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The method of integral equation

Journal of
Geophysics

in the direct current resistivity method and its accuracy

R. Schulz

Niedersachsisches Landesamt fiir Bodenforschung, Postfach 510153, D-3000 Hannover 51, Federal Republic of Germany

Abstract. Model calculations of potential are necessary
to interpret quantitatively d —c geoelectrical measure-
ments over three-dimensional bodies. The method of
integral equation is very suitable for a body buried in
a horizontally stratified half-space. In this approach,
the integral representation for the surface potential is
not valid for completely conducting bodies. On the
other hand, the integral representation for the so-called
surface charge density is generally valid.

Solving the integral equation numerically, discreti-
zation errors appear. These errors are not negligible
because the numerical procedure has only a linear or-
der of convergence. To improve the numerical results,
an extrapolation can be used.

Model calculations demonstrate the importance of
the ratio of the resistivities of the overburden and the
substratum. The more conducting the substratum in
relation to the overburden, the more significant is the
effect which is caused by a conducting body.

Key words: D.c. resistivity method - Integral equation
- 3D modelling - Boundary element method - Numeri-
cal accuracy

Introduction

In the direct current resistivity method, information
about the real distribution of resistivity of the under-
ground is gained by measurements of apparent resis-
tivity on the surface of the earth. The apparent re-
sistivity is the quotient of measured potential and in-
troduced current, multiplied by a geometry factor. This
factor is defined so that the apparent resistivity is equal
to the real resistivity in the case of a homogeneous
isotropic ground. The apparent resistivity of the fre-
quently used Schlumberger array (Fig. 1) is formulated
as follows:

. (AB/2)* —(MN/2)?

AUy, 1) = Ulry, 1) = Ury, 1)+ Ulry, 1)} /1

the Schlumberger

and analogously for half-array

(Fig. 1)

AO0*—(MN/2)?
MN

Theoretical values of potential distribution are nec-
essary to interpret field measurements. There are model
calculations (e.g. Koefoed, 1979) and inversion pro-
cedures (Mundry and Dennert, 1980) for the case of a
horizontally stratified earth. The interpretation for
more complicated geological structures is more dif-
ficult. Generally, potential distribution can be calculat-
ed only by numerical methods, e.g. by finite differences
(Dey and Morrison, 1979; Mundry, 1984), finite ele-
ments (Coggon, 1971) or by the method of integral
equations (Dieter et al., 1969; Okabe, 1981; 1982).

The integral equation approach is especially suitable
in the case of three-dimensional problems. In this ap-
proach, the calculation can be reduced to a two-dimen-
sional problem and its numerical solution can be car-
ried out on a computer with an acceptable compu-
tation time.

Although the integral equation approach has been
well known for a long time and is also used for elec-

pa=2m {Ulry, 1) = Uley, )}/ @)

Fig. 1. Schlumberger array (above) and Schlumberger half-
array  (below). AB/2=|r,—ry|/2=A0; MN=|r,—r,|;

MN<AB



tromagnetics, there are no papers about the numerical
accuracy of the method.

Fundamental solutions of the potential equation

Suppose that a point source of current density [ is
located at r,, then the potential equation for an isotro-
pic medium of conductivity ¢ can be written as

— VoV U, 1)} =15(r—r,), 3)

where 6 is the Dirac function. For a homogeneous
space of resistivity p;, Eq.(3) is reduced to Poisson’s
equation

AU(rry)=—1Ip,o(r—r)). 4)
Its unique solution is given by
Ip, 1
Ur,r)=—— . 5
= ©)

For a homogeneous half-space the potential can be de-
rived by the method of images

(1
Ul rg)= 47 (lr—rAl+|r—”rA|-\) ©)

with ¥, =(x,, y,, —z,) as the image of the source point.

On boundary interfaces S, at which the conductivity
is discontinuously changing, the normal current densi-
ty and the potential itself are continuous:

a(rg)n~VU(rg,rA)—a(_rg)n-VU(rg,rA)=0, 7
Ulrg,r)—Ulrg,r)=0, ()

where r, is a point on S; n is the normal unit vector of
S, which is outwardly directed in the case of closed
surfaces or has the direction of the positive coordinates
in the case of a plane. The superscripts + and — at r,
denote the direction of limiting.

