of the iterated potential divided by the
exact value. The deviation from 1 gives the error in the real
and the deviation from 0 the error in the imaginary parts

Numerical examples

To examine the numerical quality of the solution to the
inverse scattering problem using the Padé approximant
method for obtaining the inverse Laplace transform of
the reflection coefficient S(v) [Egs. (29) and (30)] we
consider the following examples. We first study numeri-
cally the step discontinuity problem considered analyti-
cally in the previous section. In the second example we
consider a step discontinuity, Eq. (45), with an ad-
ditional layer of large conductivity, which corresponds
to the geophysical situation of a high-conductivity layer
in a background of low-conductivity rock. In the third
example we consider the case of a staircase conduc-
tivity profile chosen to illustrate the solution in the case
of an approximately continuously varying conductivity
profile.

In all three examples above one can express the
reflection coefficient S(v), Eq. (16), as a combination of
elementary functions. To generate synthetic data for the
surface field one can then use these expressions for S(v)
in Egs. (12) and (13) and the code of Anderson (1979)
for the numerical evaluation of the Hankel transform.
Going backwards from the calculated surface field
using the same computer code, one can then obtain
numerical values for the reflection coefficient that will
have errors associated with the double numerical
quadrature. In this way we obtain values for S(v) at
discrete real v-values (equidistant on a logarithmic scale
to save computer time). A small number of these
numerical values for S(v) are then used to generate
Padé approximants to S(v) of the form of Eq. (29) by
pointwise fitting (Baker, 1975). The inverse Laplace
transform of the Padé approximant is finally evaluated
analytically as described earlier. Finally, the inverse
scattering integral equation, Eq. (27), is solved iter-
atively using Egs. (31) and (32) including terms up to
third order (V, + V,+ V3).

In Fig. 4 we display the result thus obtained for the
potential step, Eq. (45), considered analytically in the
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Fig. 4. Real (0) and imaginary (x) parts of the reconstructed
uniform conductivity profile as a function of depth, in units of
the penetration depth for the frequency 100 Hz

previous section. In the figure the depth coordinate has
been divided by the skin depth for a radiation fre-
quency f=100Hz. In this case a 7-point Padé appro-
ximant was used. The numerical results in this case are
excellent up to half the skin depth.

In Fig. 5 we show the result of the numerical re-
covery of the conductivity profile in which the con-
ductivity below ground is taken to be 1073 S/m except
in the layer 50m<z<70m where it is taken to be
10-!'S/m. The depth scale in the figure has been di-
vided by the skin depth in the high-conductivity layer,
which is 160m at the frequency 100 Hz. Here a 13-
point Padé approximant was used. In this case the
quality of the numerical recovery is only average: the
region of high conductivity is recovered as a smooth
bell-shaped distribution. In any case, the average
strength of the region of high conductivity is satisfac-
torily recovered.

In Fig.6 we show the result of the numerical re-
covery of a multi-step conductivity profile. The multi-
step conductivity profile is superimposed on a uniform
background conductivity of 0.025S/m. The profile con-
tains four conductivity increases of 0.025S/m and four
corresponding decreases of equal magnitude. Again a
13-point Padé approximant was used. The depth scale
has again been divided by the minimum skin depth,
which in this case is 140 m at 100 Hz. The results show
that the quality of the inverse scattering solution is very
satisfactory.

The conclusion from these results is that the
numerical method based on the Padé approximant is
most reliable when the conductivity profile is smooth.
When there is a large conductivity contrast, as in the
case considered in Fig. 5, the recovery of the original
profile by the inverse scattering method is only qualit-
ative, the reason being the inability of a finite Fourier
series, Eq. (30), to represent sharp discontinuities. That
this is indeed the source of the error can be verified by
exact integration based on the Mellin formula, Eq. (28).
In that case the reconstructed conductivity profile is in
excellent agreement with the original one, in agreement
with the convergence criterion, Eq. (34).