In electrostatics, charges are influenced at an un-
charged body by a point source. The sum of the influ-
enced charges over the whole body vanishes. The
charge influenced at the surface S of the body is de-
termined by the Gauss theorem

firg)=¢o[n-E(rg,r)—n-E(rg,r,)],

where 1, is a point on S,  is the surface charge density
(As/m?) and ¢, is the dielectric constant (e.g. Smythe,
1968). The analogue of the Gauss theorem is formu-
lated for stationary currents as follows:

f(ro)=0[n-E(rg,ry)—n-E(rg, 1 )]

t is now a surface current density (4/m?). In the orig-
inal paper (Dieter et al., 1969) and in papers following
it, the value pu=/Ji/o is used for the derivation of the
integral equation; u (V/m) was denoted as surface
charge density. The same notation will be used in this
paper.

The normal derivative of potential is discontinuous
at interface boundaries, Eq. (7), and the discontinuity is
defined as
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ulr)=n-V Ulrg, ) —n-V UK§, ) )

In the case of a horizontally stratified half-space the
conductivity only depends on the depth z and is con-
stant in each layer:

o(z)=0;; z,_,Sz<z, i=1,...,n =00.

z,=0, z,

The thickness of the i-th layer is denoted by
hi=z—z_,.

In order to derive the integral representation and to
solve the integral equation, the potential has to be
formulated for any arbitrary point in space. The poten-
tial can be calculated by a recursive procedure, used
also in electromagnetics (Weidelt, 1978). Exponential
expressions with positive exponents are avoided in this
recursive procedure. In doing this, good stability in
numerical calculation is obtained.

The differential equation, Eq. (3), is solved by sepa-
ration into cylindrical coordinates (e.g. Morse and
Feshbach, 1953). The complete solution is given by

U(r, r,,):% ([) £ (2,24 D)o (AF)dA, (10)

with F=1/(x—x,)?+(y—y,)?*. Jo is the Bessel function
of order zero. The unknown function f has to be de-
rived from the differential equation, Eq. (3), and the
boundary conditions, Eqs. (7) and (8). Assuming a fic-
titious boundary plane z, for the plane of the point
source (z,=z,) and assuming that the point r is situated
below r, in the j-th layer (z,<z; <z<z), function f
can be given at the boundary z; ; by (Schulz, 1983)

e—)-(zj—x—ZA) j-1 1+ T
fz 24 A)= :
jmna 0z )Ty 1+ Ryt y) i=llc_[+1 14 %1

o. i+1

13

(11)

Expressions T; and R; are calculated by the following
recursion formulae:

T, = o'itanh(llhi)+0'i+17:'+1; i=n—1,...,k+1 (122)
0;+0;,1T;, tanh(Ah)
0: i=1

R;=40,_, tanh(Ah,_)+R,_ | Lk+1 (12b)

o, R, tanh(ih,_yH+1 = 7
Now the function f, Eq. (11), can be continued for an
arbitrary point in the j-th layer. If j=n, i.e. r is a point

in the last layer, then

flz, 24, 2)=f(z, 1,24, A 70, (13a)
Otherwise, if j<n, then
fz 2, )=flz;_1, 24 A){cosh [AMz—z;_,)]

—T;sinh [A(z—2z; _,)]} (14)

In this equation, a difference of high values can appear.
For stability, it is useful to reconstruct Eq. (14) in such
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a manner that only negative exponents will appear.
Equation (12a) yields

o0,+0; 1 Tpy ehi —

0;—0;, 1T

1+’1—; — Ah;
l_T;‘e .

Inserting this into Eq. (14) we get, for z; ;| <z<z; with
j<n,

Sz, 24, A)=1)2f(z;_1, 24, )1+ T)

. [C—Mz-zj- = Mzj—z+h)) 0= 0j+1 Tj+ 1]_
o;+0;,, T,

J+12j+1

(13b)

Equation (13), connected with Eq. (11), is valid for
z2z,; while reciprocity can be used for z<z,.

In the special case, of source and measuring point
lying at the surface of the earth (z=z,=0), Eq. (11) is
reduced to

0,0, )=1/6,T,,

where T, is calculated by Eq. (12a). The potential, Eq.
(10), becomes

T 1

V=5 e ) 1,6)

Jo(AF)d .

This representation is identical with the formula of
Pekeris cited by Koefoed (1979), considering that the
kernel K; of Koefoed is identical to the expression 1/7;
of this paper.

The normal derivatives n-V U and, therefore, the
partial derivatives of U are needed for the derivation of
the integral representation of the potential of a buried
body. Considering J;,(r)= —J,(r), we obtain

}0 f(z,z4, A)AJ (AT d A,

Foo

0 I x—x
S UEr)=—5

ox

A

I —_ o0
LU= 22 f(z,2,. )20, (3F)d),

ay 2n F
¢ I <e -
E U(l', ]'A)=E' g Ef(Z, ZA’ );)Jo(j.r)d).

All the integrals above and the integral of Eq. (10) have
the form

h(r)= }O g(M)J,(Andi;  v=0, 1.
0

Such integrals can be calculated by the theory of linear
filters (Ghosh, 1971a;b). Filter coefficients, upper and
lower limits of summation depend on the discretization
width and the required accuracy. The coefficients in
this paper are computed by the method of fast Hankel
transforms published by Johansen and Serensen (1979).

The method of integral equation

The potential of a buried body (Fig.2) can be given by
an integral representation. The potential outside the
body will be denoted by U, the potential within the
body by U®. The body K with surface S has con-

Fig. 2. Body buried in an inhomogeneous half-space

ductivity gg(r); the space outside the body is denoted
by Q. The surface S is formed so that Green’s theorems
can be applied. The extended derivation of the follow-
ing formulae can be found in Okabe (1981; 1982) and
Schulz (1983).

It is supposed that fundamental solutions ¥’ in
the space and ¥'? in the body exist, governed by:

—VAem)Vy P (r,r)=6(r—r); reQ

VAoV yP(rr)=r—r); rek. (15

Fundamental solutions are, for example
Y(r,o)=U(r, ')l

with the potential U of

- Eq. (5) for a homogeneous space,
- Eq. (6) for a half-space,

- Eq.(10) for a layered half-space.

To apply Green’s formulae, fundamental solutions,
Eq.(15), and differential expressions of the potential,
Eq. (3), are multiplied and integrated over correspond-
ing domains.

Assuming the source point r, and the point r are
outside the body, the potential can be formulated as
follows (differentiations and integrations — do — are
taken with respect to the variable r):

U, 1) =1y (r,, 1)
+ U, r ) [o(mn- VY (r, 1) — g (n- VP (r, r)]
S

+o@n- VU (r, 1) [YP(r,v) =y (r, 1)} do. (16)

The potential of a point source for a buried body
consists of the usual potential and a disturbed potential
depending on the unknown surface potential and its
derivative. Now this integral representation has to be
reduced by Green’s formula in such a way that the
integral will be carried out over the potential itself or
over its normal derivative.

The second term of Eq. (16)

£ cmn- VU (r, 1) {y?(r, v) =y (r, r)} do

(16a)

can be rebuilt by boundary condition, Eq.(7), to form
the expression



[ ox®n- VU2 (r,r) (Y@ (r, r) -y (r, 1)} do,
S

to which Green’s second formula can be applied. This
procedure is only valid if the conductivity of the body
is constant: og(r)=0g. As the potential U'® and the
fundamental solutions ¥'!) and y/'? satisfy the potential
equations, Egs.(3) and (15), within the body, the vol-
ume integral vanishes. From Eq. (16a) we obtain

[ oxUP(@E )0V (@ (r,v') =y (r, )} do.
N

This term is inserted into Eq. (16) instead of the second
integral term and with respect to the continuity of the
potential, Eq.(8), the following integral representation
is obtained

U(l)(l'/, l'A)= Il//(l)(r,p rl)
+[ U)o — o In VO (x,r)do. (17)
N

This representation is only valid if

ie. p 0. (18)

The unknown surface potential is determined by an
integral equation. If the point r' tends to a point r, of
the surface S, we obtain

o< 0,

Ulrg,r)=1y(r,, 1) +1(2l':;+r—0%(_ Ulrg, ry)

+{ U r)lo()= o In Vi (x.ro)do.