The results in Figs.4-6 also show that the per-
mittivity profile is poorly reconstructed. Although the
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Fig. 5. Reconstructed conductivity profile (o=real part, x
=imaginary part) compared with the original profile (solid).
The length unit is the skin depth in the high-conductivity
layer for the frequency 100 Hz
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Fig. 6. Reconstruction of a staircase conductivity profile (o
=real part, x =imaginary part. solid=original profile). The
length unit is the skin depth in the high-conductivity layer at
100Hz

relative permittivity in all the models considered was
kept at unity, the numerical results give a non-zero if
small imaginary part for the conductivity, which by Eq.
(8), corresponds to a non-unitary permittivity value.
For a reliable recovery of the permittivity profile, the
frequency has to be high enough to make the real and
imaginary parts of the potential (8) of the same order of
magnitude. This means, in practice, that the permit-
tivity profile can be determined reliably by the inverse
scattering method only in strata of very low conduc-
tivity as, otherwise, the skin depth will be too small to
allow any useful information to be obtained.

Because a staircase variation of the permeability by
Eq. (8) would make the potential singular and thus
numerically difficult to recover, the permeability was
not allowed to vary in these examples. A non-vanishing
imaginary conductivity, however, might also be inter-
preted as a permeability profile with a non-vanishing
second derivative. In order to separate the permeability,
permittivity and conductivity profiles using the fre-



quency dependence as described at the end of the sec-
ond section, one might be forced to use impracticably
high frequencies. In practice, however, it might be a
very good approximation to neglect the permeability
variations completely.

Conclusions

The main qualitative result of the present development
of the inverse scattering solution to the problem of
determining the electromagnetic parameter profiles of a
subterranean structure with only vertical variation from
the surface reflection coefficient for electromagnetic di-
pole radiation is that a complete determination may be
achieved by measurements at two fixed frequencies.
This result substantially increases the utility of the in-
verse scattering method in interpretation of electromag-
netic prospecting data as such data are invariably ob-
tained with field apparatus with a restricted low-fre-
quency range. Previous investigations of the inverse
scattering method for electromagnetic prospecting work
(Weidelt, 1972; Riska and Vidberg, 1983) dealt with
reflection of plane wave radiation for which the so-
lution to the inverse scattering problem requires knowl-
edge of the reflection coefficient over the whole fre-
quency spectrum 0<w=< o0, and thus had to confront
the question of extrapolating the data into the un-
measurable high-frequency range.

The solution to the inverse scattering problem for
dipole radiation at fixed frequency is obtained by solv-
ing a linear integral equation of the Marchenko-type
(Agranovich and Marchenko, 1964), Eq. (27), based on
Weidelt’s (1972) representation for the Jost solutions,
Eq. (20). This integral equation has the inverse Laplace
transform of the reflection coefficient as a driving term.
While the solution to the integral equation can be
obtained by straightforward methods, the determi-
nation of the inverse Laplace transform requires a
numerical inversion of Eq.(25). To solve the inverse
scattering problem numerically we use the method of
Padé approximants to determine the inverse Laplace
transform of the reflection coefficient and then solve
the inverse scattering integral equation by iteration.
This method is shown to be adequate for the recovery
of the potential function that contains the electromag-
netic parameter profiles for depths less than the pene-
tration depth. On physical grounds it should also be
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obvious that the solution should be unstable for depths
beyond the average skin depth of the subterranean
structure which are essentially unprobed by the ra-
diation field.

The solution to the inverse scattering problem has
been developed here for the cases of horizontal and
vertical electric and magnetic dipole radiation sources.
The solutions in the case of the magnetic dipole sources
and the horizontal electric dipole source are formally
similar. In the case of a vertical electric dipole source
the potential function containing the electromagnetic
parameter profiles is more complicated than in the
other cases and the disentangling of these profiles is far
more complicated. The simpler cases of a vertical mag-
netic and horizontal electric dipole source are for-
tunately those that correspond to practical field equip-
ment used in prospecting work.
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