The integral becomes singular, but convergent; the inte-
gration has to be carried out without the singularity at
r,. The indices (1), appearing at potential and funda-
mental solutions, are omitted.

The equation for the determination of the surface
potential is obtained

O U ) =1 ry)
+[ U r)[o®)— o In-Vi(r,ry)do. (19)
s

Every constant potential is an eigensolution of Eq. (19)
in the case of gy tending to infinity. Therefore, and
because of Eq. (18), the case of a highly conducting
body, which is very important for the exploration of
ore, can not be treated by the integral equation for
surface potential. This method produces incorrect re-
sults for cases of resistivity p, tending to O (see Ta-
ble 2). It is for this reason that this method, published
by Barthes and Vasseur (1978), will not be used further.
The first term in Eq. (16)

fUD ) {o@n- Py, r)—ag(rn- VD (r, r)}do
5 (16b)

will now be rebuilt in such a way that only the de-
rivative of the potential will appear. U is replaced by
U@ because of the continuity of the potential, Eq.(8).
In analogy to the derivation above, the following ex-
pression is obtained by Green’s formula
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£ n-VUP (1) oy (r, r)— o ' 2(r, r)} do.

According to the boundary condition, Eq.(7), the in-
tegral representation, Eq.(16), can be reconstructed to
give ’
U(r,r)=1Iy(r,r)
+fa(r)n-l7U“’(r,rA)6(r)

N

P (e, ) do. (20)
(D3

The unknown normal derivative of potential is replaced
by the also unknown surface charge density. Equations
(7) and (9) yield

n-V U (g, ) =0k u(ro)/{o(ry) — oy}

Replacing this in Eq.(20), the integral representation
over the surface charge density is obtained

UGF, 1) =1 (54 ¥)+ [ o0 r,v)do. 1)

In this representation the surface charge density u is
unknown. Differentiating this equation with respect to
r' and letting r’ tend to a point r, on the surface of the
body, an integral equation for the surface charge densi-
ty is obtained:

1 +
E‘Z—g%_—gf ulrg)=In-Vij(r,,ry)

+j umo(rn-Viy(r, r)do. (22)
N

Inserting the solution of this integral equation into
Eq.(21), the potential U can be calculated for every
point r’ outside the body. In the special case of a
homogeneous half-space, Eqgs. (21) and (22) with the
corresponding fundamental solution yield the well
known integral representation and equation (Dieter et
al., 1969).

Without entering into the particulars, it should be
noted that there are other integral representations and
methods to solve the problem, see e.g. Lee (19795).

The numerical treatment of the integral equation

Integral equation, Eq. (22), can generally be solved only
by numerical methods. The unknown surface charge
density can be approximated by piecewise defined in-
terpolation polynoms, the coefficients of which have to
be determined (boundary element method). In this
approach, the surface S of the body is completely di-
vided into N boundary elements S, (Fig. 3). For practical
treatment, the boundary element method is used in the
simplest way (Riehle, 1979): the unknown function y is
approximated by a function py, which is constant on
every boundary element S,.

N ) 1;  res§,

q

The integral equation, Eq.(22), is transformed by this
approach to a system of linear equations
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Fig. 3. Three-dimensional body (cube) in a horizontally stra-
tified half-space; dissection of the surface into boundary ele-
ments

lo(r)+oag

SENOT S e Py _

So)—o =M YELT)
N

+ ) H, [ a(r)n-Vi(r,r)do; i=1,...,N. (23)
g=1 Sq

The potential U, Eq.(21), is approximately represented,
with the solution of Eqg.(23), by

=Iy(r, ')+ Z K, j a(r)y(r,r')do.

q=1 Sq

Uy(r,ry) (24)

The integrals over the fundamental solutions can be
exactly calculated only in special cases, e.g. if Q is a
homogeneous half-space and the boundary elements §,
are planar facets (see Barnett, 1972). But it is sufficient
to calculate the integrals numerically. The quadrature
formula should be chosen in such a way that the inte-
grals over the approximating functions are calculated
exactly. In our case it is sufficient to use the simplest
Gauss quadrature formula. Then the linear equations,
Eq. (23), have the form

g=In-Vi(r,,r)

+ Y mow)nVir,r)s,l;  i=1,..,N, (25)
q=1

where r, is the centre of gravity and |S | is the area of
the boundary element S,. The potential, Eq.(24), runs
as follows

Un(r',r)= 1) (r, r)[S,| (26).

N
Iy, )+ Y mol
g=1

The same system of equations and expression for
the potential can be obtained by using Gauss simplest

Zk/R_1 25
2.0 T — T T T T T T T T T TT7T
ea
&
1.0_
'_
i (e) 162 N
(a)
01 1 1 1 I | 1 1 1 I |
0.1 1.0 ABI2R 10.0

Fig. 4. Influence of the numerical discretization, represented
by model curves of apparent resistivity of a Schlumberger
sounding array for a sphere (radius R, depth of the centre
1.25 R, resistivity pg/p;=0) buried in a homogeneous half-
space. Point of measurement: epicentre of the sphere. N:
number of boundary elements; (e): extrapolated values,
Eq. (28); (a): analytical (exact) values

Table 1. Extrapolation table for the numerical solution of the
integral equation, calculated for one model value of the ap-
parent resistivity p,/p, of a Schlumberger array (AB/2
=100 R) for a sphere (radius R, depth of the centre 1.25R,
resistivity p,/p, =0) buried in a homogeneous half-space (re-
sistivity p,). Point of measurement: epicentre of the sphere.
N: number of bounddry elements, hy: width of the elements,
which are quadratic in bi- spherlcal coordinates, p™: value
calculated by Eq.(26), p!®: analytical value (Snyder and Mer-
kel, 1973), Vi, W},: exlrapolated values (Stoer, 1972) with

i

Vi= 2 cgVe with ¢ff= [ h/th—h)
Jj=i-k lT;jk
Wy =2V, s Vi
(=2 e 125 =1253)
N hy i=nfhy p™M
=V, ¥, Vi Vis Pff)
g8 157 2 0.2810
18 1.05 3 0.3205 0.3995
32 078 4 0.3267 0.3454 0.2914
50 063 5 0.3115 0.2508 0.1087 —0.0131
72 052 6 0.2923 0.1962 0.0871 0.0654
98 045 7 02754 0.1739 0.1182 0.1596
128 039 8 0.2618 0.1668 0.1455 0.1911
162 035 9 0.2511 0.1651 0.1592 0.1866
200 031 10 0.2425 0.1649 0.1638 0.1745
242 029 11 0.2354 0.1648 0.1643 0.1657
288 026 12 0.2295 0.1646 0.1636 0.1612
0.1596
11 0.2235 0.1644 0.1628 0.1568
10 0.2283 0.1647 0.1649 0.1570
9 0.2338 0.1646 0.1684 0.1624
8 0.2403 0.1634 0.1729 0.1822
7 0.2482 0.1597 0.1728 0.2250
6 0.2585 0.1516 0.1493 0.2539
5 0.2731 0.1416 0.0654 0.1438
4 0.2963 0.1560 —0.0740
3 0.3330 0.2914
2 0.3600
i Wiy W, W, W, Py
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Table 2. Comparison of different methods of calculation of apparent resistivity for a buried body. Model: Sphere (radius R,
resistivity py, depth of the centre Z,/R=2) in a homogeneous half-space (resistivity p,). Array: Schlumberger array with AB/2
=100 R. Parameters of the model: X/R, Y/R centre of the Schlumberger array; Z,/R depth of the centre of the sphere; p./p,
ratio of the resistivities. Analytical method: see Brass et al. (1981). Integral equation: surface charge density, Eq. (21) and Eq.
(26); surface potential, Eq. (17); N=number of boundary elements; Extrap=extrapolated values, Eq. (28); *=values which are

not correct, Eq. (18)

Parameter Analytical Integral equation
method
X/R Y/R Zy/R Pk/P1 Surface charge density Surface potential
N=98 N=162  Extrap. N=98 N=162  Extrap.

0.0 0.0 2.0 0.0 0.7560 0.7938 0.7864 0.7605 0.7897 0.7830 0.7595
0.0 0.0 20 0.1 0.8160 0.8383 0.8338 0.8179 0.8357 0.8316 0.8174
0.0 0.0 20 0.2 0.8592 0.8727 0.8699 0.8600 0.8710 0.8685 0.8597
0.0 0.0 2.0 0.5 0.9379 0.9407 0.9401 0.9379 0.9403 0.9398 0.9379
0.0 0.0 20 2.0 1.0502 1.0520 1.0516 1.0502 1.0517 1.0514 1.0502
0.0 0.0 20 10.0 1.1082 1.1174 1.1152 1.1078 1.1157 1.1139 1.1079
0.0 0.0 2.0 9999.0 1.1264 1.1392 1.1362 1.1257 1.1367 1.1343 1.1259
0.5 0.0 2.0 0.0 0.8160 0.8452 0.8395 0.8196 0.7662 0.7692 = 0.7794
0.5 0.0 2.0 0.1 0.8613 0.8785 0.8751 0.8629 0.8566 0.8583 0.8644
0.5 0.0 20 0.2 0.8939 0.9043 0.9022 0.8946 0.8938 0.8945 0.8968
0.5 0.0 20 0.5 0.9532 0.9554 0.9549 0.9532 0.9533 0.9535 0.9542
0.5 0.0 2.0 20 1.0377 1.0392 1.0388 1.0377 1.0392 1.0387 1.0372
0.5 0.0 2.0 10.0 1.0813 1.0884 1.0868 1.0809 1.0869 1.0854 1.0802
0.5 0.0 2.0 9999.0 1.0950 1.1049 1.1026 1.0944 1.1025 1.1006 1.0937

quadrature formula in Egs.(21) and (22). Then fi, has
the meaning of the value of p at the centre of gravity,
r,, but u(r,) is generally not equal to f,.

Convergence of the numerical solution

The problem of how the numerical solution f, of
Eq. (25) converges to the exact solution p of Eq.(22) for
N — o0 has not been analysed yet. The difference be-
tween numerical and exact solution can be significant,
as Fig. 4 shows. The problem can be solved when theo-
rems of convergence for singular integral equations
(Michlin and ProBdorf, 1980) are applied.

The solution of the last section can be interpreted
as a special case of the Ritz-Galerkin method (Michlin
and ProBdorf, 1980, Chapter 18). In the Appendix,
Eq. (33), the convergence of the numerical solution to
the exact one is proved; the procedure is stable, and
the discretization error is estimated by Eq. (39).

In order to get an impression of the dimensions of
this error, the estimation is analysed for a special case:
it is assumed that the surface S of the body can be
divided into boundary elements S , each of which is a
square of length h (see Fig.3). The error between the
numerically calculated potential Uy, Eq.(24), and the
exact potential U, Eq.(21), can be estimated by
Eq. (40):

|Uy—Ul|<c-h. @7

c is a constant, which depends on the continuity of the
function and generally can not be more exactly de-
termined. If a quadrature formula is used for solving
the integral equation, the estimation of the approxima-
tion error is not essentially changed, Eq. (41). The error
between the exact potential, Eq.(21), and the potential

calculated completely numerically, Eq. (26), is estimated
by

|Uy—UlSc-h+d-h%

The quadrature formula is less important with re-
gard to convergence. The order of convergence is not
improved by exact integration. Equation (27) shows
that the considered numerical procedure for solving the
integral equation has only a linear order of conver-
gence. This is verified by model calculations. Figure 4
shows model curves for a Schlumberger array (see
Eq.(1)) for a sphere (pg/p,=0) buried in a homo-
geneous half-space. The curves are calculated by solv-
ing the integral equation numerically, Egs. (25) and (26).
Beforehand, the Cartesian coordinates must have been
transformed into bi-spherical coordinates and the in-
tegral equation must have been discretized in this coor-
dinate system (Schulz, 1983). So the surface of the
sphere has not been approximated by a polygon, as in
Barnett (1972). Nevertheless, it is obvious that the
numerical solution significantly differs from the analyti-
cal solution even if the number of boundary elements is
relatively high. The analytical solution is given by a
sum of Legendre, trigonometric and exponential func-
tions (e.g. Snyder and Merkel, 1973).

The order of convergence, Eq.(27), can be used to
increase the accuracy by an extrapolation technique.
Table 1 shows extrapolated values, which are calculated
by Lagrange’s interpolation formula (Stoer, 1972). It is
difficult to give an exact mathematical proof of the
validity of this extrapolation, but in all cases the ex-
trapolated values approximate the exact ones very well.

The computation time for producing such tables is
very high, but it has turned out that it is sufficient to
obtain the extrapolated value by two computations
only (see also Fig.4). If y,, and p,,, are the solutions of
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two systems of equations which are obtained by two
different discretization widths h, and h,, then the ex-
trapolation yields

.[‘(e)=(1/h1l_1(1)_1/h2l_1(2))/(1/h1_1/h2)~ (28)

This extrapolation corresponds to the second column
of Tablel. Of course, it must be assumed that the
discretization steps h; are sufficiently small, ie. the
number of boundary elements is sufficiently high. Es-
pecially in the case of shallow bodies, for example see
Fig. 4, should a close-meshed discretization be chosen.

Table 2 shows that the extrapolation, Eq. (28), gen-
erally yields good results. In Table2 some results of
model calculations (Schulz, 1983) are summarized. The
model body is a sphere of variable resistivity and con-
stant depth (depth of the centre z,=2R, R is the ra-
dius), buried in a homogeneous half-space. It is given
the apparent resistivity for a Schlumberger array,
Eq. (1), with AB/2=100R; centre of coordinates is the
epicentre of the sphere. For p,=0 the analytical so-
lution has a closed form (Snyder and Merkel, 1973) and
for py>0 it is computed by a system of equations
(Brass et al., 1981).

The results of Table 2 show significantly:
- The method of integral equation for the surface
potential is not valid for a completely conducting body.
- The numerical results of the method of integral equa-
tions are different from the exact results, even if the
number of boundary elements is high.
- The extrapolation, Eq. (28), yields a good correspon-
dence between numerical and analytical results.

Model curves

Model curves for a body buried in a stratified half-
space can be calculated by the described procedure.
Studies have shown that the shape of the body in-
fluences the model curve only to a low extent. On the
other hand, resistivity of the overburden produces sig-
nificant effects (Schulz, 1983).

As the number of parameters are high, only the
fundamental effect is presented by one example (Fig. 5).
A completely conducting cube (p,=p,=0) of width b,
buried in a two-layer earth, is chosen as the model. The
overburden has thickness d/b=0.1 and resistivity p;
the substratum has resistivity p,. All dimensions of
length are normalized by the width b of the cube, all
resistivities are normalized by the resistivity p, of the
overburden.

In Fig. 5 the depth of the top of the body (t/b=0.25,
0.5, 0.75, 1.0) and the resistivity of the substratum
(p/p1=10 - well-conducting overburden; p,/p,=1
- homogeneous half-space; p,/p,=0.1 - poorly con-
ducting overburden) are varied.

The Schlumberger half-array, Eq.(2), is chosen as
the electrode array. This array has been used in field
measurements, with good results (Brass et al., 1981).

The shape of the curves is changed according to the
point of measurement. If this point is situated before
the epicentre of the body, as in Fig. 5, the curves can
have slopes of more than 45°.

It is worth noting that the asymptotic value of ap-
parent resistivity for great distances can be higher than

0.01 | e ] I I I

0.1 1. a/b 10.
Fig.5. Model curves of apparent resistivity of Schlumberger
sounding half-array for a cube (width b, p;=0) buried in a
two-layer earth (thickness of the overburden d/b=0.1, re-
sistivity of the overburden p,). The curves are plotted for
different ratios of resistivity (p,/p,) and different depths of the
top of the cube (z/b); the curve on top of each set represents
the two-layer case without a buried body. Point of measure-
ment: b before the epicentre of the cube

the resistivity of the substratum, although the buried
body has a vanishing resistivity.

The curves are distinctly marked by the resistivity
of the overburden. The lower the ratio p,/p,, the more
distinct is the shape of the curve. Therefore, the ratio of
resistivities of overburden and substratum will influence
of depth of investigation for buried bodies.

Field measurements can be interpreted by compari-
son with such model curves. This method has been
applied, with success, in the exploration of graphite
(Schulz, 1983).
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Appendix: proof of convergence

The function space, in which the integral equation,
Eq.(22), has to be solved, is the space L,(S) of func-
tions for which the Lebesgue integral of their square
exists. The norm of space L,(S) is defined by

lIsll:= {g [s(m)]*do}'?;  seLy(S). (29)

A complete sequence of orthogonal coordinate func-
tions is defined by the functions d,(r), i.e.

B ISl p=q
Ay =] dp(r)dq(r)do—{o; " (30)
and
N 2
lim f{s(r)— D sqdq(r)} do=0. (31)
N-o o g=1

IS, is the area of the boundary element S, .
The orthogonal projection from the space L,(S)
into the space of piecewise constant functions is noted

by Oy:
N
Ox(s)= Y s(r)d,(r), (32)
g=1

where it is assumed that r, is not a singularity of s.

With these notes, the following estimation between
the exact solution u of the integral equation, Eq.(22),
and the solution u, of the system of linear equations,
Eq. (23), is valid (Michlin and Profidorf, 1980, Chapter
18)

i — ) () (=0 (33)

with lim &y=0.
N—co

uy converges to the exact solution pu for N—oo; also,
the procedure is stable.

In the system of equations, Eq. (25), the integrals are
numerically calculated. If it is assumed that the func-
tions are differentiable, it can be shown, by expansion
in a Taylor series, that

max iy (1) — (0] S ¢, max|R (s on 7)) (34)
is valid, where ¢, is a constant independent of r and R
is the residual term of the quadrature formula used.

Combining Egs. (33) and (34), we get the solution of the
system of equations, Eq. (25), to be:

Iy — w1l = +e) [T = Oyl + ¢, max|R(y, on-V ). as)

Applying Schwarz’s inequality, it ensues that, for the
potential Uy, Eq.(24),

Uy = Ul= luy—ul oyl (36)
In analogy to Eq.(34), it can be shown that
|Uy — Uyl ¢, max|R(g, o) (37)

is valid and, therefore,
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|Oy— U= |y —pll oy || + &, max|R(g, o). (38)

This estimation is analysed for the following special
case: the surface S is divided into boundary elements
S,, each of which is a square of the same width h. It is
assumed that all functions of the integral equation and-
representation are twice continuously differentiable.
Then the residual term of the simplest Gauss quadra-
ture formula used can be estimated by Taylor expan-
sion

max |R|<c h*
reS,

Since the number N of boundary elements is recipro-
cally proportional to h?, it ensues that

max |R|<c, h? (39)
reS
for the whole surface S.
The term ||uy— | is additionally significant for con-
vergence because of Egs. (38) and (33).

It ensues, from Eq. (32), that

N 1/2
I —Owul = ( > (1)~ n(r)?do,)

Assuming the differentiability of p, one gets from
Eg. (36)

|Uy—U|Zcgh (40)
and from Eq. (37)

|Uy—Ul|Zcgh+c b’ (41)
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